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Chapter 5 

Net Completeness Equivalent to Sequence Completeness in First Countable Topological 

Vector Space (Page 167 or Problem 5.44) (9/25/2020) 

The precise statement of the result that I want to discuss is: 

Theorem: Suppose that 𝒳 is a first countable topological vector space. Then every Cauchy net 

being convergent in 𝒳 is equivalent to every Cauchy sequence being convergent. 

Proof: If every Cauchy net is convergent in 𝒳, then obviously all Cauchy sequences converge in 

it since Cauchy sequences are Cauchy nets. So let’s prove the other direction. Suppose that all 

Cauchy sequences converge in 𝒳. Take any net 〈𝑥𝜆〉𝜆∈Λ in 𝒳 that’s Cauchy. We want to show 

that it converges to something. Let 𝑈1 ⊇ 𝑈2 ⊇ 𝑈3 ⊇ ⋯ be a nested neighborhood basis of 0. 

Let’s construct the sequence {𝑥𝛾𝑘
}

𝑘=1

∞
 inductively as follows. First, let 𝛼1, 𝛽1 ∈ Λ be such that for 

any (𝛼, 𝛽) ≳ (𝛼1, 𝛽1) (i.e. both 𝛼 ≳ 𝛼1 and 𝛽 ≳ 𝛽1), (𝑥𝛼 − 𝑥𝛽) ∈ 𝑈1. Let 𝛾1 ∈ Λ be such that 

𝛾1 ≳ 𝛼1, 𝛽1. Now, suppose that 𝛾𝑘 is defined for 𝑘 ∈ {1, … , 𝑛 − 1}. Define 𝛾𝑛 as follows. As 

before, let 𝛼𝑛, 𝛽𝑛 ∈ Λ be such that for any (𝛼, 𝛽) ≳ (𝛼𝑛, 𝛽𝑛), (𝑥𝛼 − 𝑥𝛽) ∈ 𝑈1. Then let 𝛾𝑛 ∈ Λ 

be such that 𝛾𝑛 ≳ 𝛾𝑛−1, 𝛼𝑛, 𝛽𝑛. Great! Now that we have this sequence {𝑥𝛾𝑘
}

𝑘=1

∞
, first notice that 

by construction 𝛾1 ≲ 𝛾2 ≲ 𝛾3 ≲ ⋯. Notice also that for any integer 𝑁 > 0 and integers 𝑚, 𝑛 ≥

𝑁, (𝑥𝛾𝑚
− 𝑥𝛾𝑛

) ∈ 𝑈𝑁 since both 𝛾𝑚, 𝛾𝑛 ≳ 𝛾𝑁 and 𝛾𝑁 ≳ 𝛼𝑁 , 𝛽𝑁. So the sequence {𝑥𝛾𝑘
}

𝑘=1

∞
 is 

Cauchy and hence convergent to some point 𝑥 ∈ 𝒳 in 𝒳 by assumption. Now, let’s prove that 

the original net  〈𝑥𝜆〉𝜆∈Λ also converges to 𝑥. 
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Consider the continuous function 𝑓 ∶ 𝒳 × 𝒳 → 𝒳 given by 𝑓(𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧. Take any open 

neighborhood 𝑈 of 𝑥. Since 𝑓(0,0) = 𝑥 and 𝑓 is continuous, there exists an integer 𝑘0 > 0 such 

that 𝑓[𝑈𝑘0
× 𝑈𝑘0

] ⊆ 𝑈. Now, there exists an integer 𝑘1 > 0 such that for any 𝑘 ≥ 𝑘1, 

(𝑥𝛾𝑘
− 𝑥) ∈ 𝑈𝑘0

. Let 𝑘2 = max{𝑘0, 𝑘1}. For any 𝜆 ≳ 𝛾𝑘2
, consider the expression: 

𝑥𝜆 = 𝑥 + (𝑥𝛾𝑘2
− 𝑥) + (𝑥𝜆 − 𝑥𝛾𝑘2

). 

Since 𝑘2 ≥ 𝑘1, the second term on the right-hand side is in 𝑈𝑘0
: (𝑥𝛾𝑘2

− 𝑥) ∈ 𝑈𝑘0
. And since 

both 𝜆, 𝛾𝑘2
≳ 𝛾𝑘0

, we have that the third term on the right-hand side is also in 𝑈𝑘0
: (𝑥𝜆 − 𝑥𝛾𝑘2

) ∈

𝑈𝑘0
. Thus we have that: 

𝑥𝜆 ∈ 𝑥 + 𝑈𝑘0
+ 𝑈𝑘0

⊆ 𝑈, 

and so indeed we get that 〈𝑥𝜆〉𝜆∈Λ → 𝑥. This proves what we wanted. 

∎ 

Separately Continuous Bilinear Maps Between Banach Spaces are Continuous (Problem 

5.39) (11/2/2020) 

Theorem: Suppose that 𝒳, 𝒴, 𝒵 are Banach spaces and that 𝐹 ∶ 𝒳 × 𝒴 → 𝒵 is a separately 

continuous bilinear map. Then 𝐹 is continuous. 

Proof: I claim that if we prove that there exists a 𝐶 > 0 such that 

‖𝐹(𝑥, 𝑦)‖ ≤ 𝐶‖𝑥‖‖𝑦‖               ∀𝑥 ∈ 𝒳     ∀𝑦 ∈ 𝒴,                   

then this will suffice. To see why, take any (𝑥0, 𝑦0) ∈ 𝒳 × 𝒴 and any 𝜀 > 0 ∶ 𝜀 < 1. Let 

𝛿 =
𝜀 (2𝐶)⁄

1 + max{‖𝑥0‖, ‖𝑦0‖}
. 

Then we have that: 

𝐹[𝐵𝛿(𝑥0) × 𝐵𝛿(𝑦0)] ⊆ 𝐵𝜀(𝐹(𝑥0, 𝑦0)) 

since for any 𝑥 ∈ 𝐵𝛿(𝑥0) and any 𝑦 ∈ 𝐵𝛿(𝑦0), 

‖𝐹(𝑥, 𝑦) − 𝐹(𝑥0, 𝑦0)‖ = ‖𝐹(𝑥, 𝑦) − 𝐹(𝑥0, 𝑦) + 𝐹(𝑥0, 𝑦) − 𝐹(𝑥0, 𝑦0)‖ 

= ‖𝐹(𝑥 − 𝑥0, 𝑦) + 𝐹(𝑥0, 𝑦 − 𝑦0)‖ ≤ 𝐶‖𝑥 − 𝑥0‖‖𝑦‖ + 𝐶‖𝑥0‖‖𝑦 − 𝑦0‖ 

< 𝐶𝛿(‖𝑦0‖ + 1) + 𝐶‖𝑥0‖𝛿 ≤
𝜀

2
+

𝜀

2
= 𝜀. 

So let’s prove the first inequality above. Since 𝑦 ↦ 𝐹(𝑥, 𝑦) is linear and continuous for all 𝑥 ∈

𝒳, we have that for any 𝑥 ∈ 𝒳 there exists a constant 𝐶𝑥 > 0 such that: 

‖𝐹(𝑥, 𝑦)‖ ≤ 𝐶𝑥‖𝑦‖               ∀𝑦 ∈ 𝒴.                                         
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This means that 

sup
𝑦∈𝒴∶‖𝑦‖=1

‖𝐹(𝑥, 𝑦)‖ < ∞               ∀𝑥 ∈ 𝒳.                                    

The uniform boundedness principle then says that 

sup
𝑦∈𝒴∶‖𝑦‖=1

‖𝐹(  ⋅  , 𝑦)‖ = sup
𝑦∈𝒴∶‖𝑦‖=1

sup
𝑥∈𝒳∶‖𝑥‖=1

‖𝐹(𝑥, 𝑦)‖ < 𝐶 < ∞ 

for some 𝐶 > 0. For any 𝑥 ∈ 𝒳 ∶ 𝑥 ≠ 0 and any 𝑦 ∈ 𝒴 ∶ 𝑦 ≠ 0 we then have that 

‖𝐹(𝑥, 𝑦)‖ = ‖𝐹 (
𝑥

‖𝑥‖
,

𝑦

‖𝑦‖
)‖ ‖𝑥‖‖𝑦‖ ≤ 𝐶‖𝑥‖‖𝑦‖. 

which is the inequality that we wanted in the beginning of the proof. If one of 𝑥 = 0 or 𝑦 = 0 

then that inequality obviously holds as well. With this the theorem is proved. 

∎ 

Equivalent Condition for Bilinear Maps between Fréchet Spaces to be Continuous (Page 

166) (11/3/2020) 

Theorem: Suppose that 𝒳, 𝒴, and 𝒵 are Fréchet space generated by the countable family of 

seminorms {𝑝𝑘}𝑘=1
∞ , {𝑞𝑘}𝑘=1

∞ , and {𝑟𝑘}𝑘=1
∞  respectively. Then a bilinear map 𝑇 ∶ 𝒳 × 𝒴 → 𝒵 is 

continuous if and only if for any 𝑘0 ∈ ℤ+ there exists a 𝐶 > 0 and finite subsets 𝐽1, 𝐽2 ⊆ ℤ+ such 

that 

𝑟𝑘0
(𝑇(𝑥, 𝑦)) ≤ 𝐶 ( ∑ 𝑝𝑘(𝑥)

𝑘∈𝐽1

) (∑ 𝑞𝑠(𝑦)

𝑠∈𝐽2

) 

for all 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴. 

Proof: This is proved exactly the same way the analog theorem is proved for linear maps of the 

form 𝑇 ∶ 𝒳 → 𝒴. First let’s prove the backwards implication. Take any point (𝑥0, 𝑦0) and let 

〈(𝑥𝜆, 𝑦𝜆)〉𝜆∈Λ be a net that converges to (𝑥0, 𝑦0) in 𝒳 × 𝒴. Take any 𝑘0 ∈ ℤ+. Let 𝐶 > 0 and 

𝐽1, 𝐽2 ⊆ ℤ+ be as in the statement of the theorem. Then 

𝑟𝑘0
(𝑇(𝑥𝜆, 𝑦𝜆) − 𝑇(𝑥0, 𝑦0)) = 𝑟𝑘0

(𝑇(𝑥𝜆 − 𝑥0, 𝑦𝜆) + 𝑇(𝑥0, 𝑦𝜆 − 𝑦0)) 

≤ 𝐶 ( ∑ 𝑝𝑘(𝑥𝜆 − 𝑥0)

𝑘∈𝐽1

) (∑ 𝑞𝑠(𝑦𝜆)

𝑠∈𝐽2

) + 𝐶 ( ∑ 𝑝𝑘(𝑥0)

𝑘∈𝐽1

) (∑ 𝑞𝑠(𝑦𝜆 − 𝑦0)

𝑠∈𝐽2

) 

≤ 𝐶 [( ∑ 𝑝𝑘(𝑥𝜆 − 𝑥0)

𝑘∈𝐽1

) (∑[𝑞𝑠(𝑦𝜆 − 𝑦0) + 𝑞𝑠(𝑦0)]

𝑠∈𝐽2

) + ( ∑ 𝑝𝑘(𝑥0)

𝑘∈𝐽1

) (∑ 𝑞𝑠(𝑦𝜆 − 𝑦0)

𝑠∈𝐽2

)], 

which goes to zero. Hence 𝑇(𝑥𝜆, 𝑦𝜆) → 𝑇(𝑥0, 𝑦0) and thus 𝑇 is indeed continuous. 
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Now let’s prove the forward direction. Take any 𝑘0 ∈ ℤ+. Since 𝑇 is continuous at zero, we have 

that there exist basis neighborhoods of zero in 𝒳 and 𝒴: 

𝐴 = {𝑥 ∈ 𝒳 ∶ 𝑝𝑘(𝑥) < 𝛿𝑘   ∀𝑘 ∈ 𝐽1}          where 𝐽1 is a finite subset of ℤ+, 

𝐵 = {𝑦 ∈ 𝒳 ∶ 𝑞𝑠(𝑦) < 𝜀𝑠   ∀𝑠 ∈ 𝐽2}          where 𝐽2 is a finite subset of ℤ+, 

such that 𝑇[𝐴 × 𝐵] is contained in the following open neighborhood of zero in 𝒵: 

{𝑧 ∈ 𝒵 ∶ 𝑟𝑘0
(𝑧) < 1}. 

Letting 𝛿 = min{𝛿𝑘 ∶ 𝑘 ∈ 𝐽1} and 𝜀 = min{𝜀𝑠 ∶ 𝑠 ∈ 𝐽2}, we have that the above implies that: 

𝑥 ∈ 𝒳 ∶ ∑ 𝑝𝑘(𝑥)

𝑘∈𝐽1

< 𝛿

𝑦 ∈ 𝒴 ∶ ∑ 𝑞𝑠(𝑦)

𝑠∈𝐽2

< 𝜀
     ⟹      𝑟𝑘0

(𝑇(𝑥, 𝑦)) < 1 

Let 𝑝 ∶ 𝒳 → [0, ∞) and 𝑞 ∶ 𝒴 → [0, ∞) be the functions: 

𝑝(𝑥) = ∑ 𝑝𝑘(𝑥)

𝑘∈𝐽1

, 

𝑞(𝑦) = ∑ 𝑞𝑠(𝑦)

𝑠∈𝐽2

, 

which are clearly seminorms as well. Now, take any (𝑥, 𝑦) ∈ 𝒳 × 𝒴. There are three cases that 

could happen: 

Case 𝑝(𝑥) = 0 or 𝑝(𝑦) = 0: First let’s suppose that 𝑝(𝑥) = 0. Let 𝑏 > 0 be such that 𝑞(𝑏𝑦) <

𝜀. Then for any 𝑡 > 0 we have that 

𝑟𝑘0
(𝑇(𝑡𝑥, 𝑏𝑦)) < 1 

which can be rewritten as: 

𝑟𝑘0
(𝑇(𝑥, 𝑦)) <

1

𝑡𝑏
. 

Letting 𝑡 → ∞ then shows that 𝑟𝑘0
(𝑇(𝑥, 𝑦)) = 0. If 𝑝(𝑥) ≠ 0 and 𝑝(𝑦) = 0 instead, then 

mathematics similar to the above shows that 𝑟𝑘0
(𝑇(𝑥, 𝑦)) = 0 in this case as well. 

Case 𝑝(𝑥) ≠ 0 and 𝑝(𝑦) ≠ 0: Then we have that: 

𝑟𝑘0
(𝑇(𝑥, 𝑦)) =

𝑝(𝑥)

𝛿 2⁄
⋅

𝑞(𝑦)

𝜀 2⁄
𝑟𝑘0

(𝑇 (
𝛿 2⁄

𝑝(𝑥)
𝑥,

𝜀 2⁄

𝑞(𝑦)
𝑦)) <

𝑝(𝑥)

𝛿 2⁄
⋅

𝑞(𝑦)

𝜀 2⁄
⋅ 1 



Haim Grebnev Last saved: September 4, 2022 

5 

 

=
4

𝛿𝜀
( ∑ 𝑝𝑘(𝑥)

𝑘∈𝐽1

) (∑ 𝑞𝑠(𝑦)

𝑠∈𝐽2

). 

So on both cases we get that if we set 𝐶 = 4 (𝛿𝜀)⁄  in the statement of the theorem, then we have 

that 

𝑟𝑘0
(𝑇(𝑥, 𝑦)) ≤ 𝐶 ( ∑ 𝑝𝑘(𝑥)

𝑘∈𝐽1

) (∑ 𝑞𝑠(𝑦)

𝑠∈𝐽2

). 

Since this holds for all 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, this proves the theorem. 

∎ 


