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Haim’s Notes About 

Introduction to Partial Differential Equations (2nd Ed) 

by Gerald B. Folland 

 

Important: Folland uses a convention on the Fourier transform in this book that falls into the 

minority category in terms of where one places the constant 𝜋. Here I follow his convention and 

so I strongly urge the reader to quickly glance at this convention in the section “Notations and 

Conventions” below before proceeding to any other part of this document. 

Important: I reference many theorems from both this document and the book. If I merely write 

“Theorem X” then I’m referencing a theorem from this document. On the other hand, if I write 

“Theorem X from the book,” then I’m referencing a theorem from the book. 
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2 Notations and Conventions 

Definition 2.1: For functions 𝑓 ∈ 𝐿1(ℝ𝑛), we define the Fourier transform of 𝑓 as 

𝑓(𝜉) = ∫𝑒−2𝜋𝑖𝜉⋅𝑥𝑓(𝑥)𝑑𝑥. 

The definition of the Fourier transform for tempered distributions follows from here. 

Notation 2.2: For any tempered distribution 𝑢 over ℝ𝑛, we denote its inverse Fourier 

transform by 𝑢̌. It is explicitly given by 

𝑢̌(𝑥) = 𝑢̂(−𝑥). 

Notation 2.3: We let 𝐷 denote (2𝜋𝑖)−1 times a derivative: 

𝐷 =
1

2𝜋𝑖
𝜕. 

Notation 2.4: Suppose that Ω is an open subset and that 𝐿 = ∑ 𝑎𝛼𝜕
𝛼

|𝛼|≤𝑘  is a linear partial 

differential operator over Ω with 𝐶∞ coefficients. The characteristic form of 𝐿 is the 

polynomial 𝜒𝐿 ∈ 𝐶
∞(Ω × ℝ𝑛) given by 

𝜒𝐿(𝑥, 𝜉) = ∑ 𝑎𝛼(𝑥)𝜉
𝛼

|𝛼|=𝑘

. 

Notation 2.5: We will use ⟨ ⋅ | ⋅ ⟩ to denote inner product and 〈 ⋅ , ⋅ 〉 to denote distribution 

evaluations. In addition, in my distribution evaluations I will always put the distribution first and 

the test function second (i.e. if 𝑢 is a distribution and 𝜙 is a test function, I always write 〈𝑢, 𝜙〉 
and never write 〈𝜙, 𝑢〉). 

Notation 2.6: For any point ℎ ∈ ℝ𝑛 and any function or distribution 𝑢, we let 𝜏ℎ𝑢 denote the 

translate of 𝑢 in the direction ℎ: 

𝜏ℎ𝑢 = 𝑢(𝑥 − ℎ). 

Notation 2.7: For any point 𝑥 ∈ ℝ𝑛, we will denote its Euclidean length by |𝑥|: 

|𝑥| = √𝑥1
2 +⋯+ 𝑥𝑛

2. 

Notation 2.8: For any 𝑥 ∈ ℝ𝑛 and any 𝑟 > 0, we let 𝐵𝑟(𝑥) denote the open ball of radius 𝑟 

centered at 𝑥 with respect to the Euclidean distance: 

𝐵𝑟(𝑥) = {𝑦 ∈ ℝ
𝑛 ∶ |𝑦 − 𝑥| < 𝑟}. 

Notation 2.9: We let ℤ+ stand for the positive integers: ℤ+ = {1,2,3,… }. 
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Notation 2.10: For any 𝑛 ∈ ℤ+, let ℐ(𝑛) denote the set of multi-indices of length 𝑛: 

ℐ(𝑛) = {(𝛼1, … , 𝛼𝑛) ∈ ℤ
𝑛 ∶ each 𝛼𝑘 ≥ 0}. 

Notation 2.11: In ℝ𝑛, for 𝑗 ∈ {1,… , 𝑛} we let 𝑒𝑗 stand for the point/vector that has all zeros 

except a one in the 𝑗th entry: 𝑒𝑗 = (0,… ,0,1,0,… ,0). 

Notation 2.12: Suppose that 𝑋 ⊆ 𝑌 ⊆ ℝ𝑛 are open sets. For any function 𝜙 ∈ 𝐶𝑐
∞(𝑋), we let 

𝜙𝑌 ∈ 𝐶𝑐
∞(𝑌) denote the smooth extension of 𝜙 to 𝑌 obtained by setting 𝜙 ≡ 0 on 𝑌 ∖ 𝑋. It’s 

trivial to see then that supp𝜙 = supp𝜙𝑌 and hence 𝜙𝑌 is indeed compactly supported as well. 

We also extend this notation to other objects such as distributions in the obvious way. 

Notation 2.13: Let 𝛼, 𝛽 ∈ 𝐼(𝑛) be multi-indices. Then 

1.) 𝛼 ≤ 𝛽 (resp. 𝛼 < 𝛽) means that each 𝛼𝑘 ≤ 𝛽𝑘 (resp. 𝛼𝑘 < 𝛽𝑘). 

2.) 𝛼! denotes 𝛼1! ⋅ … ⋅ 𝛼𝑛!. 

3.) |𝛼| denotes 𝛼1 +⋯+ 𝛼𝑛. 

4.) For any 𝑥 ∈ ℝ𝑛, 𝑥𝛼 denotes 𝑥1
𝛼1 ⋅ … ⋅ 𝑥𝑛

𝛼𝑛. 

5.) For any sufficiently differentiable function or distribution 𝑓, 𝜕𝛼𝑓 denotes 𝜕𝛼1 …𝜕𝛼𝑛𝑓. 

Notation 2.14: Let Ω ⊆ ℝ𝑛 be an open set. We let the following denote the following spaces of 

complex-valued functions: 

1.) 𝐶𝑚(Ω) denotes the space of 𝑘-times continuously differentiable functions over Ω. In 

particular, 𝐶∞(Ω) denotes the space of smooth functions. 

2.) 𝐶𝑐
𝑚(Ω) denotes the space of 𝑘-times continuously differentiable functions over Ω with 

compact support. Sometimes 𝐶𝑐
∞(Ω) is also denoted by 𝒟(Ω). 

3.) We let 𝒮(ℝ𝑛) denotes the space of rapidly decreasing functions: 

𝒮(ℝ𝑛) = {𝜙 ∈ 𝐶∞(ℝ𝑛) ∶ |𝑥𝛼𝜕𝛽𝜙(𝑥)| < ∞     ∀𝛼, 𝛽 ∈ ℐ(𝑛)}. 

This space is called the Schwartz space. 

Notation 2.15: Let Ω ⊆ ℝ𝑛 be an open set. We let the following denote the following space of 

distributions: 

1.) 𝒟′(Ω) denotes the space of distributions over Ω. 

2.) ℰ′(Ω) denotes the space of distributions over Ω with compact support. 

3.) 𝒮′(ℝ𝑛) denotes the space of tempered distributions over ℝ𝑛. 

Definition 2.16: Suppose that 𝑢 ∈ 𝒟′(Ω) is a distribution. We define the complex conjugate of 

𝑢 to be the distribution given by: for all 𝜙 ∈ 𝐶𝑐
∞(Ω), 
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〈𝑢, 𝜙〉 = 〈𝑢, 𝜙〉. 

This matches with the usual complex conjugate for ordinary functions. I include this definition 

here since I’ve never seen it stated in any textbook. 

Definition 2.17: Suppose that 𝑋 is a measure space and that 1 ≤ 𝑝 < ∞. We define the 𝐿𝑝 norm 

of a measurable function 𝑓 ∶ 𝑋 → ℂ to be 

‖𝑓‖𝐿𝑝 = [∫|𝑓|
𝑝]
1 𝑝⁄

. 

In the case 𝑝 = 2, we also define the 𝐿2 inner product to be 

〈𝑓, 𝑔〉𝐿2 = ∫𝑓𝑔̅. 

We let 𝐿𝑝(𝑋) denote the set of functions for which the 𝐿𝑝 norm is finite. 

Definition 2.18: For any 𝑠 ∈ ℝ we let 𝐻𝑠(ℝ
𝑛) denote the Sobolev space given by 

𝐻𝑠(ℝ
𝑛) = {𝑢 ∈ 𝒮′(ℝ𝑛) ∶ (1 + |𝜉|2)𝑠 2⁄ 𝑢̂(𝜉) ∈ 𝐿2(ℝ𝑛)}. 

In this space we impose the inner product 

〈𝑢, 𝑣〉𝑠 = ∫(1 + |𝜉|
2)𝑠𝑢̂(𝜉)𝑣̂(𝜉)̅̅ ̅̅ ̅̅ 𝑑𝜉. 

It’s a standard exercise to show that this turns 𝐻𝑠(ℝ
𝑛) into a Hilbert space. 

Notation 2.19: For any 𝑠 ∈ ℝ, we let Λ𝑠 denote the operator 

Λ𝑠 = [𝐼 − (2𝜋)−2Δ]𝑠 2⁄  

which is explicitly given by 

Λ𝑠𝑢 = [(1 + |𝜉|2)𝑠 2⁄ 𝑢̂(𝜉)]
∨
        ∀𝑢 ∈ 𝒮′(ℝ𝑛). 

This operator is nice because it allows us to neatly write the norm of any 𝑢 ∈ 𝐻𝑠(ℝ
𝑛) as the 𝐿2 

norm of (Λ𝑠𝑢)   ̂, and the standard isometry from 𝐻−𝑠(ℝ
𝑛) to [𝐻𝑠(ℝ

𝑛)]∗ (the dual of 𝐻𝑠(ℝ
𝑛)) as 

Λ−2𝑠. 

Definition 2.20: A symbol of order 𝒎 ∈ ℝ over an open set Ω ⊆ ℝ𝑛 is a smooth function 𝑝 ∈
𝐶∞(Ω × ℝ𝑛) such that for any compact subset 𝐾 ⊆ Ω and any multi-indices 𝛼, 𝛽 ∈ ℐ(𝑛) there 

exists a constant 𝐶𝛼,𝛽,𝐾 > 0 such that 

|𝐷𝑥
𝛽
𝐷𝜉
𝛼𝑝(𝑥, 𝜉)| ≤ 𝐶𝛼,𝛽,𝐾(1 + |𝜉|)

𝑚−|𝛼|        ∀(𝑥, 𝜉) ∈ 𝐾 × ℝ𝑛. 

We denote the vector space of all symbols of order 𝑚 over Ω by 𝑆𝑚(Ω). In addition, we define 
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𝑆−∞(Ω) = ⋂ 𝑆𝑚(Ω)

𝑚∈ℝ

        and        𝑆∞(Ω) = ⋃ 𝑆∞(Ω)

𝑚∈ℝ

. 

Definition 2.21: A function 𝑝 ∶ Ω × ℝ𝑛 → ℂ is said to be homogeneous of degree 𝒎 in 𝝃 if 

there exists a 𝑐 > 0 such that 𝑝(𝑥, 𝑡𝜉) = 𝑡𝑚𝑝(𝑥, 𝜉) whenever 𝑡 ≥ 1 and |𝜉| ≥ 𝑐. 

Definition 2.22: A pseudodifferential operator is a linear map 𝑃 ∶ 𝐶𝑐
∞(Ω) → 𝐶∞(Ω) of the 

form 

𝑃𝑢(𝑥) = ∫𝑒2𝜋𝑖𝑥⋅𝜉𝑝(𝑥, 𝜉)𝑢̂(𝜉)𝑑𝜉 

where 𝑝 ∈ 𝑆𝑚(Ω) is a symbol of order 𝑚 ∈ ℝ ∪ {±∞}. With respect to this notation, we say that 

“𝑝 is a symbol of 𝑃” or alternatively that “𝑃 has 𝑝 as a symbol” (𝑃 can have more than one 

symbol). For any symbol 𝑝 ∈ 𝑆𝑚(Ω) we let 𝑝(𝑥, 𝐷) denote the pseudodifferential operator that it 

generates as above. We denote the vector space of all pseudodifferential operators of order 𝑚 by 

Ψ𝑚(Ω). Note that for any pseudodifferential operator 𝑃 as above, it’s in fact unnecessary to 

check that 𝑃 actually maps 𝐶𝑐
∞(Ω) into 𝐶∞(Ω) since, as one can check, that is automatic from 

the above equation. In addition, one can also check that 𝑃 is automatically continuous. 

Definition 2.23: Suppose that {𝑚𝑗 ∶ 𝑗 = 0,1,2, … } is a strictly decreasing sequence of real 

numbers and that 𝑝 ∈ 𝑆𝑚0(Ω) and {𝑝𝑗 ∈ 𝑆
𝑚𝑗(Ω) ∶ 𝑗 = 0,1,2, … } are symbols of the indicated 

order. Then we say that the formal series ∑ 𝑝𝑗
∞
𝑗=0  is an asymptotic expansion of 𝑝 if for any 𝑘 ∈

ℤ+, 

𝑝 −∑𝑝𝑗

𝑘−1

𝑗=0

∈ 𝑆𝑚𝑘(Ω). 

In this case we write 𝑝~∑ 𝑝𝑗
∞
𝑗=0 . 

Definition 2.24: An amplitude of order 𝒎 ∈ ℝ over an open set Ω ⊆ ℝ𝑛 is a smooth function 

𝑎 ∈ 𝐶∞(Ω × ℝ𝑛 × Ω) such that for any compact subset 𝐾 ⊆ Ω and any multi-indices 𝛼, 𝛽, 𝛾 ∈
ℐ(𝑛) there exists a constant 𝐶𝛼,𝛽,𝛾,𝐾 > 0 such that 

|𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)| ≤ 𝐶𝛼,𝛽,𝛾,𝐾(1 + |𝜉|)

𝑚−|𝛼|        ∀(𝑥, 𝜉, 𝑦) ∈ 𝐾 × ℝ𝑛 × 𝐾. 

We denote the vector space of all amplitudes of order 𝑚 over Ω by 𝐴𝑚(Ω). 

Notation 2.25: For any amplitude 𝑎 ∈ 𝐴𝑚(Ω), we let 𝑃𝑎 ∶ 𝐶𝑐
∞(Ω) → 𝐶∞(Ω) denote the operator 

given by 

𝑃𝑎𝑢(𝑥) =∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦𝑑𝜉. 

Note that the fact that the above equation maps 𝐶𝑐
∞(Ω) to 𝐶∞(Ω) is automatic; one can prove 

this by carefully justifying interchanging 𝐷𝑥 partials under the integral signs using the 
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inequalities in the definition of 𝐴𝑚(Ω). Furthermore, one can show that this map is continuous 

and hence has a distribution kernel. 

Definition 2.26: Suppose that Ω ⊆ ℝ𝑛 is an open set. Let 𝜋𝑥 ∶ Ω × Ω → Ω and 𝜋𝑦 ∶ Ω × Ω → Ω 

denote the projection maps (𝑥, 𝑦) ↦ 𝑥 and (𝑥, 𝑦) ↦ 𝑦 respectively. A subset 𝑊 ⊆ Ω × Ω is said 

to be proper if the restrictions 𝜋𝑥|𝑊 ∶ 𝑊 → Ω and 𝜋𝑦|𝑊 ∶ 𝑊 → Ω are proper maps. 

Equivalently, for any compact subset 𝐴 ⊆ Ω, both 

(𝐴 × Ω) ∩𝑊          and          (Ω × 𝐴) ∩𝑊 

are compact subsets of Ω × Ω. 

Definition 2.27: Suppose that Ω ⊆ ℝ𝑛 is an open set. A linear map 𝑇 ∶ 𝐶𝑐
∞(Ω) → 𝐶∞(Ω) with 

distribution kernel 𝐾 is said to be properly supported if supp𝐾 is a proper subset of Ω × Ω. 

Definition 2.28: Suppose that 𝑆, 𝑇 ∶ 𝐶𝑐
∞(Ω) → 𝐶∞(Ω) are linear maps. Then we say that 𝑆 is the 

transpose of 𝑇 and write 𝑆 = 𝑇′ if 

〈𝑇𝑢, 𝑣〉 = 〈𝑢, 𝑇′𝑣〉          ∀𝑢, 𝑣 ∈ 𝐶𝑐
∞(Ω). 

We say that 𝑆 is the adjoint of 𝑇 and write 𝑆 = 𝑇∗ if 

〈𝑇𝑢, 𝑣〉 = 〈𝑢, 𝑇∗𝑣〉          ∀𝑢, 𝑣 ∈ 𝐶𝑐
∞(Ω). 

Definition 2.29: A symbol 𝑝 ∈ 𝑆𝑚(Ω) of order 𝑚 is said to be elliptic of order 𝒎 if for any 

compact subset 𝐴 ⊆ Ω there exist constants 𝑐𝐴, 𝐶𝐴 such that 

|𝑝(𝑥, 𝜉)| ≥ 𝑐𝐴|𝜉|
𝑚        ∀𝑥 ∈ 𝐴   and   ∀𝜉 ∈ ℝ𝑛 ∶ |𝜉| ≥ 𝐶𝐴. 

A pseudodifferential operator 𝑃 ∈ Ψ𝑚(Ω) of order 𝑚 is said to be elliptic of order 𝑚 if one of its 

symbols is elliptic of order 𝑚 (since any two such symbols differ by a 𝑆−∞(Ω) symbol [c.f. 

Theorem 5.1 below], it’s not hard to see that this is well defined. 

Sometimes I will drop writing “of order 𝑚” and just say elliptic when the order is clear or 

irrelevant. Also, observe that elliptic linear differential operators with 𝐶∞ coefficients are also 

elliptic in this sense as well. 

Definition 2.30: Suppose that 𝑃 is a pseudodifferential operator. Let 𝑃̃ be a properly supported 

pseudodifferential operator such that (𝑃 − 𝑃̃) ∈ Ψ−∞(Ω) (exists by Corollary 8.32 in the book). 

Then, a parametrix for 𝑃 is a properly supported pseudodifferential operator 𝑄 (possibly of a 

different order) such that both (𝑃̃𝑄 − 𝐼) ∈ Ψ−∞(Ω) and (𝑄𝑃̃ − 𝐼) ∈ Ψ−∞(Ω) where 𝐼 stands for 

the identity. It’s not hard to see that this definition is independent of the 𝑃̃ that we choose (see 

Theorem 8.37 in the book). 

It’s a (nontrivial) fact that every elliptic pseudodifferential operator has a parametrix. 

Definition 2.31: Suppose that Ω ⊆ ℝ𝑛 is an open subset. We let the following denote: 

𝑇0Ω = Ω × (ℝ𝑛 ∖ {0}) 
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We say that a subset 𝑉 ⊆ 𝑇0Ω is conic if for any (𝑥, 𝜉) ∈ 𝑉, we have that (𝑥, 𝑐𝜉) ∈ 𝑉 for all nonzero 𝑐 ∈

ℝ. 

Definition 2.32: Suppose that 𝑝 ∈ 𝑆𝑚(Ω) is a symbol. We say that 𝑝 is elliptic of order 𝒎 at 

(𝑥0, 𝜉0) ∈ 𝑇
0(Ω) if there exists a conic neighborhood 𝑉 of (𝑥0, 𝜉0) and constants 𝑐, 𝐶 > 0 such 

that 

|𝑝(𝑥, 𝜉)| ≥ 𝑐|𝜉|𝑚                                        ∀(𝑥, 𝜉) ∈ 𝑉 ∶ |𝜉| ≥ 𝐶. 

We say that a pseudodifferential operator 𝑃 ∈ Ψ𝑚(Ω) is elliptic of order 𝑚 at (𝑥0, 𝜉0) ∈ 𝑇
0(Ω) if all 

of its symbols are elliptic of order 𝑚 at (𝑥0, 𝜉0) ∈ 𝑇
0(Ω) (by Proposition 8.11(b) in the book or 

Theorem 5.1.1 below, it suffices only to check one symbol). 

Definition 2.33: Suppose that 𝑃 ∈ Ψ𝑚(Ω) is a pseudodifferential operator. We define the 

characteristic variety of order 𝒎 of 𝑃 to be the set 

char𝑚 𝑃 = {(𝑥, 𝜉) ∈ 𝑇0Ω ∶ 𝑃 is not elliptic of order 𝑚 at (𝑥, 𝜉)}. 

It’s easy to see that this is a closed cone in 𝑇0Ω.  

Note: Folland doesn’t include 𝑚 in his notation or definition of the characteristic variety. I 

imagine that it’s implicit. 

Definition 2.34: Suppose that 𝑝 ∈ 𝑆𝑚(Ω) is a symbol. We say that 𝑝 is smoothing at (𝒙𝟎, 𝝃𝟎) ∈
𝑻𝟎𝛀 if there exists a conic neighborhood 𝑉 ⊆ 𝑇0Ω of (𝑥0, 𝜉0) on which 𝑝 is rapidly decreasing: 

for any 𝑀 > 0 and any 𝛼, 𝛽 ∈ 𝐼(𝑛) there exists a constant 𝐶𝑀,𝛼,𝛽 > 0 such that 

|𝐷𝑥
𝛽
𝐷𝜉
𝛼𝑝(𝑥, 𝜉)| ≤ 𝐶𝑀,𝛼,𝛽(1 + |𝜉|)

−𝑀                                         ∀(𝑥, 𝜉) ∈ 𝑉. 

We say that a pseudodifferential operator 𝑃 ∈ Ψ𝑚(Ω) is smoothing at (𝑥0, 𝜉0) ∈ 𝑇
0(Ω) if all of its 

symbols are smoothing at (𝑥0, 𝜉0) ∈ 𝑇
0(Ω) (by Proposition 8.11(b) in the book or Theorem 5.1.1 

below, it suffices only to check one symbol). 

Definition 2.35: Suppose that 𝑃 ∈ Ψ𝑚(Ω) is a pseudodifferential operator. We define the 

microsupport of 𝑃 to be the set 

𝜇supp(𝑃) = {(𝑥, 𝜉) ∈ 𝑇0Ω ∶ 𝑃 is not smoothing at (𝑥, 𝜉)} 

It’s easy to see that this is a closed cone in 𝑇0Ω. 

Definition 2.36: Suppose that 𝑢 ∈ 𝒟′(Ω) is a distribution. We define the wavefront set of 𝑢 as 

𝑊𝐹(𝑢) =⋂{char0 𝑃 ∶ 𝑃 ∈ Ψ
0(Ω) is properly supported and 𝑃𝑢 ∈ 𝐶∞(Ω)}. 

This may be a different definition than what some people are used to, such as the one given in 

the book Introduction to The Theory of Distributions (2nd Ed) by Friedlander and Joshi, but 

Folland proves in his book that the two definitions are equivalent. See Section 5.8 below. 
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3 Chapter 2 

3.1 Invariance of the Wave Operator 

Here I solve Problem 2 in Section 2.A in the book, which asks to show that in ℝ2 =
{(𝑥, 𝑡) ∶ 𝑥, 𝑡 ∈ ℝ}, 

(3. 1)                                           (𝜕𝑡
2 − 𝜕𝑥

2)(𝑢 ∘ 𝑇𝜃) = [(𝜕𝑡 − Δ)𝑢] ∘ 𝑇𝜃. 

where 

𝑇𝜃 = [
cosh 𝜃 sinh 𝜃
sinh 𝜃 cosh 𝜃

]. 

We’ll show this for 𝑢 ∈ 𝒮(ℝ2), from which the fact will follow for 𝑢 ∈ 𝒟′(ℝ2) by density.  

Instead of doing it by brute force, let’s solve this problem as conceptually as possible. Taking the 

Fourier transform of the left-hand side of (3.1) gives 

(3. 2)            (𝜕𝑡
2 − 𝜕𝑥

2)(𝑢 ∘ 𝑇𝜃)
̂ = (𝜏2 − 𝜉2)(𝑢 ∘ 𝑇𝜃)̂ = (𝜏2 − 𝜉2)

1

det 𝑇𝜃
𝑢̂ ∘ ([𝑇𝜃

−1]⊤). 

Using that 

(3. 3)                                                         cosh2 𝜃 − sinh2 𝜃 = 1 

(this is why these are called the “hyperbolic” cosine and sine) it’s quick to see that det 𝑇𝜃 = 1, 

𝑇𝜃
−1 = 𝑇−𝜃 (use Cramer’s rule), and that 𝑇𝜃

⊤ = 𝑇𝜃 due to symmetry. Hence (3.2) is equal to 

(𝜏2 − 𝜉2)𝑢̂ ∘ 𝑇−𝜃. 

Now, a small computation using (3.3) shows that the columns of 𝑇𝜃 are orthonormal with respect 

to the Minkowski metric: 〈(𝜏, 𝜉), (𝜏′, 𝜉′)〉ℝ1,1 = 𝜏𝜏
′ − 𝜉𝜉′, and hence 𝑇𝜃 preserves this 

Minkowski metric. This is simply a complicated way of saying that (𝜏2 − 𝜉2) = (𝜏2 − 𝜉2) ∘ 𝑇𝜃. 

Hence (3.2) is further equal to 

[(𝜏2 − 𝜉2) ∘ 𝑇−𝜃]𝑢̂ ∘ 𝑇−𝜃 = [(𝜏
2 − 𝜉2)𝑢̂] ∘ 𝑇−𝜃 =

1

det 𝑇𝜃
[(𝜏2 − 𝜉2)𝑢̂] ∘ ([𝑇𝜃

−1]⊤) 

= ([(𝜕𝑡
2 − 𝜕𝑥

2)𝑢] ∘ 𝑇𝜃)   ̂. 

Taking inverse Fourier transforms then gives (3.1) as desired. 

 

3.2 Comment on Spherical Harmonics 

Fix 𝑛 ≥ 2. Let 𝐵 and 𝑆 denote the unit open ball and unit sphere in ℝ𝑛 respectively centered at 

zero. In section 2.H, for every 𝑘 ≥ 0 the author defines the following spaces: 

𝒫𝑘 = {set of all homogeneous polynomials of degree 𝑘 over ℝ𝑛} 

ℋ𝑘 = {𝑃 ∈ 𝒫𝑘 ∶ Δ𝑃 = 0} 
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𝐻𝑘 = {𝑃|𝑆 ∶ 𝑃 ∈ ℋ𝑘}. 

The author calls 𝐻𝑘 the spherical harmonics of degree 𝒌. 

I want to point out that these 𝐻𝑘’s are the eigenfunctions of the Laplacian over 𝑆. To see why, 

recall the standard formula for the Laplacian in ℝ𝑛 in spherical coordinates: 

(3. 4)                                                     Δ =
𝜕2

𝜕𝑟2
+
𝑛 − 1

𝑟

𝜕

𝜕𝑟
+ Δ𝑟𝑆 

where Δ𝑟𝑆 is the Laplacian over the sphere 𝑟𝑆. Now, take any 𝑃|𝑆 ∈ 𝐻𝑘 where 𝑃 ∈ ℋ𝑘. Since 𝑃 

is a homogeneous polynomial of degree 𝑘, in spherical coordinates it is of the form 𝑃(𝑟𝑥) =

𝑄(𝑥)𝑟𝑘 for 𝑟 > 0 and 𝑥 ∈ 𝑆 where 𝑄 is some smooth function over 𝑆. Thus by the above 

equation we have that 

0 = Δ𝑃 = 𝑘(𝑘 − 1)𝑄(𝑥)𝑟𝑘−2 + (𝑛 − 1)𝑘𝑄(𝑥)𝑟𝑘−2 + Δ𝑟𝑆[𝑄(𝑥)𝑟
𝑘]. 

Now, restricting both sides of this equation to 𝑆 where 𝑟 = 1 gives us that 

0 = 𝑘(𝑘 − 1)𝑄(𝑥) + 𝑘(𝑛 − 1)𝑄(𝑥) + Δ𝑆[𝑄(𝑥)]. 

Since 𝑃|𝑆 = 𝑄, we have that this implies that 

Δ𝑆𝑃 = −𝑘(𝑘 + 𝑛 − 2)𝑃. 

So indeed, members of 𝐻𝑘 are eigenfunctions of the spherical Laplacian Δ𝑆 with eigenvalue 

−𝑘(𝑘 + 𝑛 − 2). From here we also quickly get that 𝐻𝑘 ⊥ 𝐻𝑗 with respect to the inner product of 

𝐿2(𝑆) when 𝑘 ≠ 𝑗 by doing integration by parts twice over 𝑆. Furthermore, by Theorem 2.53 in 

the book we know that the 𝐻𝑘’s span the whole Hilbert space 𝐿2(𝑠) and so these must be all of 

the eigenfunctions of the spherical Laplacian (this requires a bit of Hilbert space theory to 

understand). 

We also get a more intuitive proof of the following lemma that appears Lemma 2.62 in the book: 

Lemma 3.5: Suppose that 𝑌 ∈ 𝐻𝑘 and let 𝑌̃ ∶ ℝ𝑛 ∖ {0} → ℂ be the function 

𝑌̃(𝑟𝑥) = 𝑌(𝑥)          ∀𝑟 > 0,   ∀𝑥 ∈ 𝑆.                                         

Then 

Δ𝑌̃ = −𝑘(𝑘 + 𝑛 − 2)𝑟−2𝑌̃. 

Proof: For any 𝑟 > 0 and any 𝑥 ∈ 𝑆, we have by (3.4) above that (I leave out the details 

justifying the second equality below: it’s a standard differential geometry fact/calculation): 

Δ𝑌̃(𝑟𝑥) = Δ𝑟𝑆𝑌̃(𝑟𝑥) = 𝑟
−2Δ𝑆𝑌̃(𝑥) = 𝑟

−2Δ𝑆𝑌(𝑥) = −𝑟
−2𝑘(𝑘 + 𝑛 − 2)𝑌(𝑥) 

= −𝑟−2𝑘(𝑘 + 𝑛 − 2)𝑌̃(𝑟𝑥). 

∎ 
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Chapter 5 

3.3 Wave Equation Cauchy Problem on Hyperplane 

Here I solve Problem 3 in Section 5.A in the book which asks us to do the following. Suppose 

that 𝜈 = (𝜈′, 𝜈0) ∈ ℝ
𝑛 × ℝ is a unit vector such that |𝜈′| < |𝜈0| and consider the hyperplane 

perpendicular to 𝜈: 𝑆 = {(𝑥, 𝑡) ∈ ℝ𝑛+1 ∶ 𝑥 ⋅ 𝜈′ + 𝑡𝜈0 = 0}. 

First we show that that there is a linear map 𝑇 ∶ ℝ𝑛+1 → ℝ𝑛+1 that maps 𝑆 to {(𝑥, 𝑡) ∶ 𝑡 = 0} of 

the form 𝑇 = 𝑇2𝑇1 where (here “rotation” means “unitary matrix”) 

𝑇1(𝑥, 𝑡) = (𝑅𝑥, 𝑡),     where 𝑅 is a rotation in ℝ𝑛. 

𝑇2(𝑥, 𝑡) = (𝑥1
′ , 𝑥2, … , 𝑥𝑛, 𝑡

′),     where   [
𝑥1
′

𝑡′
] = 𝑇𝜃 [

𝑥
𝑡
]    where 

𝑇𝜃 = [
cosh 𝜃 sinh 𝜃
sinh 𝜃 cosh 𝜃

]. 

Let 𝑅 be any unitary matrix that takes 𝜈′ to (|𝜈′|, 0, … ,0) and define 𝑇1 as above. Observe that 𝑇1 

takes 𝜈 to (|𝜈′|, 0, … ,0, 𝜈0). Since 𝑇1 is unitary itself, it preserves inner products and hence take 

𝑆 = 𝜈⊥ to (𝑇1𝜈)
⊥. In other words, 

𝑇1[𝑆] = {(𝑥1, … , 𝑥𝑛, 𝑡) ∶ 𝑥1|𝜈
′| + 𝑡𝜈0 = 0}. 

Hence we need to find a 𝜃 so that 𝑇2 take this to {(𝑥, 𝑡) ∶ 𝑡 = 0}. This will happen if and only if 

〈(
𝑥1
𝑡
) , (

|𝜈′|
𝜈0
)〉 = 0     ⟹      0 = 〈𝑇𝜃 (

𝑥1
𝑡
) , (

0
1
)〉 = 〈(

𝑥1
𝑡
) , 𝑇𝜃

⊤ (
0
1
)〉 = 〈(

𝑥1
𝑡
) , 𝑇𝜃 (

0
1
)〉 

This implication will hold if (|𝜈′|, 𝜈0) is parallel to 𝑇𝜃(0, 1), or more precisely if there exists an 

𝛼 ∈ ℝ such that 𝛼(|𝜈′|, 𝜈0) = 𝑇𝜃(0, 1). Writing this system out gives 

(3. 6)                                                                𝛼|𝜈′| = sinh 𝜃, 

(3. 7)                                                                 𝛼𝜈0 = cosh 𝜃. 

Since cosh 𝜃 > 0, we need to choose 𝛼 to have the same sign as 𝜈0. Since cosh2 𝜃 − sinh2 𝜃 =

1, we need to choose 𝛼 so that 𝛼2(𝜈0
2 − |𝜈′|2) = 1. Since |𝜈′| < |𝜈0|, this is possible by simply 

choosing 

𝛼 =
sgn 𝜈0

√𝜈0
2 − |𝜈′|2

. 

With this 𝛼, the surjectivity of 𝜃 ↦ sinh 𝜃 implies that there exists 𝜃 solving (3.6) and hence 

(3.7) because we choose the appropriate sign for 𝛼. This gives us the 𝑇1, 𝑇2, and hence 𝑇 = 𝑇2𝑇1 

that we wanted.  

Next, suppose we want to solve the Cauchy problem 

(𝜕𝑡
2 − Δ)𝑢 = 0,          𝑢|𝑆 = 𝑓,     𝜕𝜈𝑢|𝑆 = 𝑔. 
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Instead suppose that we can solve the Cauchy problem 

(𝜕𝑡
2 − Δ)𝑣 = 0,     𝑣|{𝑡=0} = 𝑓 ∘ 𝑇

−1,     𝜕𝑡𝑣|{𝑡=0} = 𝑔̃, 

where 𝑔̃ is to be determined. We set 𝑢 = 𝑣 ∘ 𝑇. First let us show that 𝑢 also solves the wave 

equation. We have that 𝑅 preserves Δ (see Theorem 2.1 in the book) and hence 𝑇1 preserves 

(𝜕𝑡
2 − Δ) since it does not affect the 𝑡-axis. By Problem 2 in Section 2.H in the book (or see 

Section 3.1 above), 𝑇2 preserves 𝜕𝑡
2 − 𝜕𝑥1

2  and hence (𝜕𝑡
2 − Δ) since it does not affect the 𝑥𝑖-axis 

for 2 ≤ 𝑖 ≤ 𝑛. Thus 𝑇 preserves the (𝜕𝑡
2 − Δ) and so indeed 𝑢 satisfies the wave equation: 

(𝜕𝑡
2 − Δ)𝑢 = (𝜕𝑡

2 − Δ)(𝑣 ∘ 𝑇) = [(𝜕𝑡
2 − Δ)𝑣] ∘ 𝑇 = 0. 

Next let’s show that 𝑢 satisfies the proper boundary conditions. It’s easy to see that 𝑢|𝑆 = 𝑓 is 

indeed satisfied, so let us figure out what 𝑔̃ must be in order for 𝜕𝜈𝑢|𝑆 = 𝑔 to be satisfied. 

Observe that 

𝜕𝜈𝑢 = 𝜕𝜈(𝑣 ∘ 𝑇) = 𝑑𝑇(𝜈) ⋅ [(∇𝑣) ∘ 𝑇] = (𝜕𝑇𝜈𝑣) ∘ 𝑇. 

Let us write 𝑇𝜈 = (𝜔′, 𝜔0), and note that 𝜔0 ≠ 0 since we know that the invertible 𝑇 already 

takes the (𝑛 − 1)-dimensional 𝑆 to the (𝑛 − 1)-dimensional {(𝑥, 𝑡) ∶ 𝑡 = 0} and hence cannot 

take 𝜈 ∉ 𝑆 to {(𝑥, 𝑡) ∶ 𝑡 = 0} as well. The above quantity can then be rewritten as 

(𝜔0𝜕(0,…,0,1)𝑣 + 𝜕(𝜔′,0)𝑣) ∘ 𝑇 = 𝜔0(𝜕𝑡𝑣 ∘ 𝑇) + (𝜕(𝜔′,0)𝑣) ∘ 𝑇. 

Now, we have that on {(𝑥, 𝑡) ∶ 𝑡 = 0}, 𝜕(𝜔′,0)𝑣 = 𝜕(𝜔′,0)(𝑓 ∘ 𝑇
−1). Thus if we set 

𝑔̃ =
1

𝜔0
[𝑔 ∘ 𝑇−1 − 𝜕(𝜔′,0)(𝑓 ∘ 𝑇

−1)], 

then indeed we’ll get that 𝜕𝜈𝑢|𝑆 = 𝑔. 

 

4 Chapter 6 

4.1 Convergence in Sobolev Spaces Implies Convergence as Distributions 

Here I prove the following quick and useful lemma: 

Lemma 4.1: Suppose that 𝑠 ∈ ℝ. Suppose also that {𝑢𝑗 ∈ 𝐻𝑠(ℝ
𝑛) ∶ 𝑗 ∈ ℤ+} and 𝑣 ∈ 𝐻𝑠(ℝ

𝑛) 

are such that 𝑢𝑗 → 𝑣 in 𝐻𝑠(ℝ
𝑛). Then 𝑢𝑗 → 𝑣 in 𝒟′(ℝ𝑛) as well. 

Proof: Take any test function 𝜙 ∈ 𝐶𝑐
∞(ℝ𝑛) and observe that 

|〈𝑢𝑗 − 𝑣,𝜙〉| = |〈𝑢𝑗̂(𝜉) − 𝑣̂(𝜉), 𝜙̂(−𝜉)〉| 

= |∫(1 + |𝜉|2)𝑠 2⁄ [𝑢𝑗̂(𝜉) − 𝑣̂(𝜉)](1 + |𝜉|
2)−𝑠 2⁄ 𝜙̂(−𝜉)𝑑𝑠| ≤ ‖𝑢𝑗 − 𝑣‖𝑠

2
‖𝜙‖−𝑠

2 . 

The last quantity goes to zero as 𝑗 → ∞ by assumption, and so the lemma follows. 
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∎ 

 

4.2 The H^0 Sobolev spaces 

In this note we define the following space: 

Definition 4.2: Suppose 𝑠 ∈ ℝ and that 𝛺 ⊆ ℝ𝑛 is an open subset. We let 𝐻𝑠
0(𝛺) denote the 

closure of 𝐶𝑐
∞(𝛺) in 𝐻𝑠(ℝ

𝑛). We impose on 𝐻𝑠
0(𝛺) the inner product that it inherits from 

𝐻𝑠(ℝ
𝑛) itself. 

Observe that since 𝐻𝑠(ℝ
𝑛) is a Hilbert space and 𝐻𝑠

0(Ω) is a closed subspace of it, 𝐻𝑠
0(Ω) is also 

a Hilbert space. 

 

4.3 The Localized Sobolev Spaces 

In this note we define and discuss the properties of the localized Sobolev spaces. 

Definition 4.3: Suppose that 𝑠 ∈ ℝ and that 𝛺 ⊆ ℝ𝑛 is an open subset. We let 𝐻𝑠
loc(𝛺) denote 

the set of all distributions 𝑢 ∈ 𝒟′(𝛺) such that for any bounded open subset 𝛺0 of 𝛺 satisfying 

𝛺0̅̅̅̅ ⊆ 𝛺, 𝑢 agrees with an element of 𝐻𝑠(ℝ
𝑛) over 𝛺0. We impose the topology described below 

on 𝐻𝑠
loc(𝛺). 

By Proposition 6.13 in the book, we know that for any 𝑢 ∈ 𝐻𝑠
loc(Ω) and any 𝜙 ∈ 𝐶𝑐

∞(Ω), 𝜙𝑢 is 

in 𝐻𝑠(ℝ
𝑛) (technically we should be writing the “zero extension of 𝜙𝑢 to ℝ𝑛”). Thus we can 

impose the topology on 𝐻𝑠
loc(Ω) generated by the family of seminorms 

(4. 4)                                                    {𝑢 ⟼ ‖𝜙𝑢‖𝑠 ∶ 𝜙 ∈ 𝐶𝑐
∞(Ω)}. 

This turns 𝐻𝑠
loc(Ω) into a locally convex topological vector space. It’s not hard to see that this 

space is Hausdorff. Furthermore, it is a Fréchet space as the following proposition shows. 

Proposition 4.5: Suppose that 𝑠 ∈ ℝ and that 𝛺 ⊆ ℝ𝑛 is an open subset. Then 𝐻𝑠
loc(𝛺) is a 

Fréchet space. 

Proof: We will prove this proposition by proving the following 

1. One only needs a countable subset of the seminorms described in (4.4) to generate the 

same topology on 𝐻𝑠
loc(Ω), and hence this space is metrizable. 

2. This space is complete. 

First let’s prove (1). Let 𝒯 denote the topology on 𝐻𝑠
loc(Ω) defined by (4.4). Let {𝑊𝑘 ∶ 𝑘 ∈ ℤ+} 

be a precompact exhaustion of Ω (i.e. each 𝑊𝑘 is an open subset of Ω such that 𝑊𝑘
̅̅ ̅̅ ⊆ 𝑊𝑘+1 and 

Ω = ⋃ 𝑊𝑘
∞
𝑘=1 ). For each 𝑘 ∈ ℤ+, let 𝜙𝑘 ∈ 𝐶𝑐

∞(Ω) be such that 𝜙 ≡ 1 on 𝑊𝑘
̅̅ ̅̅  and supp𝜙 ⊆

W𝑘+1. Let 𝒯′ denote the topology on 𝐻𝑠
loc(Ω) given by the following countable family of 

seminorms: 
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{𝑢 ⟼ ‖𝜙𝑘𝑢‖𝑠 ∶ 𝑘 ∈ ℤ+}. 

We will prove that 𝒯 = 𝒯′. Consider the identity map id ∶ (𝐻𝑠
loc(Ω), 𝒯′) → (𝐻𝑠

loc(Ω), 𝒯). It’s 

easy to see that this is continuous. To prove that the inverse identity map id
−1 ∶ (𝐻𝑠

loc(Ω), 𝒯) →

(𝐻𝑠
loc(Ω), 𝒯′) is continuous, take any 𝜙 ∈ 𝐶𝑐

∞(Ω) and let 𝑘 ∈ ℤ+ be such that supp𝜙 ⊆ 𝑊𝑘. 

Observe that 𝜙𝑘 ≡ 1 on supp𝜙 and so 𝜙𝑘 = 𝜙𝜙𝑘. Observe also that since 𝑣 ↦ 𝜙𝑣 is a 

continuous 𝐻𝑠(ℝ
𝑛) → 𝐻𝑠(ℝ

𝑛) map (Proposition 6.12 in the book) there exists a constant 𝐶𝜙 > 0 

such that ‖𝜙𝑣‖𝑠 ≤ 𝐶𝜙‖𝑣‖𝑠 for all 𝑣 ∈ 𝐻𝑠(ℝ
𝑛). Thus for any 𝑢 ∈ 𝐻𝑠

loc(Ω) we have that 

‖𝜙𝑢‖𝑠 = ‖𝜙𝜙𝑘𝑢‖𝑠 ≤ 𝐶𝜙‖𝜙𝑘𝑢‖𝑠. 

So indeed id
−1

 is continuous. Hence the two topologies 𝒯 and 𝒯′ are the same and so we’ve 

proven (1). 

Now let’s prove (2). Suppose that {𝑢𝑘 ∶ 𝑘 ∈ ℤ+} is a Cauchy sequence in 𝐻𝑠
loc(Ω). For any open 

𝑊 ⊆ Ω such that 𝑊̅ ⊆ Ω, let 𝜙𝑊 ∈ 𝐶𝑐
∞(Ω) be such that 𝜙𝑊 ≡ 1 on 𝑊̅. Observe that for any 

such 𝑊, {𝜙𝑊𝑢𝑘} is Cauchy in 𝐻𝑠(Ω) and hence converges to some 𝑣𝑊 ∈ 𝐻𝑠(ℝ
𝑛) as 𝑘 → ∞. 

Note that by Lemma 4.1 we also have that {𝜙𝑊𝑢𝑘} converges to 𝑣𝑤 in 𝒟′(ℝ𝑛) as well. Now, 

define the distribution 𝑣 ∈ 𝐻𝑠
loc(Ω) as follows: for any open set 𝑊 as above let 𝑣 over 𝑊 be 

equal to the restriction of 𝑣𝑊 to 𝑊. We will now show that this is well defined and that 𝑢𝑘 → 𝑣 

in 𝐻𝑠
loc(Ω). To prove this first claim, take any open sets 𝑊 and 𝑊′ as above such that 𝑊 ∩𝑊′ ≠

∅. Then for any 𝜓 ∈ 𝐶𝑐
∞(𝑊 ∩𝑊′) we have that 

〈𝑣𝑊, 𝜓〉 = lim
𝑘→∞

〈𝜙𝑊𝑢𝑘, 𝜓〉 = lim
𝑘→∞

〈𝑢𝑘, 𝜙𝑊𝜓〉 = lim
𝑘→∞

〈𝑢𝑘, 𝜓〉. 

Since a similar calculation shows that this is also equal to 〈𝑣𝑊′ , 𝜓〉, we have that 𝑣 is indeed well 

defined. Finally, let’s show that 𝑢𝑘 → 𝑣 in 𝐻𝑠
loc(Ω). Take any 𝜙 ∈ 𝐶𝑐

∞(Ω). Let 𝑊 be an open set 

as above such that supp𝜙 ⊆ 𝑊 and observe that 𝜙 = 𝜙𝜙𝑊. Then, since multiplying by 𝜙 is a 

continuous operation in 𝐻𝑠(ℝ
𝑛) (c.f. previous paragraph) we have that 𝜙𝑊𝑢𝑘 converging to 𝑣𝑊 

in 𝐻𝑠(ℝ
𝑛) implies that 

𝜙𝑢𝑘 = 𝜙𝜙𝑊𝑢𝑘 → 𝜙𝑣𝑊 = 𝜙𝑣     in   𝐻𝑠(ℝ
𝑛)   as   𝑘 → ∞. 

From here we see that indeed 𝑢𝑘 → 𝑣 in 𝐻𝑠
loc(Ω) and so (2) is proven. 

∎ 

 

5 Chapter 8 

5.1 The Zero Pseudodifferential Operator has 𝑺 Negative Infinity Symbols (Proposition 

8.11) 

Note: The version of this proposition in the book has a mistake. I describe the correct version 

here and I’d like to thank the author of this book for pointing out how the mistake needs to be 

fixed. 
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In this section I work through the proof of the following theorem that appears in this book by 

putting it into my own words. 

Theorem 5.1: Suppose that 𝛺 ⊆ ℝ𝑛 is an open set and that 𝑃 ∈ 𝛹𝑚(𝛺) is a pseudodifferential 

operator over 𝛺 equal to zero as a map 𝑃 ∶ 𝐶𝑐
∞(𝛺) → 𝐶∞(𝛺) (i.e. 𝑃𝑢 = 0 for any 𝑢 ∈ 𝐶𝑐

∞(𝛺)). 
Let 𝑝 ∈ 𝐶∞(𝛺 × ℝ𝑛) be a symbol of 𝑃. Then 

1.) 𝑝 ∈ 𝑆−∞(𝛺).  

2.) If 𝛺 is dense in ℝ𝑛, then in fact 𝑝 ≡ 0. If 𝛺 is not dense in 𝑃, then 𝑝 can be chosen so that 

𝑝 ≠ 0. 

Proof: First let’s prove (1). Let 𝑝 ∈ 𝐶∞(Ω × ℝ𝑛) be a symbol of 𝑃. For every fixed 𝑥 ∈ Ω, let 

𝑝2
∨(𝑥, 𝑧) ∈ 𝒟′(ℝ𝑛) denote the distribution that is the inverse Fourier transform of the smooth 

function 𝑧 ↦ 𝑝(𝑥, 𝑧). It’s explained in the book before this theorem that 𝑝2
∨(𝑥, 𝑥 − 𝑧)|𝑧∈Ω is 

related to 𝑃 = 𝑝(𝑥, 𝐷) by the equation 

𝑝(𝑥, 𝐷)𝑢 = 〈𝑝2
∨(𝑥, 𝑥 − 𝑧)|𝑧∈Ω, 𝑢(𝑧)〉          ∀𝑢 ∈ 𝐶𝑐

∞(Ω) 

where the right-hand side of this equation is regarded as a function of 𝑥 ∈ Ω. Now, I claim that 

for any fixed 𝑥 ∈ Ω, the distribution 𝑝2
∨(𝑥, 𝑧) = 0 on the open set {𝑥} − Ω. To see this, take any 

𝜙 ∈ 𝐶𝑐
∞({𝑥} − Ω), let 𝜙ℝ

𝑛
 denote its zero extension to ℝ𝑛 (see Notation 2.12), and then observe 

that 

〈𝑝2
∨(𝑥, 𝑧)|𝑧∈{𝑥}−Ω, 𝜙(𝑧)〉 = 〈𝑝2

∨(𝑥, 𝑧), 𝜙ℝ
𝑛
(𝑧)〉 = 〈𝑝2

∨(𝑥, 𝑥 − 𝑧), 𝜙ℝ
𝑛
(𝑥 − 𝑧)〉 

= 〈𝑝2
∨(𝑥, 𝑥 − 𝑧)|𝑧∈Ω, 𝜙

ℝ𝑛(𝑥 − 𝑧)|
𝑧∈Ω

〉 = 𝑝(𝑥, 𝐷) [𝜙ℝ
𝑛
(𝑥 − 𝑧)|

𝑧∈Ω
] = 0. 

Another way to state this is that 𝑝2
∨(𝑥, 𝑧) is equal to zero on the set 

𝒪 = {(𝑥, 𝑧) ∈ Ω × ℝ𝑛 ∶ 𝑧 ∈ {𝑥} − Ω} 

in the sense that for any fixed 𝑥, 𝑝2
∨(𝑥, 𝑧) is zero on the set of 𝑧 ∈ ℝ𝑛 that satisfy (𝑥, 𝑧) ∈ 𝒪 (i.e. 

on the 𝑥-slice of 𝒪). Notice that 𝒪 is an open subset of Ω × ℝ𝑛 since if one lets 𝐺 ∶ ℝ𝑛 × ℝ𝑛 →

ℝ𝑛 denote the continuous function 𝐺(𝑥, 𝑧) = 𝑥 − 𝑧, then 𝒪 = (Ω × ℝ𝑛) ∩ 𝐺−1[Ω]. 

Next, by Theorem 8.8 in the book we know that for any 𝛼 ∈ ℐ(𝑛) such that |𝛼| > 𝑚 + 𝑛, for any 

fixed 𝑥 ∈ Ω the distribution 𝑧𝛼𝑝2
∨(𝑥, 𝑧) is a continuous function. Let 𝑓𝛼 ∶ Ω × ℝ

𝑛 → ℂ denote the 

function whose value at any point (𝑥0, 𝑧0) ∈ Ω × ℝ
𝑛 is equal to the value of 𝑧𝛼𝑝2

∨(𝑥0, 𝑧) at 𝑧 =

𝑧0. By Theorem 8.8 we furthermore know that 𝑓𝛼 is class 𝐶𝑗(Ω × ℝ𝑛) for any 𝑗 ∈ ℤ+ ∪ {0} such 

that |𝛼| > 𝑚 + 𝑛 + 𝑗 and that for any such 𝑗 the partials of 𝑓𝛼 of order ≤ 𝑗 are bounded on sets 

of the form 𝐾 × ℝ𝑛 where 𝐾 is a compact subset of Ω. By the previous paragraph we also know 

that 𝑓𝛼 is zero on 𝒪, which is an open neighborhood of Ω × {0} in Ω × ℝ𝑛. Thus, by dividing the 

above 𝑓𝛼’s be 𝑧𝛼, we see that for any fixed 𝑥 ∈ Ω the distribution 𝑝2
∨(𝑥, 𝑧) is in fact in 𝐶∞(ℝ𝑛). 

As with the 𝑓𝛼’s, let’s let 𝑝2
∨(𝑥, 𝑧) also denote the function whose value at any point (𝑥, 𝑧) ∈

Ω × ℝ𝑛 is the value of the distribution/function 𝑝2
∨(𝑥, 𝑧) at the point 𝑧 (a technical point). By 

similar logic as in the second to last sentence, we know that 𝑝2
∨ ∈ 𝐶∞(Ω × ℝ𝑛). 
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Now, I claim that for any compact subset 𝐾 ⊆ Ω and any 𝛼, 𝛽, 𝛾 ∈ ℐ(𝑛), 

(5. 2)                                              sup
(𝑥,𝑧)∈𝐾×ℝ𝑛

|𝑧𝛾𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)| < ∞. 

We prove this in cases: 

Cases |𝛾| > 𝑚 + 𝑛 + |𝛼| + |𝛽|: We prove these cases by induction on the size of |𝛽|. The base 

case of |𝛽| = 0 and |𝛾| > 𝑚 + 𝑛 + |𝛼| is trivial as it follows immediately from Theorem 8.8. 

Now suppose that |𝛽| > 0 and |𝛾| > 𝑚 + 𝑛 + |𝛼| + |𝛽|. Then we have by the product rule that 

𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑓𝛾(𝑥, 𝑧) = 𝑧

𝛾𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧) + ∑
𝛽!

𝜔! (𝛽 − 𝜔)!

𝛾!

(𝛾 − 𝜔)!
𝑧𝛾−𝜔𝐷𝑧

𝛽−𝜔
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)

0<𝜔≤𝛽
𝜔≤𝛾

. 

The left-hand side here is bounded over 𝐾 × ℝ𝑛 by Theorem 8.8 and each term in the Σ sum on 

the right is bounded over 𝐾 × ℝ𝑛 by the inductive hypothesis since each |𝛽 − 𝜔| < |𝛽| and 

|𝛾| > 𝑚 + 𝑛 + |𝛼| + |𝛽|      ⟹     |𝛾 − 𝜔| > 𝑚 + 𝑛 + |𝛼| + |𝛽 − 𝜔|. 

So the only term left “𝑧𝛾𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)” must then also be bounded over 𝐾 × ℝ𝑛. This 

establishes (5.2) in these cases. 

Cases |𝛾| ≤ 𝑚 + 𝑛 + |𝛼| + |𝛽|: Let 𝑁 ∈ ℤ+ be a positive integer such that 2𝑁 > 𝑚 + 𝑛 + |𝛼| +
|𝛽|. Then we have that over (𝑥, 𝑧) ∈ 𝐾 × ℝ𝑛 

|𝑧𝛾𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)| ≤ |𝑧||𝛾||𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)| ≤ {
|𝐷𝑧

𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)|                    if   |𝑧| ≤ 1

|𝑧|2𝑁|𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)|          if   |𝑧| > 1
 

=

{
 
 

 
 |𝐷𝑧

𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)|                                   if   |𝑧| ≤ 1

|(∑𝑧2𝑒𝑗
𝑛

𝑗=1

)

𝑁

𝐷𝑧
𝛽
𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧)|           if   |𝑧| > 1
 

The quantity in the |𝑧| ≤ 1 region is bounded by continuity. For the region 𝑧 > 1, notice that if 

we distribute the Σ sum we’ll get lots of terms that we know are bounded by the previous case. 

This establishes (5.2) in these cases. 

Having proved (5.2), we are ready for the last step to prove (1). In particular, notice that (5.2) 

implies that for all fixed 𝑥 ∈ Ω and any 𝛼 ∈ ℐ(𝑛), 𝐷𝑥
𝛼𝑝2

∨(𝑥, 𝑧) is a Schwartz function of 𝑧 and 

thus the classic Fourier transform of 𝑝2
∨(𝑥, 𝑧) is equal to 𝑝(𝑥, 𝑧). Ok, take any compact subset 

𝐾 ⊆ Ω and any 𝛼, 𝛽, 𝛾 ∈ ℐ(𝑛). Since the Fourier transform ℱ ∶ 𝒮(ℝ𝑛) → 𝒮(ℝ𝑛) is continuous, 

there exists a constant 𝐶 > 0 and a finite collection of indices {𝛽𝑗 , 𝛾𝑗 ⊆ ℐ(𝑛) ∶ 𝑗 = 1,… ,𝑀} such 

that 
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sup
𝑦∈ℝ𝑛

|𝑦𝛾𝐷𝑦
𝛽
ℱ(𝜙)| ≤ 𝐶∑ sup

𝑧∈ℝ𝑛
|𝑧𝛾𝑗𝐷𝑧

𝛽𝑗𝜙|

𝑀

𝑗=1

          ∀𝜙 ∈ 𝒮(ℝ𝑛). 

Hence, for any (𝑥, 𝑦) ∈ 𝐾 × ℝ𝑛 we have that 

|𝑦𝛾𝐷𝑦
𝛽
𝐷𝑥
𝛼𝑝(𝑥, 𝑦)| = |𝑦𝛾𝐷𝑦

𝛽
𝐷𝑥
𝛼∫𝑒−2𝜋𝑖𝑦⋅𝑧𝑝2

∨(𝑥, 𝑧)𝑑𝑧| = |𝑦𝛾𝐷𝑦
𝛽
∫𝑒−2𝜋𝑖𝑦⋅𝑧𝐷𝑥

𝛼𝑝2
∨(𝑥, 𝑧)𝑑𝑧| 

≤ 𝐶∑ sup
𝑦∈ℝ𝑛

|𝑧𝛾𝑗𝐷𝑧
𝛽𝑗𝐷𝑥

𝛼𝑝2
∨(𝑥, 𝑧)|

𝑀

𝑗=1

, 

which we know is finite by (5.2). It’s easy to see that this implies that 𝑝 ∈ 𝑆−∞(Ω). 

Now let’s prove (2). Suppose first that Ω is dense in ℝ𝑛. Then of course 𝒪 is dense in Ω × ℝ𝑛. 

Since 𝑝2
∨(𝑥, 𝑧) is zero on 𝒪, we have in fact that 𝑝2

∨(𝑥, 𝑧) is zero on all of Ω × ℝ𝑛 by continuity. 

Since 𝑝(𝑥, 𝑧) is the Fourier transform of 𝑝2
∨(𝑥, 𝑧) in the variable 𝑧, we get that indeed 𝑝 ≡ 0. 

Now suppose that Ω is not dense in ℝ𝑛. Take any 𝜙 ∈ 𝐶𝑐
∞(Ω) and any 𝜓 ∈ 𝐶𝑐

∞(ℝ𝑛) such that 

supp𝜓 is disjoint from Ω. Observe that if we set 𝑝 ∈ 𝐶∞(Ω × ℝ𝑛) to be the symbol 

𝑝(𝑥, 𝑦) = 𝜙(𝑥)𝑒−2𝜋𝑖𝑥⋅𝑦𝜓̂(−𝑦) 

then we have that 

𝑝2
∨(𝑥, 𝑧) = 𝜙(𝑥)𝜓(𝑥 − 𝑦) 

and so 

𝑝2
∨(𝑥, 𝑥 − 𝑧) = 𝜙(𝑥)𝜓(𝑧) = 0. 

Thus 𝑝(𝑥, 𝐷) = 0 and so 𝑝 is a nonzero symbol of 𝑃. 

∎ 

 

5.2 Equivalent Condition for Proper Support (Proposition 8.12) 

Here I work through the proof of the following theorem by putting it into my own words. One of 

the things that I do differently here from the book is that in the proof of the forward direction of 

(2), I instead consider a compact neighborhood of the set that the author calls “𝐶.” I think that 

this is either needed, or helps avoid a certain amount of extra work. 

Theorem 5.3: Suppose that 𝛺 ⊆ ℝ𝑛 is an open set. A linear map 𝑇 ∶ 𝐶𝑐
∞(𝛺) → 𝐶∞(𝛺) is 

properly supported if and only if the following two conditions hold: 

1. For any compact subset 𝐴 ⊆ 𝛺 there exists a compact subset 𝐵 ⊆ 𝛺 such that 

𝑠𝑢𝑝𝑝 𝑇𝑢 ⊆ 𝐵 whenever 𝑠𝑢𝑝𝑝 𝑢 ⊆ 𝐴. 
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2. For any compact subset 𝐴 ⊆ 𝛺 there exists a compact subset 𝐶 ⊆ 𝛺 such that 𝑇𝑢 = 0 on 

𝐴 whenever 𝑢 = 0 on 𝐶. 

Proof: Let 𝐾 denote the distribution kernel of 𝑇. First suppose that 𝑇 is properly supported, or in 

other words: supp𝐾 is a proper subset of Ω × Ω. Let’s start by proving that (1) holds. Take any 

compact subset 𝐴 ⊆ Ω. Let 𝐵 ⊆ Ω be the compact subset 

𝐵 = 𝜋𝑥[(Ω × 𝐴) ∩ supp𝐾]. 

Observe that 

supp𝐾 ∩ (𝐵𝑐 × 𝐴) = ∅. 

Now, take any 𝑢 ∈ 𝐶𝑐
∞(Ω) such that supp 𝑢 ⊆ 𝐴. By the above equation we have that for any 

𝑣 ∈ 𝐶𝑐
∞(Ω) such that supp 𝑣 ⊆ 𝐵𝑐, 

〈𝑇𝑢, 𝑣〉 = 〈𝐾, 𝑣 ⊗ 𝑢〉 = 0. 

Thus supp𝑇𝑢 ⊆ 𝐵 and so (1) holds. 

Now let’s prove that (2) holds. Take any compact subset 𝐴 ⊆ Ω. Let 𝐴′ ⊆ Ω be a compact 

neighborhood of 𝐴 in Ω. Let 𝐶′ ⊆ Ω be the compact subset 

𝐶′ = 𝜋𝑦[(𝐴
′ × Ω) ∩ supp𝐾]. 

Let 𝐶 ⊆ Ω be a compact neighborhood of 𝐶′ in Ω. Observe that as before we have that 

supp𝐾 ∩ (𝐴′ × (𝐶′)𝑐) = ∅. 

Now, take any 𝑢 ∈ 𝐶𝑐
∞(Ω) such that 𝑢 = 0 on 𝐶.  Then supp𝑢 ⊆ (𝐶′)𝑐. Notice that for any 𝑣 ∈

𝐶𝑐
∞(Ω) such that supp 𝑣 ⊆ (𝐴′)int, the above equation implies that 

〈𝑇𝑢, 𝑣〉 = 〈𝐾, 𝑣 ⊗ 𝑢〉 = 0. 

Hence 𝑇𝑢 = 0 on (𝐴′)int and thus on 𝐴 as well. So (2) holds. 

Now suppose that conditions (1) and (2) hold. Take any compact subset 𝐴 ⊆ Ω. First let’s show 

that supp𝐾 ∩ (Ω × 𝐴) is compact in Ω × Ω. Let 𝐴′ ⊆ Ω be a compact neighborhood of 𝐴 in Ω. 

By (1) there exists a compact subset 𝐵′ ⊆ Ω such that supp 𝑇𝑢 ⊆ 𝐵′ whenever supp 𝑢 ⊆ 𝐴′. 

Observe that for any 𝑢, 𝑣 ∈ 𝐶𝑐
∞(Ω) such that supp 𝑢 ⊆ (𝐴′)int and supp 𝑣 ⊆ (𝐵′)𝑐, we have that 

supp𝑇𝑢 ⊆ 𝐵′ and so 

〈𝐾, 𝑣 ⊗ 𝑢〉 = 〈𝑇𝑢, 𝑣〉 = 0. 

Thus 

supp𝐾 ∩ ((𝐵′)𝑐 × (𝐴′)int) = ∅ 

and so 

supp𝐾 ∩ (Ω × 𝐴) ⊆ 𝐵′ × 𝐴. 
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Since the left-hand side here is closed and the right-hand side is compact, this implies that 

supp𝐾 ∩ (Ω × 𝐴) is compact. 

Now let’s show that supp𝐾 ∩ (𝐴 × Ω) is compact. Letting 𝐴′ be as before, by (2) we have that 

there exists a compact subset 𝐶′ ⊆ Ω such that 𝑇𝑢 = 0 on 𝐴′ whenever 𝑢 = 0 on 𝐶′. Observe 

that if 𝑢, 𝑣 ∈ 𝐶𝑐
∞(Ω) are such that supp 𝑢 ⊆ (𝐶′)𝑐 and supp 𝑣 ⊆ (𝐴′)int, then 𝑢 = 0 on 𝐶′, thus 

𝑇𝑢 = 0 on 𝐴′, and so 

〈𝐾, 𝑣 ⊗ 𝑢〉 = 〈𝑇𝑢, 𝑣〉 = 0. 

Hence 

supp𝐾 ∩ ((𝐴′)int × (𝐶′)𝑐) = ∅ 

and so 

supp𝐾 ∩ (𝐴 × Ω) ⊆ 𝐴 × 𝐶′. 

Again, since the left-hand side here is closed and the right-hand side is compact, this implies that 

supp𝐾 ∩ (𝐴 × Ω) is compact. Thus supp𝐾 is a proper subset of Ω × Ω and so 𝑇 is indeed 

properly supported. 

∎ 

 

5.3 A Useful Lemma for Amplitudes 

For a reason that might not be clear at first, the following lemma and its variants turn out to be 

extremely useful in the theory of amplitudes. One of their most common applications is to justify 

interchanging limits and partials with the outer integral in the definition of the amplitude maps 

𝑃𝑎 for 𝑎 ∈ 𝐴𝑚(Ω). For instance, this lemma can be used to prove that the maps 𝑃𝑎 indeed map 

𝐶𝑐
∞(Ω) into 𝐶∞(Ω) and that the mapping is continuous.  

Lemma 5.4: Suppose that 𝑎 ∈ 𝐴𝑚(𝛺) is an amplitude. Suppose also that 𝐵 ⊆ 𝛺 is a compact 

subset, 𝛼, 𝛽, 𝛾 ∈ ℐ(𝑛) are multi-indices, and that 𝑁 ∈ ℤ+ is a positive integer. Then there exists a 

positive constant 𝐶𝐵,𝛼,𝛽,𝛾,𝑁 > 0 such that 

|∫ 𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦| ≤ 𝐶𝐵,𝛼,𝛽,𝛾,𝑁(1 + |𝜉|)

𝑚−|𝛼|−2𝑁 ∑ sup𝐷𝜎𝑢
|𝜎|≤2𝑁

 

∀𝑢 ∈ 𝐶𝑐
∞(Ω) ∶ supp𝑢 ⊆ 𝐵   and   ∀𝑥 ∈ 𝐵. 

Remark: The reason for having “2𝑁” in the estimate is that it makes the proof easier below. In 

particular, the convenience is that we can expand the quantity |𝜉|2𝑁 in a simple manner using the 

distributive property. 

Proof: Let {𝐶𝑁,𝜎 ∶ 𝜎 ∈ ℐ(𝑛) such that |𝜎| ≤ 2𝑁} be the constants in the expression 
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|𝜉|2𝑁 = ∑ 𝐶𝑁,𝜎𝜉
𝛾

|𝜎|≤2𝑁

. 

Then, for any 𝑢 ∈ 𝐶𝑐
∞(Ω) such that supp𝑢 ⊆ 𝐵 and any 𝑥 ∈ 𝐵 we have that (in the third 

equality below I integrate by parts in 𝑦) 

|𝜉|2𝑁 |∫ 𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦| 

= | ∑ 𝐶𝑁,𝜎∫𝜉
𝜎𝑒−2𝜋𝑖𝑦⋅𝜉𝐷𝑥

𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦

|𝜎|≤2𝑁

| 

= | ∑ 𝐶𝑁,𝜎∫𝐷𝑦
𝜎[𝑒−2𝜋𝑖𝑦⋅𝜉]𝐷𝑥

𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦

|𝜎|≤2𝑁

| 

= | ∑ 𝐶𝑁,𝜎∫𝑒
−2𝜋𝑖𝑦⋅𝜉𝐷𝑦

𝜎[𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)]𝑑𝑦

|𝜎|≤2𝑁

| 

Applying the product rule to the 𝐷𝑦
𝜎 partial in the last quantity and then appealing to Definition 

2.24, it’s not hard to see that there exists a constant 𝐶𝐵,𝛼,𝛽,𝛾,𝑁 > 0 such that the above quantity is 

less than or equal to 

𝐶𝐵,𝛼,𝛽,𝛾,𝑁(1 + |𝜉|)
𝑚−|𝛼| ∑ sup𝐷𝜎𝑢

|𝜎|≤2𝑁

 

Dividing through by |𝜉|2𝑁 gives 

|∫ 𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦| ≤ 𝐶𝐵,𝛼,𝛽,𝛾,𝑁|𝜉|

−2𝑁(1 + |𝜉|)𝑚−|𝛼| ∑ sup𝐷𝜎𝑢
|𝜎|≤2𝑁

. 

Since the left-hand side is continuous in 𝑥 and 𝜉, from here we see that we can increase the value 

of 𝐶𝐵,𝛼,𝛽,𝛾,𝑁 > 0 to make it so that the inequality in the statement of the lemma holds. This 

proves the lemma. 

∎ 

A useful variant of the above lemma that is proved in almost exactly the same way is the 

following. 

Lemma 5.5: Suppose that 𝑎 ∈ 𝐴𝑚(𝛺) is an amplitude. Suppose also that 𝐵 ⊆ 𝛺 is a compact 

subset and that the set 

𝐴 = {𝑦 ∈ 𝛺 ∶ 𝑎(𝑥, 𝜉, 𝑦) ≠ 0 for some (𝑥, 𝜉) ∈ 𝐵 × ℝ𝑛} 

is compact. Let 𝛼, 𝛽, 𝛾 ∈ ℐ(𝑛) be multi-indices and 𝑁 ∈ ℤ+ be a positive integer. Then there exists a 

positive constant 𝐶𝐵,𝛼,𝛽,𝛾,𝑁 > 0 such that 
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|∫ 𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦| ≤ 𝐶𝐵,𝛼,𝛽,𝛾,𝑁(1 + |𝜉|)

𝑚−|𝛼|−2𝑁 ∑ sup
𝐴
𝐷𝜎𝑢

|𝜎|≤2𝑁

 

∀𝑢 ∈ 𝐶∞(𝛺)   and   ∀𝑥 ∈ 𝐵. 

 

5.4 Amplitude Kernels are Smooth Away from the Diagonal 

In this note I prove the following fact that the author leaves to the reader to work out. It’s a direct 

generalization of the same fact that holds for the usual symbols 𝑆𝑚(Ω) proved in Proposition 

8.8(b) in the book. I avoid using equation (8.23) in the book; I’ll discuss its rigorous meaning at 

the end. 

Theorem 5.6: Suppose that 𝛺 ⊆ ℝ𝑛 is an open set and that 𝑎 ∈ 𝐴𝑚(𝛺) is an amplitude. Let 𝐾 

denote the distribution kernel of 𝑃𝑎. Let 𝑗 ∈ ℤ+ ∪ {0} be any nonnegative integer. Then for any 

multi-index 𝛼 ∈ ℐ(𝑛) such that |𝛼| > 𝑚 + 𝑛 + 𝑗, the distribution (𝑥 − 𝑦)𝛼𝐾 is of class 𝐶𝑗. In 

particular, this shows that 𝐾 is 𝐶∞ away from the diagonal 𝛥𝛺 = {(𝑥, 𝑦) ∈ 𝛺 × 𝛺 ∶ 𝑥 = 𝑦}. 

Proof: Let 𝛼 ∈ ℐ(𝑛) be any such multi-index and let 𝛽, 𝛾 ∈ ℐ(𝑛) be multi-indices such that 

|𝛽| + |𝛾| ≤ 𝑗. Let 𝜌 ∶ ℝ𝑛 → ℝ be a smooth bump function such that 𝜌 ≡ 1 on the ball 𝐵1(0) and 

𝜌 ≡ 0 on [𝐵2(0)]
𝑐. Consider the sequence of smooth bump functions {𝜌𝑘 ∈ 𝐶𝑐

∞(ℝ𝑛)}𝑘=1
∞  given 

by 𝜌𝑘(𝜉) = 𝜌(𝜉 𝑘⁄ ). Now, we have that for any test function 𝑤 ∈ 𝐶𝑐
∞(Ω × Ω) 

〈𝐷𝑥
𝛽
𝐷𝑦
𝛾[(𝑥 − 𝑦)𝛼𝐾(𝑥, 𝑦)], 𝑤(𝑥, 𝑦)〉 = (−1)|𝛽|+|𝛾|〈𝐾(𝑥, 𝑦), (𝑥 − 𝑦)𝛼𝐷𝑥

𝛽
𝐷𝑦
𝛾
𝑤(𝑥, 𝑦)〉 

= (−1)|𝛽|+|𝛾|∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)(𝑥 − 𝑦)𝛼𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝜉𝑑𝑥. 

Using a slight variant of Lemma 5.4 (i.e. change 𝑢 to 𝑤 there) and the dominated convergence 

theorem it’s not hard to see that this is equal to 

(−1)|𝛽|+|𝛾| lim
𝑘→∞

∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝜌𝑘(𝜉)𝑎(𝑥, 𝜉, 𝑦)(𝑥 − 𝑦)
𝛼𝐷𝑥

𝛽
𝐷𝑦
𝛾
𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝜉𝑑𝑥. 

The great thing about this is that now the integrand is compactly supported in the full (𝑦, 𝜉, 𝑥) 

space and so we can apply Fubini’s theorem. Let 𝑎𝑘 denote the function 𝑎𝑘(𝑥, 𝜉, 𝑦) =

𝜌𝑘(𝜉)𝑎(𝑥, 𝜉, 𝑦). Then, letting ℱ−1 denote the ordinary (integral) inverse Fourier transform we 

have that the above quantity is further equal to  

(−1)|𝛽|+|𝛾| lim
𝑘→∞

∬ℱ𝜉
−1[(−1)|𝛼|𝐷𝜉

𝛼𝑎𝑘(𝑥, 𝜉, 𝑦)]|(𝑥−𝑦)
𝐷𝑥
𝛽
𝐷𝑦
𝛾
𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝑥 

= (−1)|𝛼|+|𝛾| lim
𝑘→∞

∬ℱ𝜉
−1[𝜉𝛽+𝛾𝐷𝜉

𝛼𝑎𝑘(𝑥, 𝜉, 𝑦)]|(𝑥−𝑦)
𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝑥, 

where in the last inequality I did an integration by parts. Now I claim that this is equal to 
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(−1)|𝛼|+|𝛾|∬ℱ𝜉
−1[𝜉𝛽+𝛾𝐷𝜉

𝛼𝑎(𝑥, 𝜉, 𝑦)]|
(𝑥−𝑦)

𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝑥, 

where notice that the inverse Fourier transform here is well defined and continuous since by 

assumption 𝜉𝛽+𝛾𝐷𝜉
𝛼𝑎 is integrable in 𝜉. This will then show that 

𝐷𝑥
𝛽
𝐷𝑦
𝛾[(𝑥 − 𝑦)𝛼𝐾(𝑥, 𝑦)] = (−1)|𝛼|+|𝛾|ℱ𝜉

−1[𝜉𝛽+𝛾𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)]|

(𝑥−𝑦)
 

and thus (𝑥 − 𝑦)𝛼𝐾(𝑥, 𝑦) is indeed of class 𝐶𝑗. Ok, we will prove my claim by showing that 

sup
𝑥,𝑦∈𝐵

‖𝜉𝛽+𝛾𝐷𝜉
𝛼[𝑎𝑘 − 𝑎](𝑥, 𝜉, 𝑦)‖𝐿1(𝜉)

→ 0 

where 𝐵 = supp𝑤. Observe that for any 𝑥, 𝑦 ∈ 𝐵 

|𝜉𝛽+𝛾𝐷𝜉
𝛼[𝑎𝑘 − 𝑎](𝑥, 𝜉, 𝑦)| = {

0                                       if   |𝜉| ≤ 𝑘

|𝜉𝛽+𝛾𝐷𝜉
𝛼𝑎(𝑥, 𝜉, 𝑦)|     if   |𝜉| ≥ 2𝑘

 

≤ 𝐶𝛼,𝛽,𝛾,𝐵|𝜉|
|𝛽|+|𝛾|(1 + |𝜉|)𝑚−|𝛼|     if   |𝜉| ≤ 𝑘  or  |𝜉| ≥ 2𝑘 

for some constant 𝐶𝛼,𝛽,𝛾,𝐵 > 0. On the region 𝑘 < |𝜉| < 2𝑘 we have that (here we still assume 

𝑥, 𝑦 ∈ 𝐵) 

|𝜉𝛽+𝛾𝐷𝜉
𝛼[𝑎𝑘 − 𝑎](𝑥, 𝜉, 𝑦)| = |𝜉

𝛽+𝛾𝐷𝜉
𝛼[(𝜌𝑘(𝜉) − 1)𝑎(𝑥, 𝜉, 𝑦)]| 

≤ |𝜉||𝛽|+|𝛾|∑(
𝛼
𝜎
) sup𝐷𝜎[𝜌𝑘 − 1] |𝐷𝜉

𝛼−𝜎𝑎(𝑥, 𝜉, 𝑦)|

𝜎≤𝛼

 

≤
1

𝑘|𝛽|+|𝛾|
∑(

𝛼
𝜎
) sup𝐷𝜎[𝜌 − 1]

1

𝑘|𝜎|
𝐶𝛼−𝜎,𝐵 {

(1 + 2𝑘)𝑚−|𝛼−𝜎|     if   𝑚 − |𝛼 − 𝜎| ≥ 0

(1 + 𝑘)𝑚−|𝛼−𝜎|        if   𝑚 − |𝛼 − 𝜎| < 0
𝜎≤𝛼

 

for some constants 𝐶𝛼−𝜎,𝐵. Since the above bound over the region 𝑘 < |𝜉| < 2𝑘 decays like 

1 𝑘|𝛽|+|𝛾|−𝑚+|𝛼|⁄ , there exists a constant 𝐶 > 0 such that 

|𝜉𝛽+𝛾𝐷𝜉
𝛼[𝑎𝑘 − 𝑎](𝑥, 𝜉, 𝑦)| ≤

𝐶

𝑘|𝛽|+|𝛾|−𝑚+|𝛼|
     if   𝑘 < |𝜉| < 2𝑘. 

Thus for any 𝑥, 𝑦 ∈ 𝐵 we have that (here 𝑚ℒ is the Lebesgue measure) 

‖𝜉𝛽+𝛾𝐷𝜉
𝛼[𝑎𝑘 − 𝑎](𝑥, 𝜉, 𝑦)‖𝐿1(𝜉)

 

≤
𝐶

𝑘|𝛽|+|𝛾|−𝑚+|𝛼|
𝑚ℒ[𝐵2𝑘(0) ∖ 𝐵𝑘(0)] + ∫ 𝐶𝛼,𝛽,𝛾,𝐵|𝜉|

|𝛽|+|𝛾|(1 + |𝜉|)𝑚−|𝛼|𝑑𝜉

[𝐵2𝑘(0)]
𝑐

. 

Since the last quantity goes to zero as 𝑘 → ∞, this proves my claim and hence the theorem. 

∎ 
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As the author mentions in the book, if 𝑎 ∈ 𝐴𝑚(Ω) then the distribution kernel 𝐾 of the map 𝑃𝑎 ∶

𝐶𝑐
∞(Ω) → 𝐶∞(Ω) is given by 

〈𝐾,𝑤〉 =∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝜉𝑑𝑥        ∀𝑤 ∈ 𝐶𝑐
∞(Ω × Ω). 

If one could formally interchange the inside 𝑑𝑦 and 𝑑𝜉 integrals, then one would seem to get that 

𝐾 = 𝑎2
∨(𝑥, 𝑥 − 𝑦, 𝑦) where 𝑎2

∨ denotes the inverse Fourier transform of 𝑎 in the second variable. 

It is for the reason that we often use 𝑎2
∨(𝑥, 𝑥 − 𝑦, 𝑦) as a piece of notation to symbolize the above 

distribution 𝐾. 

One can actually come close to interpreting the notation 𝑎2
∨(𝑥, 𝑥 − 𝑦, 𝑦) as an actual inverse 

Fourier transform using limits. Indeed, let 𝜌 ∈ 𝐶𝑐
∞(ℝ𝑛) be a smooth bump function such that 

𝜌 ≡ 1 on the ball {|𝜉| < 1} and 𝜌 ≡ 0 on {|𝜉| > 2} and consider the sequence {𝜌𝑘 ∈

𝐶𝑐
∞(ℝ𝑛)}𝑘=1

∞  given by 𝜌𝑘(𝜉) = 𝜌(𝜉 𝑘⁄ ). Then if we consider the compactly supported amplitude 

approximations 𝑎𝑘 given by 𝑎𝑘(𝑥, 𝜉, 𝑦) = 𝜌𝑘(𝜉)𝑎(𝑥, 𝜉, 𝑦), then it’s not hard to prove using 

similar techniques as in the above proof that for any 𝑤 ∈ 𝐶𝑐
∞(Ω × Ω), 

∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝜉𝑑𝑥 = lim
𝑘→∞

∬(𝑎𝑘)2
∨(𝑥, 𝑥 − 𝑦, 𝑦)𝑤(𝑥, 𝑦)𝑑𝑦𝑑𝑥, 

where each (𝑎𝑘)2
∨ is a genuine integral inverse Fourier transform of 𝑎𝑘 in the second variable. 

Observe also that another way to put this is that the kernel 𝐾 of the map 𝑃𝑎 is the limit of 

{(𝑎𝑘)2
∨}𝑘=1
∞  in the sense of distributions. 

 

5.5 Asymptotic Expansion of Amplitude Maps (Theorem 8.27) 

In this note I give a different (but equivalent) presentation of the proof of the following theorem. 

Theorem 5.7: Suppose 𝛺 ⊆ ℝ𝑛 is an open set and that 𝑎 ∈ 𝐴𝑚(𝛺) is an amplitude such that 

𝑃𝑎 ∶ 𝐶𝑐
∞(𝛺) → 𝐶∞(𝛺) is properly supported. Let 𝑝 ∈ 𝐶∞(𝛺 × ℝ𝑛) be the smooth function 

𝑝(𝑥, 𝜉) = 𝑒−2𝜋𝑖𝑥⋅𝜉𝑃𝑎(𝑒
2𝜋𝑖𝑦⋅𝜉) 

(see remark below). Then 𝑝 ∈ 𝑆𝑚(𝛺) and 𝑃𝑎 = 𝑝(𝑥, 𝐷). Furthermore, 

𝑝(𝑥, 𝜉) ~ ∑
1

𝛼!
𝜕𝜉
𝛼𝐷𝑦

𝛼𝑎(𝑥, 𝜉, 𝑥)

𝛼∈ℐ(𝑛)

 

(see remark below). 

Remark: In the definition of 𝑝(𝑥, 𝜉), the quantity 𝑃𝑎(𝑒
2𝜋𝑖𝑦⋅𝜉) signifies 𝑃𝑎 applied to the smooth 

function 𝑦 ↦ 𝑒2𝜋𝑖𝑦⋅𝜉. This makes sense since, as is explained in the text, properly supported 

(continuous) maps from 𝐶𝑐
∞(Ω) to 𝐶∞(Ω) such as 𝑃𝑎 extend to continuous 𝐶∞(Ω) → 𝐶∞(Ω) 

maps. Next, a precise formulation of what we mean by the above equation is that 
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𝑝(𝑥, 𝜉) ~ ∑𝑝𝑗(𝑥, 𝜉)

∞

𝑗=0

        where each   𝑝𝑗(𝑥, 𝜉) = ∑
1

𝛼!
𝜕𝜉
𝛼𝐷𝑦

𝛼𝑎(𝑥, 𝜉, 𝑥)

|𝛼|=𝑗

. 

Proof: By Proposition 8.26 in the book, we can modify 𝑎 so that the following three things 

happen: 

1.) The values of 𝑎 are unchanged in a neighborhood of the diagonal 

{(𝑥, 𝜉, 𝑦) ∈ Ω × ℝ𝑛 × Ω ∶ 𝑥 = 𝑦}. 

2.) The set 

Σ𝑎 = {(𝑥, 𝑦) ∈ Ω × Ω ∶ 𝑎(𝑥, 𝜉, 𝑦) ≠ 0 for some 𝜉 ∈ ℝ𝑛}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

is proper in Ω × Ω (this set often useful since it contains the support of the kernel of 𝑃𝑎). 

3.) The map 𝑃𝑎 is unchanged. 

Observe that if we prove the theorem for this modified 𝑎, then the theorem will hold for the 

original 𝑎 as well. So suppose that we made this modification to 𝑎. 

Ok, fix any 𝑥 ∈ Ω. For any 𝑢 ∈ 𝐶𝑐
∞(Ω) we have that 

𝑃𝑎𝑢(𝑥) = ∬𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)𝑢(𝑦)𝑑𝑦𝑑𝜉 =∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)𝑒2𝜋𝑖𝑦⋅𝜂𝑢̂(𝜂)𝑑𝜂𝑑𝑦𝑑𝜉 

=∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)𝑒2𝜋𝑖𝑦⋅𝜂𝑑𝑦 𝑢̂(𝜂)𝑑𝜂𝑑𝜉 

where the switching of the 𝑑𝜂 and 𝑑𝑦 integrals in the last step is justified since Σ𝑎 is proper and 

thus the set of 𝑦 such that 𝑎(𝑥, 𝜉, 𝑦) ≠ 0 for some 𝜉 ∈ ℝ𝑛 is compact. For the same reason and 

Lemma 5.5 we have that this 𝑑𝑦 integral also decays faster than any power of |𝜉| and is of 

polynomial growth in |𝜂| and so it is justified to interchange the last 𝑑𝜂 and 𝑑𝜉 integrals to get 

that the above quantity is further equal to 

∭𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉, 𝑦)𝑒2𝜋𝑖𝑦⋅𝜂𝑑𝑦𝑑𝜉 𝑢̂(𝜂)𝑑𝜂. 

It’s easy to see that this is equal to 

∫𝑃𝑎(𝑒
2𝜋𝑖𝑦⋅𝜂)𝑢̂(𝜂)𝑑𝜂 = ∫𝑒2𝜋𝑖𝑥⋅𝜉𝑝(𝑥, 𝜂)𝑢̂(𝜂)𝑑𝜂. 

If we prove that 𝑝 ∈ 𝑆𝑚(Ω), then the first claim in the theorem will follow. We will in fact prove 

right now that the following two facts holds: 

a) There exists a sequence of numbers {𝜇𝑗 ∶ 𝑗 = 0,1,2,… } such that 𝜇𝑗 → −∞ and such that 

for any compact subset 𝐵 ⊆ Ω, for each 𝑘 ≥ 0 
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sup
𝑥∈𝐵

|𝑝(𝑥, 𝜉) −∑𝑝𝑗(𝑥, 𝜉)

𝑘

𝑗=0

| ≤ 𝐶𝐵,𝑘(1 + |𝜉|)
𝜇𝑘 

for some constants 𝐶𝐵,𝑘 > 0 where 𝑝𝑗 are defined in the above remark. 

b) For any multi-indices 𝛼, 𝛽 ∈ ℐ(𝑛), there exists a real number 𝜇(𝛼, 𝛽) such that for any 

compact subset 𝐵 ⊆ Ω, 

sup
𝑥∈𝐵

|𝐷𝑥
𝛽
𝐷𝜉
𝛼𝑝(𝑥, 𝜉)| ≤ 𝐶𝐵,𝛼,𝛽(1 + |𝜉|)

𝜇(𝛼,𝛽). 

for some constant 𝐶𝐵,𝛼,𝛽 > 0. 

It’s not hard to see that each 𝑝𝑗 ∈ 𝑆
𝑚−𝑗(Ω) and so by Theorem 8.20 in the book we will have 

that (a) and (b) together show that both 𝑝 ∈ 𝑆𝑚(Ω) and 𝑝~∑ 𝑝𝑗
∞
𝑗=0 . Hence the theorem will be 

proved. 

Let’s start by proving (b). We have that 

(5. 8)                              𝑝(𝑥, 𝜉) = 𝑒−2𝜋𝑖𝑥⋅𝜉∬𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜂𝑎(𝑥, 𝜂, 𝑦)𝑒2𝜋𝑖𝑦⋅𝜉𝑑𝑦𝑑𝜂. 

Take any 𝛼, 𝛽 ∈ ℐ(𝑛). Let 𝐵 ⊆ Ω be any compact subset. Let 𝐵̃ ⊆ Ω be a compact neighborhood 

of 𝐵 in Ω (i.e. we technically need fatten 𝐵 a little since we’ll be considering 𝐷𝑥 partials of 𝑝 at 

points on the boundary of 𝐵 as well). Since Σ𝑎 is proper, the set of 𝑦 such that 𝑎(𝑥, 𝜂, 𝑦) ≠ 0 for 

some (𝑥, 𝜂) ∈ 𝐵̃ × ℝ𝑛 is compact. Thus by Lemma 5.5 we can interchange 𝐷𝜉  partials with the 

double integrals in the above equation to get that over 𝑥 ∈ 𝐵 (I apply the product rule here), 

𝐷𝜉
𝛼𝑝(𝑥, 𝜉) = ∑(

𝛼
𝛾) (−1)

|𝛾|𝑥𝛾𝑒−2𝜋𝑖𝑥⋅𝜉∬𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜂𝑎(𝑥, 𝜂, 𝑦)𝑦𝛼−𝛾𝑒2𝜋𝑖𝑦⋅𝜉𝑑𝑦𝑑𝜂

𝛾≤𝛼

. 

By similar reasoning, we can interchange 𝐷𝑥 partials with the double integrals in the above 

equation to get that over 𝑥 ∈ 𝐵, 

𝐷𝑥
𝛽
𝐷𝜉
𝛼𝑝(𝑥, 𝜉) 

=∑(
𝛼
𝛾) (−1)

|𝛾|∑(
𝛽
𝜎
)𝐷𝑥

𝜎[𝑥𝛾𝑒−2𝜋𝑖𝑥⋅𝜉]∬𝐷𝑥
𝛽−𝜎

[𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜂𝑎(𝑥, 𝜂, 𝑦)]𝑦𝛼−𝛾𝑒2𝜋𝑖𝑦⋅𝜉𝑑𝑦𝑑𝜂

𝜎≤𝛽𝛾≤𝛼

 

Looking at the double integrals in the last quantity, after distributing the 𝐷𝑥
𝛽−𝜎

 partial it’s not 

hard to see by Lemma 5.5 that there exists an 𝑀 ∈ ℤ+ independent of 𝐵 and a positive constant 

𝐶𝐵,𝛼,𝛽 > 0 such that the quantity in the above equation satisfies the bound 

|𝐷𝑥
𝛽
𝐷𝜉
𝛼𝑝(𝑥, 𝜉)| ≤ 𝐶𝐵,𝛼,𝛽(1 + |𝜉|)

𝑀 
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(for instance, 𝑀 = |𝛽| + 2𝑁 will work where 𝑁 > 0 is any integer such that |𝛽| + 𝑚 − 2𝑁 <

−𝑛 − 1). This proves (b). 

Now let’s prove (a). To help avoid possible confusion, I will sometimes write my partials as 𝐷𝑗 

where 𝑗 = 1,2,3 indicates what argument I’m differentiating a function in. Take any compact 

subset 𝐵 ⊆ Ω. The idea here is to use Taylor’s theorem on the function 𝜁 ↦ 𝑎(𝑥, 𝜁, 𝑦) centered at 

𝜁 = 𝜉. We have by (5.8) that for any 𝑗 ≥ 0 (here 𝑅𝑥,𝑦,𝜉,𝑗 is the Tailor series error term for the 

just mentioned function) 

(5. 9)                                         𝑝(𝑥, 𝜉) = ∬𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝑎(𝑥, 𝜂, 𝑦)𝑑𝑦𝑑𝜂 

= ∑
1

𝛼!
∬𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝜕2

𝛼𝑎(𝑥, 𝜉, 𝑦)(𝜂 − 𝜉)𝛼𝑑𝑦𝑑𝜂
|𝛼|≤𝑘

+∬𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝑅𝑥,𝑦,𝜉,𝑘(𝜂)𝑑𝑦𝑑𝜂. 

Let’s take a look at the first sum on the right-hand side. Over (𝑥, 𝜉) ∈ 𝐵 × ℝ𝑛 we have that every 

integral in that sum it is equal to 

∬(−1)|𝛼|𝐷𝑦
𝛼[𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)]𝜕2

𝛼𝑎(𝑥, 𝜉, 𝑦)𝑑𝑦𝑑𝜂 = ∬𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝐷3
𝛼𝜕2

𝛼𝑎(𝑥, 𝜉, 𝑦)𝑑𝑦𝑑𝜂 

where in the last equality I did integration by parts in 𝑦 using the fact that the set of 𝑦 such that 

𝑎(𝑥, 𝜉, 𝑦) ≠ 0 for some (𝑥, 𝜉) ∈ 𝐵 × ℝ𝑛 is compact. Letting ℱ denote the Fourier transform, 

observe that the above quantity can further be written as 

∫𝑒2𝜋𝑖𝑥⋅(𝜂−𝜉)ℱ𝑦[𝐷3
𝛼𝜕2

𝛼𝑎(𝑥, 𝜉, 𝑦)]|
(𝜂−𝜉)

𝑑𝜂 = 𝐷3
𝛼𝜕2

𝛼𝑎(𝑥, 𝜉, 𝑥). 

Taking a look back at (5.9), we see that (a) will be proved then if we can show that over (𝑥, 𝜉) ∈

𝐵 × ℝ𝑛 there exists a sequence of numbers 𝜇𝑗 ∶ 𝑗 = 0,1,2,… independent of 𝐵 such that 𝜇𝑗 →

−∞ and the integral of the error term satisfies 

(5. 10)                            |∬𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝑅𝑥,𝑦,𝜉,𝑘(𝜂)𝑑𝑦𝑑𝜂| ≤ 𝐶𝐵,𝑘(1 + |𝜉|)
𝜇𝑘 

for some constants 𝐶𝐵,𝑘 > 0. Using Taylor’s theorem, we can write out the integral on the left-

hand side here as 

(𝑘 + 1) ∑
1

𝛼!
∬∫𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)(1 − 𝑡)𝑘𝜕2

𝛼𝑎(𝑥, 𝜉 + 𝑡(𝜂 − 𝜉), 𝑦)(𝜂 − 𝜉)𝛼𝑑𝑡

1

0

𝑑𝑦𝑑𝜂
|𝛼|=𝑘+1

. 

Let’s take a look at each integral in this sum. Call the integral in the 𝛼th term in the above sum 

𝐼𝛼(𝑥, 𝜉): 

𝐼𝛼(𝑥, 𝜉) = ∬∫𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)(1 − 𝑡)𝑘𝜕2
𝛼𝑎(𝑥, 𝜉 + 𝑡(𝜂 − 𝜉), 𝑦)(𝜂 − 𝜉)𝛼𝑑𝑡

1

0

𝑑𝑦𝑑𝜂 
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= ∫∫(1 − 𝑡)𝑘∫(−1)|𝛼|𝐷𝑦
𝛼[𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)]𝜕2

𝛼𝑎(𝑥, 𝜉 + 𝑡(𝜂 − 𝜉), 𝑦)𝑑𝑦 𝑑𝑡

1

0

𝑑𝜂 

= ∫∫(1 − 𝑡)𝑘∫𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝐷3
𝛼𝜕2

𝛼𝑎(𝑥, 𝜉 + 𝑡(𝜂 − 𝜉), 𝑦)𝑑𝑦 𝑑𝑡

1

0

𝑑𝜂 

where in the last equality I did integration by parts in 𝑦. Furthermore, let 𝐽𝛼(𝑥, 𝜉, 𝑡, 𝜂) denote the 

inner 𝑑𝑦 integral in the last quantity: 

𝐽𝛼(𝑥, 𝜉, 𝑡, 𝜂) = ∫𝑒
2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝐷3

𝛼𝜕2
𝛼𝑎(𝑥, 𝜉 + 𝑡(𝜂 − 𝜉), 𝑦)𝑑𝑦. 

Over the region |𝜂 − 𝜉| < |𝜉| 2⁄ , we see from this equation directly that there exists a constant 

𝐶𝐵,𝑘,𝛼 > 0 such that 

|𝐽𝛼(𝑥, 𝜉, 𝑡, 𝜂)| ≤ 𝐶𝐵,𝑘,𝛼(1 + 3 |𝜉| 2⁄ )𝑚−|𝛼| = 𝐶𝐵,𝑘,𝛼(1 + 3 |𝜉| 2⁄ )𝑚−𝑘. 

Over the region |𝜂 − 𝜉| ≥ |𝜉| 2⁄ , it’s not hard to see by repeating similar steps as in the proof of 

Lemma 5.4 that for any positive integer 𝑁 ∈ ℤ+ there exists a constant 𝐶𝐵,𝑘,𝛼,𝑁 such that 

|𝐽𝛼(𝑥, 𝜉, 𝑡, 𝜂)| ≤ 𝐶𝐵,𝑘,𝛼,𝑁|𝜂 − 𝜉|
−2𝑁(1 + |𝜉 + 𝑡(𝜂 − 𝜉)|)𝑚−𝑘 

≤ {
𝐶𝐵,𝑘,𝛼,𝑁|𝜂 − 𝜉|

−2𝑁(1 + |𝜉|)𝑚−𝑘(1 + |𝜂 − 𝜉|)𝑚−𝑘     if   𝑚 − 𝑘 ≥ 0

𝐶𝐵,𝑘,𝛼,𝑁|𝜂 − 𝜉|
−2𝑁                                                              if   𝑚 − 𝑘 < 0

 

(the triangle inequality was used in the 𝑚 − 𝑘 ≥ 0 case). Thus in the following two cases we 

have that (here 𝑚ℒ is the Lebesgue measure) 

i. If 𝑚 − 𝑘 ≥ 0: 

|𝐼𝛼(𝑥, 𝜉)| ≤ 𝐶𝐵,𝑘,𝛼(1 + 3 |𝜉| 2⁄ )𝑚−𝑘𝑚ℒ{𝜂 ∶ |𝜂 − 𝜉| < |𝜉| 2⁄ }

+ 𝐶𝐵,𝑘,𝛼,𝑁(1 + |𝜉|)
𝑚−𝑘 ∫ |𝜂 − 𝜉|−2𝑁(1 + |𝜂 − 𝜉|)𝑚−𝑘𝑑𝜂

𝜂∶|𝜂−𝜉|≥|𝜉| 2⁄

. 

If we choose 𝑁 big enough, the right-hand side grows no faster than |𝜉|𝑚−𝑘+𝑛. 

ii. If 𝑚 − 𝑘 < 0: 

|𝐼𝛼(𝑥, 𝜉)| ≤ 𝐶𝐵,𝑘,𝛼(1 + 3 |𝜉| 2⁄ )𝑚−𝑘𝑚ℒ{𝜂 ∶ |𝜂 − 𝜉| < |𝜉| 2⁄ }

+ 𝐶𝐵,𝑘,𝛼,𝑁 ∫ |𝜂 − 𝜉|−2𝑁𝑑𝜂

𝜂∶|𝜂−𝜉|≥|𝜉| 2⁄

. 

In this case, we also have that if we choose 𝑁 big enough the right-hand side grows no 

faster than |𝜉|𝑚−𝑘+𝑛. 

From both cases we see that there exists a constant 𝐶𝐵,𝛼
′ > 0 such that 
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|𝐼𝛼(𝑥, 𝜉)| ≤ 𝐶𝐵,𝛼
′ (1 + |𝜉|)𝑚−𝑘+𝑛                                            ∀𝑥 ∈ 𝐵. 

Plugging this back into the equation following right after (5.10), we have that there exists some 

constant 𝐶𝐵,𝑘 > 0 such that 

|∬𝑒2𝜋𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝑅𝑥,𝑦,𝜉,𝑘(𝜂)𝑑𝑦𝑑𝜂| ≤ 𝐶𝐵,𝑘(1 + |𝜉|)
𝑚−𝑘+𝑛. 

Setting 𝜇𝑘 to be the sequence 𝜇𝑘 = 𝑚 − 𝑘 + 𝑛, this proves (a). As discussed above, this proves 

the theorem. 

∎ 

Because of the above theorem, we can establish the following useful piece of notation. 

Notation 5.11: Suppose that 𝑃 ∈ 𝛹𝑚(𝛺) is a properly supported pseudodifferential operator. 

We let 𝜎𝑃 ∈ 𝐶
∞(𝛺 × ℝ𝑛) denote the following function: 

𝜎𝑃(𝑥, 𝜉) = 𝑒
−2𝜋𝑖𝑥⋅𝜉𝑃(𝑒2𝜋𝑖𝑦⋅𝜉). 

The great thing about this function 𝜎𝑃 is that because of the above theorem we know that 𝜎𝑃 ∈

𝑆𝑚(Ω) and that it is a symbol of 𝑃: 𝑃 = 𝜎𝑃(𝑥, 𝐷). 

 

5.6 Pseudodifferential Operators and Sobolev Spaces (Theorem 8.40) 

Here I give a slightly different proof of Theorem 8.40 in the book, which I break up into two 

theorems. 

Theorem 5.12: Suppose that 𝑃 ∈ 𝛹𝑚(𝛺) and that 𝑠 ∈ ℝ. Then 𝑃 maps 𝐻𝑠
0(𝛺) continuously into 

𝐻𝑠−𝑚
loc (𝛺) (see the remark below). 

Remark: Here is how we interpret this theorem. In the proof below we will show that 𝑃 maps the 

subspace 𝐶𝑐
∞(Ω) ⊆ 𝐻𝑠(ℝ

𝑛) continuously into 𝐻𝑠−𝑚
loc (Ω). Precisely, this means that for any 𝜙 ∈

𝐶𝑐
∞(Ω) there exists constant 𝐶 > 0 such that for any 𝑢 ∈ 𝐶𝑐

∞(Ω), 

‖𝜙𝑃𝑢‖𝑠−𝑚 ≤ 𝐶‖𝑢‖𝑠. 

This continuity then implies that 𝑃 extends uniquely to a continuous 𝑃 ∶ 𝐻𝑠
0(Ω) → 𝐻𝑠−𝑚

loc (Ω) map 

(this technically uses the completeness of 𝐻𝑠−𝑚
loc (Ω), see Proposition 4.5). 

Proof: Pick any 𝜙 ∈ 𝐶𝑐
∞(Ω). As mentioned in the above remark, it will be enough to prove the 

existence of a constant 𝐶 > 0 such that ‖𝜙𝑃𝑢‖𝑠−𝑚 ≤ 𝐶‖𝑢‖𝑠 for all 𝑢 ∈ 𝐶𝑐
∞(Ω). Observe that if 

𝑝 ∈ 𝑆𝑚(Ω) is a symbol of 𝑃, then 𝜙𝑃 = 𝑞(𝑥, 𝐷) were 𝑞 = 𝜙(𝑥)𝑝(𝑥, 𝜉). The symbol 𝑞 ∈ 𝑆𝑚(Ω) 

of course satisfies the property that 𝑞(𝑥, 𝜉) = 0 for 𝑥 outside the compact set supp𝜙. Now, for 

any 𝑢 ∈ 𝐶𝑐
∞(Ω) we have that 

(5. 13)             𝜙𝑃𝑢̂(𝜂) = ∬𝑒2𝜋𝑖(𝜉−𝜂)⋅𝑥𝑞(𝑥, 𝜉)𝑢̂(𝜉)𝑑𝜉𝑑𝑥 = ∫ 𝑞̂1(𝜂 − 𝜉, 𝜉)𝑢̂(𝜉)𝑑𝜉, 
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where 𝑞̂1 denote the Fourier transform of 𝑞 in the first variable. Thus, we have that 

‖𝜙𝑃𝑢‖𝑠−𝑚 = ‖∫(1 + |𝜂|2)(𝑠−𝑚) 2⁄ 𝑞̂1(𝜂 − 𝜉, 𝜉)𝑢̂(𝜉)𝑑𝜉‖
𝐿2
= ‖∫𝐾(𝜂, 𝜉)𝑓(𝜉)𝑑𝜉‖

𝐿2
 

where 

𝐾(𝜂, 𝜉) = (1 + |𝜂|2)(𝑠−𝑚) 2⁄ (1 + |𝜉|2)−𝑠 2⁄ 𝑞̂1(𝜂 − 𝜉, 𝜉)     and     𝑓(𝜉) = (1 + |𝜉|2)𝑠 2⁄ 𝑢̂(𝜉). 

Using similar techniques that we used to prove Lemma 5.4, it’s not hard to see that for any 𝑁 ∈

ℤ+ there exists a constant 𝐶𝑁 > 0 such that 

|𝑞̂1(𝜁, 𝜉)| ≤ 𝐶𝑁(1 + |𝜁|
2)−𝑁(1 + |𝜉|2)𝑚 2⁄         ∀𝜁, 𝜉 ∈ ℝ𝑛. 

Thus for any 𝑁 ∈ ℤ+, by Lemma 6.10 in the book (the little unnamed inequality) 

|𝐾(𝜂, 𝜉)| ≤ 𝐶𝑁(1 + |𝜂|
2)(𝑠−𝑚) 2⁄ (1 + |𝜉|2)(𝑚−𝑠) 2⁄ (1 + |𝜂 − 𝜉|2)−𝑁 

≤ 𝐶𝑁2
|𝑠−𝑚| 2⁄ (1 + |𝜂 − 𝜉|2)|𝑠−𝑚| 2⁄ −𝑁. 

So, we can let 𝑁 be big enough so that 𝐾 is in 𝐿1(ℝ𝑛) in each variable separately. Hence by 

Young’s inequality for integral operators (Theorem 0.10 in the book) we have that 

‖𝜙𝑃𝑢‖𝑠−𝑚 ≤ 𝐶𝜙‖𝑓‖𝐿2 = 𝐶𝜙‖𝑢‖𝑠 

for some constant 𝐶𝜙 > 0 only dependent on 𝜙. This proves the theorem. 

∎ 

If the pseudodifferential operator is properly supported, then we can say something else: 

Theorem 5.14: Suppose that 𝑃 ∈ 𝛹𝑚(𝛺) is properly supported and that 𝑠 ∈ ℝ. Then 𝑃 maps 

𝐻𝑠
loc(𝛺) continuously into 𝐻𝑠−𝑚

loc (𝛺). 

Remark: Here we don’t need any special interpretations since 𝑃 is perfectly defined over 

𝐻𝑠
loc(Ω) ⊆ 𝒟′(Ω) (see page 277 in the book). 

Proof: Take any 𝜙 ∈ 𝐶𝑐
∞(Ω). We will prove this theorem by showing that there exists a constant 

𝐶 > 0 and a 𝜓 ∈ 𝐶𝑐
∞(Ω) such that ‖𝜙𝑃𝑢‖𝑠−𝑚 ≤ 𝐶‖𝜓𝑢‖𝑠 for all 𝑢 ∈ 𝐻𝑠

loc(Ω). Let 𝐴 ⊆ Ω be a 

compact subset of Ω that contains supp𝜙 in its interior. By Theorem 5.3 there exists a compact 

subset 𝐶 ⊆ Ω such that 𝑃𝜌 = 0 on 𝐴 whenever 𝜌 ∈ 𝐶𝑐
∞(Ω) is zero on 𝐶. Let 𝜓 ∈ 𝐶𝑐

∞(Ω) be such 

that 𝜓 ≡ 1 on a neighborhood of 𝐶. Then, by the solution of Exercise 4 of Section 8.B in the 

book we have that 𝑃𝑢|𝐴int = 𝑃(𝜓𝑢)|𝐴int for all 𝑢 ∈ 𝒟′(Ω). Hence 𝜙𝑃𝑢 = 𝜙𝑃(𝜓𝑢) for all 𝑢 ∈

𝒟′(Ω), and in particular for 𝑢 ∈ 𝐻𝑠
loc(Ω). Now, as in the proof of Theorem 5.12 observe that if 

𝑝 ∈ 𝑆𝑚(Ω) is a symbol of 𝑃, then 𝜙𝑃 = 𝑞(𝑥, 𝐷) where 𝑞(𝑥, 𝜉) = 𝜙(𝑥)𝑝(𝑥, 𝜉). Notice that the 

symbol 𝑞 ∈ 𝑆𝑚(Ω) satisfies the property that 𝑞(𝑥, 𝜉) = 0 for 𝑥 outside the compact set supp𝜙 

and 𝑞(𝑥, 𝐷) is also properly supported. Then we have that for any 𝑢 ∈ 𝐻𝑠
loc(Ω),  

(𝜙𝑃𝑢) ̂ (𝜂) = (𝜙𝑃(𝜓𝑢)) ̂ (𝜂) = (𝑞(𝑥, 𝐷)(𝜓𝑢)) ̂ (𝜂) = 〈𝑞(𝑥, 𝐷)(𝜓𝑢)(𝑥), 𝑒−2𝜋𝑖𝜂⋅𝑥〉, 
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where we’ve used the fact that 𝑞(𝑥, 𝐷)(𝜓𝑢) is compactly supported since 𝑞 is proper (c.f. page 

276 in the book). To continue the calculation, let 𝜌 ∈ 𝐶𝑐
∞(Ω) be such that 𝜌 ≡ 1 on a 

neighborhood of supp[𝑞(𝑥, 𝐷)(𝜓𝑢)]. By the discussion on pages 269-270 in the book, we then 

have that the above quantity can further be written as 

〈𝑞(𝑥, 𝐷)(𝜓𝑢)(𝑥), 𝜌(𝑥)𝑒−2𝜋𝑖𝜂⋅𝑥〉 = 〈𝜓𝑢̂(𝜉),∫ 𝑒2𝜋𝑖𝑥⋅𝜉𝑞(𝑥, 𝜉)𝜌(𝑥)𝑒−2𝜋𝑖𝜂⋅𝑥𝑑𝑥〉 

= 〈𝜓𝑢̂(𝜉),∫ 𝑒2𝜋𝑖𝑥⋅𝜉𝑞(𝑥, 𝜉)𝑒−2𝜋𝑖𝜂⋅𝑥𝑑𝑥〉. 

Now, since 𝜓𝑢 ∈ 𝐻𝑠(Ω) we arrive at that 

(𝜙𝑃𝑢) ̂ (𝜂) = ∬𝑒2𝜋𝑖(𝜉−𝜂)⋅𝜉𝑞(𝑥, 𝜉)𝜓𝑢̂(𝜉)𝑑𝑥𝑑𝜉. 

From here we can continue just as in the proof of Theorem 5.12 starting with (5.13) to get that 

there exists a constant 𝐶𝜙 > 0 only dependent on 𝜙 such that 

‖𝜙𝑃𝑢‖𝑠−𝑚 ≤ 𝐶𝜙‖𝜓𝑢‖𝑠. 

This proves the theorem. 

∎ 

 

5.7 Local Solvability of Properly Supported Elliptic Pseudodifferential Operators 

Here I prove the following theorem by putting the proof of Theorem 8.45 in the book into my 

own words. I’m going to try to be very careful in my notation.  

Theorem 5.15: Suppose that 𝑃 ∈ 𝛹𝑚(𝛺) is a properly supported elliptic pseudodifferential 

operator of order 𝑚. Pick any 𝑓 ∈ 𝒟′(𝛺). Then, for any 𝑥0 ∈ 𝛺 there exists an open 

neighborhood 𝑈 of 𝑥0 contained in 𝛺 such that the equation 𝑃𝑢 = 𝑓 has a solution 𝑢 ∈ 𝒟′(𝛺) 
over 𝑈 (i.e. (𝑃𝑢)|𝑈 = 𝑓|𝑈). 

Proof: Let 𝑄 be a parametrix of 𝑃 and consider the operator 𝑆 = (𝑃𝑄 − 𝐼) ∈ Ψ−∞(Ω). Let 𝑊 be 

an open neighborhood of 𝑥0 such that 𝑊 ⊆ Ω is compact. Since 𝑆 is properly supported, by 

Theorem 5.3 there exists a compact subset 𝐴 ⊆ Ω such that values of 𝑆𝑢 on 𝑊 only depend on 

the values of 𝑢 ∈ 𝐶𝑐
∞(Ω) on 𝐴. Let 𝜙,𝜓 ∈ 𝐶𝑐

∞(Ω) be such that 

𝜙 ≡ 1   on  𝑊             and             𝜓 ≡ 1   on  𝐴. 

Now, consider the operator 𝑇̃ ∶ 𝐶𝑐
∞(ℝ𝑛) → 𝐶∞(ℝ𝑛) given by (see Notation 2.12 for “ ⋅ ℝ

𝑛
”) 

𝑇̃𝑢 = [𝜙𝑆(𝜓 ⋅ [𝑢|Ω])]
ℝ𝑛 . 

I put “   ̃” over my 𝑇 here to remind us that this operator is acting over ℝ𝑛 and not Ω anymore. 

The reason we will want to work with an operator over ℝ𝑛 is so that we can utilize 𝐻𝑠(ℝ
𝑛) 
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Hilbert spaces theory. It’s not hard to show that 𝑇̃ is a pseudodifferential operator of order −∞ as 

well, and using Proposition 8.12 is also properly supported. Let’s also observe an almost obvious 

technical point: 

Claim: For any 𝑣 ∈ 𝒟′(ℝ𝑛), 

(𝑇̃𝑣)|
Ω
= 𝜙𝑆(𝜓[𝑣|Ω]). 

Proof: We have that this already holds for 𝑣 ∈ 𝐶𝑐
∞(ℝ𝑛) by definition. To prove it for more 

general distributions, we argue by continuity. Take any 𝑣 ∈ 𝒟′(ℝ𝑛) and let {𝑣𝑘}𝑘=1
∞ ⊆ 𝐶𝑐

∞(ℝ𝑛) 

be such that 𝑣𝑘 → 𝑣 in 𝒟′(ℝ𝑛). Then, we have that 

(𝑇̃𝑣)|
Ω
= lim

𝑘→∞
(𝑇̃𝑣𝑘)|Ω = lim

𝑘→∞
𝜙𝑆(𝜓[𝑣𝑘|Ω]) = 𝜙𝑆(𝜓[𝑣|Ω]). 

// 

Back to proving our theorem. Consider 𝑓 = (𝜙𝑓)ℝ
𝑛
∈ ℰ′(ℝ𝑛). We claim that if we can find a 

𝑣 ∈ 𝒟′(ℝ𝑛) such that (𝑇̃ + 𝐼)𝑣 = 𝑓 over some open neighborhood 𝑈 ⊆ 𝑊 of 𝑥0, then 𝑢 =

𝑄(𝑣|Ω) will be the solution we’re seeking. To see why, observe that 

𝑃𝑄(𝑣|Ω)|𝑈 = (𝑆 + 𝐼)(𝑣|Ω)|𝑈 = [𝜙𝑆(𝜓(𝑣|Ω))]|𝑈 + 𝑣
|𝑈 = (𝑇̃𝑣 + 𝑣)|𝑈 

= 𝑓|
𝑈
= 𝑓|𝑈 . 

Hence indeed it suffices to find a such a 𝑣 ∈ 𝒟′(ℝ𝑛). 

Since 𝑓 ∈ ℰ′(ℝ𝑛), we have that 𝑓 ∈ 𝐻𝑠(ℝ
𝑛) for some 𝑠 ∈ ℝ. Fixing such an 𝑠 ∈ ℝ, the 

following claim is the key to applying Hilbert space theory to our problem. 

Claim: The operator 𝑇̃ ∶ 𝐻𝑠(ℝ
𝑛) → 𝐻𝑠(ℝ

𝑛) is a compact operator. 

Proof: Take any bounded subset 𝐵 of 𝐻𝑠(ℝ
𝑛). We’ll show that 𝑇̃[𝐵] has a convergent 

subsequence in 𝐻𝑠(ℝ
𝑛). Let 𝜌 ∈ 𝐶𝑐

∞(ℝ𝑛) be such that supp 𝜌 ⊆ Ω and 𝜌 ≡ 1 on supp𝜙. It’s 

not hard to see by definition that 𝑇̃𝑣 = 𝜌𝑇̃(𝑣) for all 𝑣 ∈ 𝒟′(ℝ𝑛) and so we have that 

𝑇̃[𝐵] = {𝜌𝑇̃(𝑣) ∶ 𝑣 ∈ 𝐵}. 

Now, take any 𝑟 < 0 and recall that 𝑇̃ ∈ Ψ𝑟(ℝ𝑛). By Theorem 5.14 we have that there exists a 

constant 𝐶𝜌 > 0 and a 𝜎 ∈ 𝐶𝑐
∞(ℝ𝑛) such that for any 𝑣 ∈ 𝐻𝑠(ℝ

𝑛), 

‖𝜌𝑇̃(𝑣)‖
𝑠−𝑟

≤ 𝐶𝜙‖𝜎𝑣‖𝑠. 

Since multiplication by 𝜎 is a continuous operation in 𝐻𝑠(ℝ
𝑛), this implies that the set in the 

previous equation is bounded in 𝐻𝑠−𝑟(ℝ
𝑛). Furthermore, every member of that set is also 

supported in the fixed compact set supp 𝜌. Hence by the proof of Rellich’s theorem (Theorem 

6.14 in the book) we have that this set has a subsequence that converges in 𝐻𝑠(ℝ
𝑛). Thus the 

map 𝑇̃ ∶ 𝐻𝑠(ℝ
𝑛) → 𝐻𝑠(ℝ

𝑛) is indeed compact. 
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// 

Back to proving the theorem. Let 𝑇̃𝑠
∗ denote the ⟨ ⋅ | ⋅ ⟩𝑠 adjoint of 𝑇̃ and let 𝑇̃∗ denote the 

ordinary adjoint of 𝑇̃ (see Definition 2.28 for the latter). By Fredholm’s theorem and its corollary 

(Corollary 0.42 in the book) we have that (𝑇̃ + 𝐼)𝑣 = 𝑓 has a solution if and only if 𝑓 ⊥

{𝑔 ∈ 𝐻𝑠(ℝ
𝑛) ∶ 𝑇̃𝑠

∗𝑔 = −𝑔}. We will use the following claim to put this condition into a more 

convenient form. 

Claim: The following is true and makes sense: 

⟨𝑓|𝑔⟩
𝑠
= −〈𝑓, 𝑇̃∗Λ2𝑠𝑔〉                ∀𝑔 ∈ 𝐻𝑠(ℝ

𝑛) ∶ 𝑇𝑠
∗𝑔 = −𝑔. 

Proof: For shorthand, let ℛ denote the set of all 𝑔 considered here. First let’s prove the following 

version of the above equation: 

(5. 16)                                                     ⟨ℎ|𝑔⟩𝑠 = −〈ℎ, 𝑇̃
∗Λ2𝑠𝑔〉                     ∀ℎ ∈ 𝐶𝑐

∞(ℝ𝑛)   ∀𝑔 ∈ ℛ. 

We have that for any ℎ ∈ 𝐶𝑐
∞(ℝ𝑛) and any 𝑔 ∈ ℛ, 

−⟨ℎ|𝑔⟩𝑠 = ⟨𝑇̃𝑠
∗𝑔|ℎ⟩

𝑠
= ⟨𝑔|𝑇̃ℎ⟩

𝑠
= ∫(1 + |𝜉|2)𝑠𝑔̂(𝜉)𝑇̃ℎ̂(𝜉)𝑑𝜉. 

Now, since ℎ is compactly supported and 𝑇̃ is properly supported we have that 𝑇̃ℎ ∈ 𝐶𝑐
∞(ℝ𝑛) 

(alternatively 𝑇̃ always vanishes outside of supp𝜙). So we can continue the above calculation as 

= 〈(Λ2𝑠𝑔)(−𝑥), (𝑇̃ℎ̂)
∨

(𝑥)〉 = 〈Λ2𝑠𝑔, 𝑇̃ℎ〉. 

Now, by definition we have that 〈𝑇̃∗𝑢, 𝑣〉 = 〈𝑢, 𝑇̃𝑣〉 for all 𝑢, 𝑣 ∈ 𝐶𝑐
∞(ℝ𝑛). By the continuity of 

𝑇̃∗ ∶ 𝒟′(ℝ𝑛) → 𝒟′(ℝ𝑛) (Exercise 8.B.4 in the book) we have that this also holds for 𝑢 ∈

𝒟′(ℝ𝑛). So we can further continue the above calculation as 

= 〈𝑇̃∗Λ2𝑠𝑔, ℎ〉 = 〈𝑇̃∗Λ2𝑠𝑔, ℎ〉 = 〈ℎ, 𝑇̃∗Λ2𝑠𝑔〉, 

where observe that the last expression makes sense since 𝑇̃∗ maps 𝒟′(ℝ𝑛) maps into 𝐶∞(ℝ𝑛) 

since 𝑇̃∗ is properly supported and in Ψ−∞(ℝ𝑛) (see pages 290 – 291 in the book). Hence we’ve 

shown that 

−⟨ℎ|𝑔⟩𝑠 = 〈ℎ, 𝑇̃
∗Λ2𝑠𝑔〉, 

which evidently implies (5.16). 

Now, using the density of 𝐶𝑐
∞(ℝ𝑛) in 𝐻𝑠(ℝ

𝑛) and the fact that convergence in 𝐻𝑠(ℝ
𝑛) also 

implies convergence in 𝒟′(ℝ𝑛) (see Lemma 4.1), we get that (5.16) also holds if we replace ℎ 

with 𝑓. This proves the claim. 

// 
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Back to proving our theorem. Because of the above claim, we now have that (𝑇̃ + 𝐼)𝑣 = 𝑓 has a 

solution if and only if 

〈𝑓, ℎ〉 = 0        ∀ℎ ∈ 𝒳 

where 

𝒳 = {𝑇̃∗Λ2𝑠𝑔 ∶ 𝑔 ∈ 𝐻𝑠(ℝ
𝑛) such that 𝑇̃𝑠

∗𝑔 = −𝑔} 

If we let 𝜌 ∈ 𝐶𝑐
∞(ℝ𝑛) ∶ supp 𝜌 ⊆ Ω be such that 𝜌 ≡ 1 on supp 𝑓, then we can harmlessly 

change the above condition to1 

〈𝑓, ℎ〉 = 0        ∀ℎ ∈ 𝜌𝒳. 

This condition might not actually not hold for 𝑓, but we can modify 𝑓 slightly so that this does. 

By Fredholm’s theorem (Theorem 0.38 in the book) we have that 𝜌𝒳 is a finite dimensional 

vector space. Thus by (the technical) Lemma 8.44 in the book there exists an 𝜀 > 0 and a 𝑔 ∈

𝐶𝑐
∞(ℝ𝑛) such that 𝑔 vanishes on 𝐵𝜀(𝑥0) and 〈𝑓 − 𝑔, ℎ〉 = 0 for all ℎ ∈ 𝜌𝒳. Then we get that 

there exists a solution 𝑣 ∈ 𝒟′(ℝ𝑛) to (𝑇̃ + 𝐼)𝑣 = 𝑓 − 𝑔. Such a 𝑣 solves (𝑇̃ + 𝐼)𝑣 = 𝑓 over 𝑈 =

𝐵𝜀(𝑥0) ∩𝑊. As discussed before this proves the theorem. 

∎ 

 

5.8 Equivalent Definition of Wavefront Set (Theorem 8.56) 

In this note I put the proof of the following theorem into my own words by filling in some of the 

details in the proof. 

Note: If you are confused as to why the following is not a definition, please see Definition 2.36 

above. 

Theorem 5.17: Suppose that 𝑢 ∈ 𝒟′(𝛺) is a distribution where 𝛺 ⊆ ℝ𝑛. Then (𝑥0, 𝜉0) ∉
𝑊𝐹(𝑢) if and only if there exists a 𝜙 ∈ 𝐶𝑐

∞(𝛺) such that 𝜙(𝑥0) ≠ 0 and an open cone 𝑉 ⊆ ℝ𝑛 ∖
{0} containing 𝜉0 such that 

∀𝑀 > 0     ∃𝐶 > 0     ∀𝜉 ∈ 𝑉,     |𝜙𝑢̂(𝜉)| ≤ 𝐶(1 + |𝜉|)−𝑀 . 

Proof: Take any (𝑥0, 𝜉0) ∈ 𝑇
0Ω. First suppose that it satisfies the final condition in the theorem 

with some 𝜙 ∈ 𝐶𝑐
∞(Ω) and 𝑉 ⊆ ℝ𝑛 ∖ {0}. We want to show that (𝑥0, 𝜉0) ∉ 𝑊𝐹(𝑢). We leave it 

to the reader to show that there exists a 𝑝 ∈ 𝐶∞(ℝ𝑛) such that 𝑝(𝜉) is homogeneous of degree 0 

for large 𝜉, 𝑝(𝜉0) ≠ 0, and supp 𝑝 ⊆ 𝑉 (Folland constructs such a function in his proof of 

Proposition 8.52 in the book). Notice then that 𝑝 ⋅ 𝜙𝑢̂ is rapidly decreasing in all directions. 

Hence it’s a Schwartz function and so it’s inverse Fourier transform is smooth. The reason the 

 
1 The reason for 𝜌 is to make the vector space 𝜌𝒳 that we’re considering a subspace of 𝐶𝑐

∞(Ω) (rather than just 

𝐶∞(Ω)). This is in fact unnecessary because all members of 𝒳 already have compact support, but I’m too lazy to 

prove this. It follows from 𝑇∗𝑣 = 𝜓𝑆∗(𝜙𝑣) and then an extension argument to ℝ𝑛. 
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inverse Fourier transform is of interest that it can be written as a pseudodifferential operator (see 

the claim below). First observe that by Theorem 8.8(a) in the book we have that 𝑝̌ agrees with a 

Schwartz function away from zero. 

Claim: For any 𝑣 ∈ ℰ′(Ω), 

𝑝(𝐷)[𝑣] = 𝑝̌ ∗ 𝑣 = ∫𝑒2𝜋𝑖𝑥⋅𝜉𝑝(𝜉)𝑣̂(𝜉)𝑑𝜉. 

where 𝑝(𝐷) ∈ Ψ0(Ω) is the operator obtained from the symbol 𝑝 thought of as being held 

constant in the 𝑥-variable (i.e 𝑝(𝑥, 𝜉) = 𝑝(𝜉)). 

Note: The reason the last expression doesn’t follow immediately from the definition of 

pseudodifferential operators is that with no assumptions this integral representation for 𝑝(𝐷) 

only works when 𝑣 ∈ 𝐶𝑐
∞(Ω). 

Proof: Let’s start by proving the first equality. If 𝑣 ∈ 𝐶𝑐
∞(Ω), then this simply follows from the 

convolution theorem since 𝑝 is Schwartz and hence in 𝒮′(ℝ𝑛) (see chapter 8 of Friedlander and 

Joshi’s book on distribution theory). For general 𝑣 ∈ ℰ′(Ω), let {𝑣𝑘 ∶ 𝑘 ∈ ℤ+} be a sequence in 

𝐶𝑐
∞(Ω) that converges to 𝑣 in ℰ′(Ω). We have already established that each 𝑝(𝐷)[𝑣𝑘] = 𝑝̌ ∗ 𝑣𝑘, 

and so passing to the limit and using the continuity of 𝑝(𝐷)[… ] and 𝑝̌ ∗ (… ) establishes the 

equality for 𝑣 ∈ ℰ′(Ω) as well. The second equality in the claim simply follows from the 

convolution theorem. 

// 

Back to proving our theorem. We thus have that 

(5. 18)                                                          𝑝(𝐷)[𝜙𝑢] ∈ 𝐶∞(Ω) 

Consider the operator 𝑃 ∈ Ψ0(Ω) given by 𝑃𝑣 = 𝑝(𝐷)[𝜙𝑣] for 𝑣 ∈ 𝐶𝑐
∞(Ω). Notice that the 

symbol of 𝑃 is 𝑝(𝜉)𝜙(𝑥) (mod 𝑆−1(Ω)) and hence (𝑥0, 𝜉0) ∉ char0 𝑃 by construction. 

Now, by Corollary 8.32 there exists a properly supported operator 𝑃̃ ∈ Ψ0(Ω) such that 𝑃̃ = 𝑃 +

𝑅 where 𝑅 ∈ Ψ−∞(Ω).2 I claim that 𝑃̃𝑢 ∈ 𝐶∞(Ω). To see why, take any precompact 𝑈 ⊆ Ω and 

let 𝐶 ⊆ Ω be such that 𝑃̃𝑣 ≡ 0 on 𝑈 if 𝑣 ≡ 0 on 𝐶 (c.f. Proposition 8.12 in the book). Let 𝜓 ∈

𝐶𝑐
∞(Ω) be such that 𝜓 ≡ 1 on a neighborhood of 𝐶. Then by the solution of Exercise 4 of 

Section 8.B we have that 𝑃̃𝑤 = 𝑃̃(𝜓𝑤) on 𝑈 for all 𝑤 ∈ 𝒟′(Ω). Hence we have that 

(𝑃̃𝑢)|
𝑈
= (𝑃̃(𝜓𝑢))|

𝑈
= (𝑝(𝐷)(𝜙𝜓𝑢) + 𝑅(𝜓𝑢))|

𝑈
. 

By expanding supp𝜓 earlier if necessary, we can assume without loss of generality that 𝜓 ≡ 1 

on supp𝜙 as well and so the quantity 𝑝(𝐷)(𝜙𝜓𝑢) above is simply 𝑝(𝐷)(𝜙𝑢). By (5.18) and the 

fact that 𝑅 ∈ Ψ−∞(Ω) is smoothing, we see that the above quantity is smooth. Since 𝑈 ⊆ Ω was 

 
2 𝑃 would be enough to prove that (𝑥0, 𝜉0) ∉ 𝑊𝐹(𝑢) if we knew that it was properly supported. Unfortunately we 

don’t know that (or at least I don’t), and so that is the purpose here of taking the negligible modification 𝑃̃ of 𝑃 to do 

the job. 
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chosen arbitrarily, this shows that indeed 𝑃̃𝑢 ∈ 𝐶∞(Ω). Now, considering that char0 𝑃 =

char0 𝑃̃, we have that (𝑥0, 𝜉0) ∉ char0 𝑃̃. It’s easy to see then that by Definition 2.36, (𝑥0, 𝜉0) ∉

𝑊𝐹(𝑢). 

Now let’s prove the other direction: suppose that (𝑥0, 𝜉0) ∉ 𝑊𝐹(𝑢). Then, there exists a properly 

supported 𝑃 ∈ Ψ0(Ω) such that 𝑃𝑢 ∈ 𝐶∞(Ω) and (𝑥0, 𝜉0) ∉ char0 𝑃. Since 𝑇0 ∖ char0 𝑃 is open 

we have that there exists a neighborhood 𝑁 ⊆ Ω such that (𝑥, 𝜉0) ∉ char0 𝑃 for all 𝑥 ∈ 𝑁 and 

hence (𝑥, 𝜉0) ∉ 𝑊𝐹(𝑢) for all 𝑥 ∈ 𝑁. Let 𝜙 ∈ 𝐶𝑐
∞(Ω) be such that supp𝜙 ⊆ 𝑁 and 𝜙(𝑥0) ≠ 0. 

Let 

Σ = {𝜉 ∈ ℝ𝑛 ∖ {0} ∶ (𝑥, 𝜉) ∈ 𝑊𝐹(𝜙𝑢) for some 𝑥 ∈ Ω}, 

which is of course a cone. Notice that by Theorem 8.54 in the book, 

(5. 19)                                  𝑊𝐹(𝜙𝑢) ⊆ 𝑊𝐹(𝑢) ∩ (supp𝜙 × (ℝ𝑛 ∖ {0})) 

(to see why, consider the Ψ0(Ω) operator of multiplication by 𝜙). It’s not hard to see that this 

implies that 𝜉0 ∉ Σ. Now, I claim that Σ is closed. To see why, let {𝜉𝑘 ∶ 𝑘 ∈ ℤ+} be a sequence in 

Σ that converges to some 𝜉 ∈ ℝ𝑛 ∖ {0}. By definition, for each 𝑘 ∈ ℤ+ there exists an 𝑥𝑘 ∈ Ω 

such that (𝑥𝑘, 𝜉𝑘) ∈ 𝑊𝐹(𝜙𝑢). By (5.19) we in fact know that each 𝑥𝑘 must be contained in 

supp𝜙, and so by its compactness and passing to a subsequence if necessary, we may assume 

that 𝑥𝑘 → 𝑥 for some 𝑥 ∈ supp𝜙. Then (𝑥𝑘 , 𝜉𝑘) → (𝑥, 𝜉) and hence the closedness of 𝑊𝐹(𝜙𝑢) 

implies that (𝑥, 𝜉) ∈ 𝑊𝐹(𝜙𝑢). Thus 𝜉 ∈ Σ and so indeed Σ is closed. 

Similarly to the first part of this proof, we may choose a 𝑝 ∈ 𝐶∞(ℝ𝑛) such that 𝑝(𝜉) is 

homogeneous of degree 0 for large 𝜉, 𝑝(𝜉0) ≠ 0, and 𝑝 is zero on a neighborhood of Σ. Consider 

𝑝(𝐷)[𝜙𝑢]. Notice that its wavefront set is empty since by Theorem 8.54 in the book again we 

have that 

𝑊𝐹(𝑝(𝐷)[𝜙𝑢]) ⊆ 𝑊𝐹(𝜙𝑢) ∩ 𝜇supp(𝑝(𝐷)) = ∅. 

Hence by Theorem 8.53 in the book we get that 𝑝(𝐷)[𝜙𝑢] ∈ 𝐶∞(Ω). Let’s now study its growth 

rate.  

By the “claim” at the beginning of the proof, we have that 𝑝(𝐷)[𝜙𝑢] = 𝑝̌ ∗ [𝜙𝑢]. Now, I claim 

that this function 𝑝̌ ∗ [𝜙𝑣] agrees with a Schwartz function away from supp𝜙. To prove this, let 

𝜎 ∈ 𝐶∞(ℝ𝑛) be such that it vanishes in a neighborhood of 0 and 𝜎 ≡ 1 on a neighborhood of the 

region |𝑦| ≥ 1. I claim that 

(5. 20)                                                      𝑝̌ ∗ [𝜙𝑢]

= [𝜎𝑝̌] ∗ [𝜙𝑢]               on  ℝ𝑛 ∖ (supp𝜙 + 𝐵1(0)). 

To see this, take any test function 𝜓 ∈ 𝐶𝑐
∞(Ω) whose support is disjoint from the compact set 

supp𝜙 + 𝐵1(0). We have that 

〈𝑝̌ ∗ [𝜙𝑢], 𝜓〉 = 〈𝑝̌(𝑦), 〈𝜙𝑢(𝑥), 𝜓(𝑥 + 𝑦)〉〉. 
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It’s not hard to see that by assumption on 𝜓 we have that 〈𝜙𝑢(𝑥), 𝜓(𝑥 + 𝑦)〉 is zero on 𝐵1(0) (as 

a function of 𝑦). Hence the above quantity can further be rewritten as 

〈𝜎𝑝̌(𝑦), 〈𝜙𝑢(𝑥), 𝜓(𝑥 + 𝑦)〉〉 = 〈[𝜎𝑝̌] ∗ [𝜙𝑢], 𝜓〉, 

which of course establishes (5.20). Having this in hand, and reminding ourselves that 𝑝̌ agrees 

with a Schwartz function away from zero, we have that 𝜎𝑝̌ ∈ 𝐶∞(ℝ𝑛) and so we can write 

[𝜎𝑝̌] ∗ [𝜙𝑢](𝑥) = 〈𝜙𝑢(𝑦), 𝜎𝑝̌(𝑥 − 𝑦)〉. 

Utilizing the fact that 𝜎𝑝̌ is in Schwartz, it’s not hard to show that this quantity is bounded over 

𝑥 ∈ ℝ𝑛 even when multiplied by any polynomial in 𝑥. Hence this quantity is a Schwartz 

function, which recall our original function of interest 𝑝(𝐷)[𝜙𝑢] = 𝑝̌ ∗ [𝜙𝑢] agrees with on the 

region in (5.20). Having already showed that 𝑝(𝐷)[𝜙𝑢] ∈ 𝐶∞(Ω), we finally get that 𝑝̌ ∗ [𝜙𝑢] 

is a Schwartz function. That means that its Fourier transform 𝑝 ⋅ 𝜙𝑢̂ is Schwartz. It’s not hard to 

see that this implies that 𝜙𝑢̂ is rapidly decreasing in some open cone containing 𝜉0 (i.e. satisfies 

the conclusion in the theorem). This proves the theorem. 

∎ 

 

5.9 Change of Coordinates for Pseudodifferential Operators 

In this section I work through the proof of the Theorem 8.58 in the book. Before we get to it 

however, we need to establish a few things. All diffeomorphisms are assumed to be 𝐶∞. 

Definition 5.21: Suppose that 𝐹 ∶ 𝛺′ → 𝛺 is a diffeomorphism between open sets and that 𝑇 ∶
𝐶𝑐
∞(𝛺) → 𝐶∞(𝛺) is a map. Then the pullback of 𝑻, denoted by 𝑇𝐹 ∶ 𝐶𝑐

∞(𝛺′) → 𝐶∞(𝛺′), is the 

map given by 

𝑇𝐹𝑢(𝑥) = [𝑇(𝑢 ∘ 𝐹−1)] ∘ 𝐹. 

Notation 5.22: Suppose that 𝐹 ∶ 𝛺′ → 𝛺 is a diffeomorphism between open sets. We let 𝐽𝐹 denote 

the Jacobian matrix of 𝐹 (i.e. [𝐽𝐹(𝑥)]𝑗𝑘 = 𝜕𝐹𝑗 𝜕𝑥𝑘⁄ (𝑥)). 

Lemma 5.23: Suppose that 𝐹 ∶ 𝛺′ → 𝛺 is a diffeomorphism between open sets and that 𝐿 =
∑ 𝑎𝛼𝜕

𝛼
|𝛼|≤𝑘  is a linear partial differential operator over 𝛺 with 𝐶∞ coefficients. Then 𝐿𝐹 is also 

a linear partial differential operator over 𝛺′ with 𝐶∞ coefficients of the same order. 

Furthermore, the characteristic form of 𝐿𝐹 is given by 

𝜒𝐿𝐹(𝑥, 𝜉) = ∑ 𝑎𝛼 ∘ 𝐹(𝑥)([𝐽𝐹
⊤(𝑥)]−1𝜉)𝛼

|𝛼|=𝑘

, 

where “…⊤” denotes the transpose of a matrix. 

The above lemma follows from the discussion on pages 32 – 33 in the book, and so I omit its 

proof. 
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Theorem 5.24: Suppose that 𝐹 ∶ 𝛺′ → 𝛺 is a diffeomorphism between open subsets of ℝ𝑛 and 

that 𝑃 = 𝑝(𝑥, 𝐷) ∈ 𝛹𝑚(𝛺) is a properly supported pseudodifferential operator over 𝛺. Then 

𝑃𝐹 ∈ 𝛹𝑚(𝛺′) and is properly supported as well. Furthermore 

𝜎𝑃𝐹(𝑥, 𝜉) = 𝑝(𝐹(𝑥), [𝐽𝐹
⊤(𝑥)]−1𝜉)     (𝑚𝑜𝑑 𝑆𝑚−1(𝛺′)) 

(see Notation 5.11 for 𝜎𝑃𝐹). 

Proof: Allow us to point out that the theorem is already established when 𝑃 is a linear partial 

differential operator with 𝐶∞ coefficients by Lemma 5.23. 

Ok, let’s first show that 𝑃𝐹 ∶ 𝐶𝑐
∞(Ω) → 𝐶∞(Ω) is properly supported. Let 𝐾𝑃 denote the 

distribution kernels of 𝑃. For any 𝑢, 𝑣 ∈ 𝐶𝑐
∞(Ω′) we have that 

〈𝑃𝐹𝑢, 𝑣〉 = ∫[𝑃(𝑢 ∘ 𝐹−1) ∘ 𝐹](𝑥)𝑣(𝑥)𝑑𝑥 = ∫𝑃(𝑢 ∘ 𝐹−1)(𝑦)[𝑣 ∘ 𝐹−1](𝑦)|det 𝐽𝐹−1(𝑦)|𝑑𝑦 

= 〈𝐾𝑃(𝑥, 𝑦), [|det 𝐽𝐹−1(𝑥)|𝑣 ∘ 𝐹
−1(𝑥)] ⊗ [𝑢 ∘ 𝐹−1(𝑦)]〉. 

Letting 𝐺 ∶ Ω′ × Ω′ → Ω × Ω denote the diffeomorphism 𝐺(𝑥, 𝑦) = (𝐹(𝑥), 𝐹(𝑦)) (where 𝑥, 𝑦 ∈

Ω′), we can further rewrite the above quantity as 

〈|det 𝐽𝐹(𝑦)|𝐺
∗𝐾𝑃(𝑥, 𝑦), 𝑣(𝑥) ⊗ 𝑣(𝑦)〉 

where 𝐺∗𝐾𝑃 denotes the pullback of 𝐾𝑃 under 𝐺. Thus the distribution kernel of 𝑃𝐹 is given by 

𝐾𝑃
𝐹
(𝑥, 𝑦) = |det 𝐽𝐹(𝑦)|𝐺

∗𝐾𝑃(𝑥, 𝑦) 

and hence 

supp𝐾𝑃
𝐹
⊆ 𝐺−1[supp𝐾𝑃]. 

It’s not hard to see that 𝐺−1 takes proper subsets to proper subsets. So, we have that 𝑃𝐹 is indeed 

properly supported. 

For later purposes, observe that the kernel 𝐾𝑃
𝐹
 is smooth away from the diagonal ΔΩ′ =

{(𝑥, 𝑦) ∈ Ω′ × Ω′ ∶ 𝑥 = 𝑦} since by Theorem 8.8 in the book we know that 𝐾𝑃 is smooth away from the 

diagonal ΔΩ = {(𝑥, 𝑦) ∈ Ω × Ω ∶ 𝑥 = 𝑦}. 

Now let’s prove that 𝑃𝐹 ∈ Ψ𝑚(Ω′) and that it has the symbol stated in the theorem. Let’s start with the 

case 𝑚 < −𝑛. By Lemma 8.57 in the book there exists a smooth map 𝜇 ∶ 𝑁 → GL𝑛(ℝ) over an open 

neighborhood 𝑁 ⊆ Ω′ × Ω′ of ΔΩ′  such that 𝜇(𝑥, 𝑥) = 𝐽𝐹(𝑥) for all 𝑥 ∈ Ω′ and 

𝐹(𝑥) − 𝐹(𝑦) = 𝜇(𝑥, 𝑦)(𝑥 − 𝑦)           ∀𝑥, 𝑦 ∈ 𝑁.                                      

By Proposition 8.15 in the book there exists a 𝜙 ∈ 𝐶∞(Ω′ × Ω′) that is identically one in a neighborhood 

of ΔΩ′  and such that supp𝜙 is proper and contained in 𝑁. Now, we have that for any 𝑢 ∈ 𝐶𝑐
∞(Ω′), 

𝑃𝐹𝑢(𝑥) = ∬𝑒2𝜋𝑖(𝐹(𝑥)−𝑧)⋅𝜉𝑝(𝐹(𝑥), 𝜉)𝑢 ∘ 𝐹−1(𝑧)𝑑𝑧𝑑𝜉 
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=∬𝑒2𝜋𝑖(𝐹(𝑥)−𝐹(𝑦))⋅𝜉𝑝(𝐹(𝑥), 𝜉)𝑢(𝑦)|det 𝐽𝐹(𝑦)|𝑑𝑦𝑑𝜉 

= 𝑄𝑢(𝑥) + 𝑅𝑢(𝑥) 

where 

𝑄𝑢(𝑥) = ∬𝑒2𝜋𝑖𝜇(𝑥,𝑦)(𝑥−𝑦)⋅𝜉𝑝(𝐹(𝑥), 𝜉)𝑢(𝑦)|det 𝐽𝐹(𝑦)|𝜙(𝑥, 𝑦)𝑑𝑦𝑑𝜉, 

𝑅𝑢(𝑥) = ∬𝑒2𝜋𝑖(𝐹(𝑥)−𝐹(𝑦))⋅𝜉𝑝(𝐹(𝑥), 𝜉)𝑢(𝑦)|det 𝐽𝐹(𝑦)|(1 − 𝜙(𝑥, 𝑦))𝑑𝑦𝑑𝜉. 

Let’s first take a look at the “error term” 𝑅. 

Claim: The distribution kernel of 𝑅 is given by 

𝐾𝑅 = (1 − 𝜙)𝐾𝑃
𝐹
. 

Proof: We have that for any 𝑢, 𝑣 ∈ 𝐶𝑐
∞(ℝ𝑛), 

〈𝑅𝑢, 𝑣〉 = ∫∬𝑒2𝜋𝑖(𝐹(𝑥)−𝐹(𝑦))⋅𝜉𝑝(𝐹(𝑥), 𝜉)𝑢(𝑦)|det 𝐽𝐹(𝑦)|(1 − 𝜙(𝑥, 𝑦))𝑑𝑦𝑑𝜉 𝑣(𝑥)𝑑𝑥 

=∬∫𝑒2𝜋𝑖(𝐹(𝑥)−𝐹(𝑦))⋅𝜉𝑝(𝐹(𝑥), 𝜉)|det 𝐽𝐹(𝑦)|𝑑𝜉 (1 − 𝜙(𝑥, 𝑦))𝑣(𝑥)𝑢(𝑦)𝑑𝑥𝑑𝑦 

where the interchanging of the integrals in the last step is justified because the integrand is 

absolutely convergent since 𝑚 < −𝑛. By similar logic, the expression for 〈𝑃𝐹𝑢, 𝑣〉 is exactly the 

same except that it doesn’t have the (1 − 𝜙(𝑥, 𝑦)) term inside of it. Thus, we get that 

〈𝑅𝑢, 𝑣〉 = 〈𝐾𝑃
𝐹
, (1 − 𝜙)[𝑣 ⊗ 𝑢]〉. 

From here the claim follows. 

// 

Back to proving the theorem. Because of the above claim we see that supp𝐾𝑅 is proper. 

Furthermore, since 𝐾𝑃
𝐹
 is smooth away from the diagonal ΔΩ′ and (1 − 𝜙) ≡ 0 in a 

neighborhood of this diagonal, we have that 𝐾𝑅 is also smooth everywhere. In particular we get 

that for any compact subset 𝐴 ⊆ Ω′ there exists a compact subset 𝐵 ⊆ Ω′ such that for any 𝑥 ∈

𝐴, the support of 𝐾(𝑥, ⋅ ) ∈ 𝐶𝑐
∞(Ω′) is contained in 𝐵. Thus for any 𝑢 ∈ 𝐶𝑐

∞(Ω′) we can do 

𝑅𝑢(𝑥) = ∫𝐾𝑅(𝑥, 𝑦)𝑢(𝑦)𝑑𝑦 = ∬𝑒2𝜋𝑖𝑦⋅𝜉𝐾𝑅(𝑥, 𝑦)𝑢̂(𝜉)𝑑𝜉𝑑𝑦 

= ∫𝑒2𝜋𝑖𝑥⋅𝜉 [𝑒−2𝜋𝑖𝑥⋅𝜉∫𝑒2𝜋𝑖𝑦⋅𝜉𝐾𝑅(𝑥, 𝑦)𝑑𝑦] 𝑢̂(𝜉)𝑑𝜉 = ∫𝑒2𝜋𝑖𝑥⋅𝜉𝑟(𝑥, 𝜉)𝑢̂(𝜉)𝑑𝜉, 

where 
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𝑟(𝑥, 𝜉) = 𝑒−2𝜋𝑖𝑥⋅𝜉∫𝑒2𝜋𝑖𝑦⋅𝜉𝐾𝑅(𝑥, 𝑦)𝑑𝑦. 

Using integration by parts (see the idea in the proof of Lemma 5.4) it’s not hard to see that 𝑟 ∈

𝑆−∞(Ω′). Since clearly 𝑅 = 𝑟(𝑥, 𝐷), this shows that 𝑅 ∈ Ψ−∞(Ω′). 

Thus, for the case 𝑚 < −𝑛 it suffices to show that 𝑄 ∈ Ψ𝑚(Ω′) and that it has the symbol stated 

in the theorem. As before, since 𝑚 < −𝑛, we have that the integrand in the integral defining 𝑄 is 

absolutely convergent. Hence we can interchange the order of integration, make the substitution 

𝜉 = 𝜇⊤,−1(𝑥, 𝑦)𝜂 (transpose and inverse of 𝜇), and then switch the order of integration back to 

get that 

𝑄𝑢(𝑥) = ∬𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜂𝑝(𝐹(𝑥), 𝜇⊤,−1(𝑥, 𝑦)𝜂)𝑢(𝑦)|det 𝐽𝐹(𝑦)|𝜙(𝑥, 𝑦)|det 𝜇
⊤,−1(𝑥, 𝑦)|𝑑𝑦𝑑𝜂 

=∬𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜂𝑎(𝑥, 𝜂, 𝑦)𝑢(𝑦)𝑑𝑦𝑑𝜂 

where 

𝑎(𝑥, 𝜂, 𝑦) = 𝑝(𝐹(𝑥), 𝜇⊤,−1(𝑥, 𝑦)𝜂)|det 𝐽𝐹(𝑦)|𝜙(𝑥, 𝑦)|det 𝜇
⊤,−1(𝑥, 𝑦)|. 

It’s not hard to see that 𝑎 ∈ 𝐴𝑚(Ω′) and so 𝑄 = 𝑃𝑎 with respect to Notation 2.25. By reasoning 

similar to what we did with 𝑅 above we have that the distribution kernel of 𝑄 is given by 𝐾𝑄 =

𝜙𝐾𝑃
𝐹
 and thus 𝑄 is also properly supported. Hence, by Theorem 5.7 we have that 𝑄 ∈ Ψ𝑚(Ω′) 

and 

𝜎𝑄(𝑥, 𝜂) = 𝑝(𝐹(𝑥), 𝜇
⊤,−1(𝑥, 𝑥)𝜂)|det 𝐽𝐹(𝑥)|𝜙(𝑥, 𝑥)|det 𝜇

⊤,−1(𝑥, 𝑥)|     (mod 𝑆𝑚−1(Ω′)) 

= 𝑝(𝐹(𝑥), 𝐽𝐹
⊤,−1(𝑥)𝜂)     (mod 𝑆𝑚−1(Ω′)). 

As discussed above, this proves the case 𝑚 < −𝑛. 

Now let’s look at the case 𝑚 ≥ −𝑛. Let 𝑀 > 0 be an integer such that 𝑚− 2𝑀 < −𝑛 (the 

reason for this condition will be clear soon). Consider the elliptic (properly supported) 

differential operator Δ𝑀 ∈ Ψ2𝑀(Ω) (Δ is the Laplacian). By the proof of Lemma 8.41 there exists 

a 𝜁 ∈ 𝐶∞(Ω × ℝ𝑛) such that 𝜁 is zero in a neighborhood of ΔΩ (this condition isn’t in the book) 

and for any compact subset 𝐴 ⊆ Ω there exist constants 𝑐, 𝐶 > 0 such that for 𝑥 ∈ 𝐴 

1.) 𝜁(𝑥, 𝜉) = 1 when |𝜉| ≥ 𝐶, 

2.) |𝜎Δ𝑀(𝑥, 𝜉)| ≥ 𝑐|𝜉|
𝑚 when 𝜁(𝑥, 𝜉) ≠ 0. 

By the proof of Theorem 8.42 in the book, there exists a (properly supported) parametrix 𝑆 ∈

Ψ−2𝑚(Ω) for Δ𝑀 such that 

𝜎𝑆(𝑥, 𝜉) = 𝜁(𝑥, 𝜉) 𝜎Δ𝑀(𝑥, 𝜉)⁄      (mod 𝑆𝑚−1(Ω)). 

where the fraction on the right-hand side is interpreted to be zero when 𝜁(𝑥, 𝜉) = 0. Now, since 

(𝑆Δ𝑀 − 𝐼) ∈ Ψ−∞(Ω) we have that 𝑃 = 𝑃𝑆Δ𝑀 − 𝑇 for some 𝑇 ∈ Ψ−∞(Ω). Since 𝑃𝑆 ∈
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Ψ𝑚−2𝑀(Ω), we can apply the already established cases of this theorem that we’re proving to 𝑃𝑆, 

Δ𝑀, and 𝑇 to get that (𝑃𝑆)𝐹 ∈ Ψ𝑚−2𝑀(Ω′), Δ𝑀 ∈ Ψ2𝑀(Ω′), and 𝑇𝐹 ∈ Ψ−∞(Ω′) with symbols 

𝜎(𝑃𝑆)𝐹(𝑥, 𝜉)

= 𝑝(𝐹(𝑥), 𝐽𝐹
⊤,−1(𝑥)𝜉) 𝜁(𝐹(𝑥), 𝐽𝐹

⊤,−1(𝑥)𝜉) 𝜎Δ𝑀(𝐹(𝑥), 𝐽𝐹
⊤,−1(𝑥)𝜉)⁄      (mod 𝑆𝑚−2𝑀−1(Ω′)), 

𝜎
(Δ𝑀)

𝐹(𝑥, 𝜉) = 𝜎Δ𝑀(𝐹(𝑥), 𝐽𝐹
⊤,−1(𝑥)𝜉)     (mod 𝑆2𝑀−1(Ω′)). 

Since 𝑃𝐹 = (𝑃𝑆)𝐹(Δ𝑀)𝐹 − 𝑇𝐹, by Corollary 8.38 in the book we get that 

𝜎𝑃𝐹(𝑥, 𝜉) = 𝑝(𝐹(𝑥), 𝐽𝐹
⊤,−1(𝑥)𝜉)𝜁(𝐹(𝑥), 𝐽𝐹

⊤,−1(𝑥)𝜉)     (mod 𝑆𝑚−1(Ω′)) 

= 𝑝(𝐹(𝑥), 𝐽𝐹
⊤,−1(𝑥)𝜉)     (mod 𝑆𝑚−1(Ω′)). 

This proves the theorem. 

∎ 

 


