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Notations and Conventions 

Notation: For any integer 𝑛 ≥ 1, ℍ𝑛 denotes the upper-half space of ℝ𝑛: 

ℍ𝑛 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑛 ≥ 0} 

Notation: The notation ℝ+ denotes the set of positive real numbers: 

ℝ+ = {𝑥 ∈ ℝ ∶ 𝑥 > 0}. 

Notation: The notation ℤ+ denotes the set of positive integers: 

ℤ+ = {1,2,3, … }. 

Convention: A neighborhood in a topology always mean an open neighborhood. 

Convention: All appropriate structures are smooth (𝐶∞) unless stated otherwise. I’ll often still 

include the word smooth for emphasis. 

Definition: A regular domain is a smooth properly embedded submanifold with boundary of 

codimension zero. 

Convention: I use the Einstein summation convention extensively here. 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary. We let ∇ denote the total covariant derivative. Furthermore, in local 

coordinates we put indices arising from covariant differentiation after a semicolon. For instance, 
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if 𝐹 is a smooth covariant tensor field over 𝑀 of rank 2, then in any local coordinates (𝑥𝑖) we 

write 

∇𝐹 = 𝐹𝑖𝑗;𝑘𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 ⊗ 𝑑𝑥𝑘 

where each 

𝐹𝑖𝑗;𝑘 = 𝜕𝑘(𝐹𝑖𝑗) − Γ𝑘𝑖
𝜆 𝐹𝜆𝑗 − Γ𝑘𝑗

𝜆 𝐹𝑖𝜆. 

Indices of multiple covariant derivatives (e.g. ∇3) are written from left to right after the 

semicolon (as one would naturally expect) 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary. Our convention is that the (1,3)-curvature tensor field 𝑅 is defined as 

following: for any smooth vector fields 𝑋, 𝑌, 𝑍 and smooth covector field 𝜔 over 𝑀, 

𝑅(𝑋, 𝑌, 𝑍, 𝜔) = 𝜔(∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌]𝑍). 

where [𝑋, 𝑌] denote the Lie bracket of 𝑋 and 𝑌. We write the components of 𝑅 as 𝑅𝑖𝑗𝑘
𝑙. 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary. Our convention is that the Riemann curvature tensor field 𝑅𝑚 is 

defined as the tensor obtained by lowering the last index of the (1,3)-curvature tensor. We write 

the components of 𝑅 as 𝑅𝑖𝑗𝑘𝑙 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary. Our convention is that the Ricci curvature tensor field 𝑅𝑐 is defined as 

the tensor obtained by taking the trace of first and last index of the (1,3)-curvature tensor. We 

write the components of 𝑅𝑐 as 𝑅𝑖𝑗. 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary. Our convention is that the scalar curvature 𝑆 is defined as the quantity 

obtained by taking the trace of first and second index of the Ricci curvature tensor. 

Notation: Suppose that 𝑀 is a smooth manifold possibly with boundary and that ℎ and 𝑘 are 

smooth covariant symmetric tensor fields over 𝑀 of rank 2. Then the Kulkarni-Nomizu 

product of ℎ and 𝑘 is the covariant tensor field of rank 4 given by the following: for any smooth 

vector fields 𝑊, 𝑋, 𝑌, 𝑍 over 𝑀, 

ℎ
KN
∧ 𝑘 = ℎ(𝑊, 𝑍)𝑘(𝑋, 𝑌) + ℎ(𝑋, 𝑌)𝑘(𝑊, 𝑍) − ℎ(𝑊, 𝑌)𝑘(𝑋, 𝑍) − ℎ(𝑋, 𝑍)𝑘(𝑊, 𝑌). 

The component version of this equation is of course given by: 

(ℎ
KN
∧ 𝑘)

𝑖𝑗𝑙𝑚
= ℎ𝑖𝑚𝑘𝑗𝑙 + ℎ𝑗𝑙𝑘𝑖𝑚 − ℎ𝑖𝑙𝑘𝑗𝑚 − ℎ𝑗𝑚𝑘𝑖𝑙 . 

First allow me to point out that the Kulkarni-Nomizu product satisfies the same exact 

symmetry/anti-symmetry properties of the Riemann curvature tensor in its indices. Secondly, the 
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above is merely a special case of the more general and analogous definition of the Kulkarni-

Nomizu product of symmetric covariant 2-tensors over any vector space. Lastly, I would use the 

more conventional symbol for the Kulkarni-Nomizu product, which is the wedge inside a circle. 

However, since I don’t know how to insert that symbol into Microsoft Word, unless this 

document has been converted to LaTeX, I will use the above symbol instead. 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary of dimension 𝑛 ≥ 3. Our convention is that the Schouten tensor of 𝒈 is 

the tensor given by 

𝑃 =
1

𝑛 − 2
(𝑅𝑐 −

𝑆

2(𝑛 − 1)
𝑔). 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary of dimension 𝑛 ≥ 3. Our convention is that the Weyl tensor of 𝒈 is the 

tensor given by 

𝑊 = 𝑅𝑚 − 𝑃
KN
∧ 𝑔 

where 
KN
∧  is the Kulkarni-Nomizu product. 

Notation: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary and that 𝐹 is a smooth covariant 2-tensor field over 𝑀. The exterior 

derivative of 𝐹 is defined as the covariant 3-tensor field given by: for any smooth vector fields 

𝑋, 𝑌, 𝑍 over 𝑀, 

(𝐷𝐹)(𝑋, 𝑌, 𝑍) = −(∇𝐹)(𝑋, 𝑌, 𝑍) + (∇𝐹)(𝑋, 𝑍, 𝑌) 

where ∇ denotes the total covariant derivative of course. In coordinates this equation becomes 

(𝐷𝐹)𝑖𝑗𝑘 = −𝐹𝑖𝑗;𝑘 + 𝐹𝑖𝑘;𝑗. 

Convention: Suppose that (𝑀, 𝑔) is a Riemannian manifold or pseudo-Riemannian manifold 

possibly with boundary of dimension 𝑛 ≥ 3. Our convention is that the Cotton tensor is the 

tensor given by 

𝐶 = −𝐷𝑃 

where 𝐷 denotes the exterior derivative of course. In coordinates this equation becomes 

𝐶𝑖𝑗𝑘 = 𝑃𝑖𝑗;𝑘 − 𝑃𝑖𝑘;𝑗. 

 

Chapter 6 

Boundary Normal Coordinates (Example 6.44 [Page 183]) 

Here I work out the details of the construction of boundary normal coordinates (boundary 

coordinates that are also semi-geodesic coordinates). Recall that all structures here are 
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considered smooth unless stated otherwise. First let’s prove a fact about extending Riemannian 

metrics. 

Lemma 1: Suppose that 𝑔 is a Riemannian metric on an open subset 𝑈 of ℍ𝑛. Then there exists 

a neighborhood 𝑉 of 𝑈 open in ℝ𝑛 and a Riemannian metric 𝑔̃ on 𝑉 such that 𝑔̃ extends 𝑔 (i.e. 

the inclusion 𝑖 ∶ 𝑈 → 𝑉 is an isometry). 

Proof: Intuitively speaking, as a first step let’s locally extend 𝑔 to a neighborhood of any point 

𝑝 ∈ 𝑈 that’s open ℝ𝑛. Precisely, take any point 𝑝 ∈ 𝑈 and let’s define a Riemannian metric 𝑔̃𝑝 

on a neighborhood 𝑊𝑝 of 𝑝 that’s open in ℝ𝑛 as follows: 

Case 𝑝 ∈ 𝑈int in ℝ𝑛’s topology: In this case let 𝑊𝑝 ⊆ 𝑈int be a neighborhood of 𝑝 and set 𝑔̃𝑝 =

𝑔 on 𝑊𝑝. 

// 

Case 𝑝 ∈ 𝜕𝑈 in ℝ𝑛’s topology: Let’s first write 𝑔 in its Euclidean components: 

𝑔 = 𝑔𝑖𝑗 𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 . 

Now, take any index (𝑖, 𝑗) such that 𝑖 ≤ 𝑗. Since the component 𝑔𝑖𝑗 is smooth, there exists a 

smooth function 𝑔̃𝑖𝑗 ∶ 𝑊𝑖𝑗 → ℝ on a neighborhood 𝑊𝑖𝑗 of 𝑝 open in ℝ𝑛 that agrees with 𝑔𝑖𝑗 on 

𝑊𝑖𝑗 ∩ 𝑈. Find such a 𝑔̃𝑖𝑗 for all indices (𝑖, 𝑗) such that 𝑖 ≤ 𝑗. For the other indices (𝑖, 𝑗) where 

𝑖 > 𝑗, simply set 𝑔𝑖𝑗 ∶ 𝑊𝑖𝑗 → ℝ to be equal to 𝑔𝑗𝑖 ∶ 𝑊𝑗𝑖 → ℝ. Then, if we define 

𝑊 = ⋂ 𝑊𝑖𝑗

𝑖,𝑗≤𝑛

 

we get a smooth covariant symmetric 2-tensor field ℎ on 𝑊 given by: 

ℎ = 𝑔̃𝑖𝑗 𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗  

that agrees with 𝑔 on 𝑊 ∩ 𝑈. Now, ℎ is positive definite at 𝑝 since it’s equal to 𝑔 at that point. 

So by Sylvester’s criterion and the continuity of the determinants of the principal minors of the 

matrix [𝑔̃𝑖𝑗] we see that we can furthermore shrink 𝑊 so that ℎ is positive definite on 𝑊. After 

shrinking 𝑊 in this manner, set 𝑊𝑝 = 𝑊 and 𝑔̃𝑝 = ℎ. 

// 

Great! Notice that in both cases 𝑔̃𝑝 are local extensions of 𝑔 in the sense that the inclusion map 

𝑖 ∶ 𝑊𝑝 ∩ 𝑈 → 𝑊𝑝 is an isometry. Now let’s use these local extensions to construct the 𝑉 and 𝑔̃ 

desired in the lemma. Let 𝑉 ⊆ ℝ𝑛 be the following open neighborhood of 𝑈 in ℝ𝑛: 

𝑉 = ⋃ 𝑊𝑝

𝑝∈𝑈

. 
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Let {𝜓𝑝 ∶ 𝑉 → ℝ}
𝑝∈𝑈

 be a smooth partition of unity over 𝑉 subordinate to the open cover 

{𝑊𝑝 ∶ 𝑝 ∈ 𝑈}. Set 𝑔̃ to be the following Riemannian metric over 𝑉: 

𝑔̃ = ∑ 𝜓𝑝 ⋅ 𝑔̃𝑝

𝑝∈𝑈

. 

This is of course well defined since the 𝜓𝑝’s are locally finite. And since each 𝑔̃𝑝 locally extends 

𝑔 and the 𝜓𝑝’s add up to one, we get that 𝑔̃ extends 𝑔 in the sense described in the lemma. Thus 

this is the 𝑉 and 𝑔̃ that we wanted. 

∎ 

Now let’s prove a version of the above lemma on manifolds. 

Lemma 2: Suppose that 𝑀̃ is a smooth manifold (without boundary) and that 𝑀 ⊆ 𝑀̃ is a 

regular domain in 𝑀̃. Suppose also that 𝑀 is endowed with a Riemannian metric 𝑔. Then there 

exists a Riemannian metric 𝑔̃ on 𝑀̃ that extends 𝑔 (i.e. the inclusion 𝑖 ∶ 𝑀 → 𝑀̃ is an isometry). 

Proof: This is proved similarly to the previous lemma. Pick any point 𝑝 ∈ 𝑀̃. There are two 

cases that can happen here: 𝑝 ∈ 𝑀 or 𝑝 ∈ 𝑀𝑐. Suppose that the first case happens: 𝑝 ∈ 𝑀. Then 

since 𝑀 is an embedded submanifold with boundary in 𝑀̃, there exists a chart (𝑊𝑝, 𝜑𝑝) of 𝑀̃ 

such that either 𝜑𝑝 is an interior chart of 𝑀 as well or 𝑊𝑝 ∩ 𝑀 is the half-slice 𝑥𝑛 ≥ 0 where 

(𝑥𝑖) are the components of 𝜑𝑝. Construct a Riemannian metric 𝑔̃𝑝 over 𝑊𝑝 as follows: 

Case 𝜑𝑝 is an interior chart of 𝑀: Simply set 𝑔̃𝑝 = 𝑔 over 𝑊𝑝. 

// 

Case 𝑊𝑝 ∩ 𝑀 is the half-slice 𝑥𝑛 ≥ 0: Let 𝒰̂𝑝 = range 𝜑𝑝. Then we have that the restriction 

𝜑̃𝑝 ∶ 𝑊𝑝 ∩ 𝑀 → 𝒰̂𝑝 ∩ ℍ𝑛 is a smooth chart of 𝑀. Since 𝑔 is smooth over 𝑀, we have that 𝑔̂ =

𝜑̃𝑝
−1∗

𝑔 is smooth over 𝒰̂𝑝 ∩ ℍ𝑛. By the previous lemma we know that there exists a smooth 

extension 𝑔̂𝐸 of 𝑔̂ onto a neighborhood 𝒱̂ ⊆ 𝒰̂𝑝 of 𝒰̂𝑝 ∩ ℍ𝑛 open in ℝ𝑛 (the condition 𝒱̂ ⊆ 𝑈̂𝑝 

is a trivial modification to the previous lemma). Redefine 𝑊𝑝 to instead be 𝜑−1[𝒱̂] and set 𝑔̃𝑝 =

𝜑∗𝑔̂𝐸 on 𝑊𝑝. 

// 

Notice that in both cases 𝑔̃𝑝 are local extensions of 𝑔 in the sense that the inclusion map 𝑖 ∶ 𝑊𝑝 ∩

𝑀 → 𝑊𝑝 is an isometry. 

Now suppose that the other case happens: 𝑝 ∈ 𝑀𝑐. Since 𝑀 is closed in 𝑀̃ (since it’s properly 

embedded) there exists a neighborhood 𝑊𝑝 of 𝑝 open in 𝑀̃ that is disjoint from 𝑀. Let 𝑊𝑝 be any 

such neighborhood and let 𝑔̃𝑝 be any Riemannian metric over 𝑊𝑝. 
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Great! Let {𝜓𝑝 ∶ 𝑀̃ → ℝ}
𝑝∈𝑀̃

 be a smooth partition of unity over 𝑀̃ subordinate to the open 

cover {𝑊𝑝 ∶ 𝑝 ∈ 𝑀̃} of 𝑀̃. Finally, let 𝑔̃ denote the following Riemannian metric over 𝑀̃: 

𝑔̃ = ∑ 𝜓𝑝 ⋅ 𝑔̃𝑝

𝑝∈𝑀̃

. 

Notice that by construction, for any 𝑞 ∈ 𝑀 and any 𝑝 ∈ 𝑀𝑐, 𝜓𝑝 ⋅ 𝑔̃𝑝 is equal to zero at 𝑞 since 

supp 𝜓𝑝 ⊆ 𝑊𝑝 is disjoint from 𝑀. This combined with the facts that the 𝑔̃𝑝 for 𝑝 ∈ 𝑀 locally 

extend 𝑔 and that the 𝜓𝑝’s add up to one shows that 𝑔̃ extends 𝑔 in the sense described in the 

lemma. Thus this is the 𝑔̃ that we wanted. 

∎ 

Now let’s discuss the main topic of this section: the construction of boundary local coordinates. 

Suppose that (𝑀, 𝑔) is a Riemannian manifold and take any point 𝑝 ∈ 𝜕𝑀 where we want to 

construct boundary normal coordinates for 𝑀. Let 𝑁 denote the double of 𝑀 constructed in such 

a way that 𝑀 ⊆ 𝑁 is a regular domain in 𝑁. By the previous lemma we know that there exists a 

Riemannian metric 𝑔̃ on 𝑁 that extends 𝑔 in the sense that the inclusion 𝑀 ↪ 𝑁 is an isometry. 

Let 𝐸 ∶ 𝑋 ⊆ ℰ𝜕𝑀 → 𝑈 denote the normal exponential map of 𝜕𝑀 in 𝑁 that maps 

diffeomorphically onto a normal neighborhood 𝑈. Let 𝑉 ∶ 𝑊 ⊆ 𝜕𝑀 → 𝑇𝑁 be a smooth vector 

field over a neighborhood 𝑊 ⊆ 𝜕𝑀 of 𝑝 in 𝜕𝑀 such that 𝑉 is unit-length, normal to 𝜕𝑀, and 

points inside 𝑀. By shrinking if necessary, let’s furthermore assume that 𝑊 is the domain of a 

smooth chart (𝑊, 𝜓) of 𝜕𝑀. Then, 𝐸, 𝑉, and 𝜓 together generate a Fermi chart (𝒪, 𝜙) of 𝑁 

given by the equation: 

𝜙−1(𝑥1, … , 𝑥𝑛−1, 𝑥𝑛) = 𝐸 (𝑥𝑛𝑉𝜓−1(𝑥1,…,𝑥𝑛−1)). 

Great! With (𝒪, 𝜙) in hand we are ready to construct the boundary normal coordinates for 𝑀 in a 

neighborhood of 𝑝. First let’s observe one thing. Let 𝒰̂ ⊆ ℝ𝑛 denote the range of 𝜙. Then: 

Claim: 𝜙 maps 𝒪 ∩ 𝑀 to 𝒰̂ ∩ {𝑥𝑛 ≥ 0} and 𝒪 ∩ 𝑀𝑐 to 𝒰̂ ∩ {𝑥𝑛 < 0}. 

Proof of Claim: Fix any point of the form (𝑥1, … , 𝑥𝑛−1, 0) ∈ 𝒰̂. Recall that by definition, the 

intersection of normal neighborhoods of embedded submanifolds with fibers of the normal 

bundle is starshaped with respect to zero. In this case this implies that the set of 𝑡 ∈ ℝ such that 

(𝑥1, … , 𝑥𝑛−1, 𝑡) ∈ 𝒰̂ is some interval (𝑎, 𝑏) that contains zero. Consider then the smooth curve 

𝛾 ∶ (𝑎, 𝑏) → 𝑁 given by 𝑡 ↦ 𝜙−1(𝑥1, … , 𝑥𝑛−1, 𝑡). The claim will be proven if we show that 

𝛾(𝑡) ∈ 𝑀 for 𝑡 ≥ 0 and 𝛾(𝑡) ∈ 𝑀𝑐 if 𝑡 < 0. Let’s first prove that 𝛾(𝑡) ∈ 𝑀 for 𝑡 ≥ 0. By 

definition of the normal exponential map, we have that 𝛾(0) ∈ 𝜕𝑀 ⊆ 𝑀. Furthermore, by the 

injectivity of the exponential map we have that 𝛾(𝑡) ∉ 𝜕𝑀 for 𝑡 > 0. So for 𝑡 > 0, or in other 

words 𝑡 ∈ (0, 𝑏), 𝛾(𝑡) lies in the two disjoint open set 𝑀int and 𝑀𝑐 in 𝑁. By the connectedness 

of the interval (0, 𝑏) we then must have that 𝛾(𝑡) lies exclusively in either 𝑀int or 𝑀𝑐 on this 

interval. But notice that since 
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𝛾′(0) = 𝑉𝜙−1(𝑥1,…,𝑥𝑛−1,0) 

and by construction this vector points inside 𝑀, we see that 𝛾(𝑡) is guaranteed to lie in 𝑀 on a 

sufficiently small interval of the form [0, 𝜀) where 𝜀 > 0. So we must indeed have that 𝛾(𝑡) ∈ 𝑀 

for all 𝑡 ≥ 0. 

The fact that 𝛾(𝑡) ∈ 𝑀𝑐 for 𝑡 < 0 is proved similarly. Indeed: by the injectivity of the 

exponential map we have that 𝛾(𝑡) ∉ 𝜕𝑀 for 𝑡 < 0. Since 𝑀int and 𝑀𝑐 are disjoint open set in 𝑁 

and (𝑎, 0) is connected, we have that 𝛾(𝑡) must lie in either 𝑀int or 𝑀𝑐 for 𝑡 < 0. But the above 

displayed equation implies that 𝛾(𝑡) is guaranteed to lie in 𝑀𝑐 on a sufficiently small interval of 

the form (−𝛿, 0) where 𝛿 > 0. So indeed 𝛾(𝑡) ∈ 𝑀𝑐 for 𝑡 < 0. This proves the claim. 

∎ 

Thus (𝒪, 𝜙) is a half-slice chart of 𝑀 in 𝑁. So letting 𝒪̃ = 𝒪 ∩ 𝑀 and 𝜙̃ = 𝜙|𝒪∩𝑀 be the 

restriction of this chart to 𝒪 ∩ 𝑀, we get the chart (𝒪̃, 𝜙̃) of 𝑀 in a neighborhood of 𝑝. The 

coordinates of this chart are the boundary normal coordinates that we wanted to construct. 

Indeed, notice that the curves 𝑡 ↦ 𝜙̃−1(𝑥1, … , 𝑥𝑛−1, 𝑡) are unit-speed geodesics in 𝑀 for 𝑡 ≥ 0 

since they’re the restriction of the geodesics 𝑡 ↦ 𝜙−1(𝑥1, … , 𝑥𝑛−1, 𝑡) in 𝑁 to 𝑀. And by Gauss’ 

Lemma for submanifolds we have that the curves 𝑡 ↦ 𝜙−1(𝑥−1, … , 𝑥𝑛−1, 𝑡) are constantly 

perpendicular to the level sets 𝑥𝑛 = 𝑡 for 𝑡 > 0 (they are also perpendicular to the level set 

{𝑥𝑛 = 0} ⊆ 𝜕𝑀 since their velocity at 𝑡 = 0 is equal to 𝑉). 

 

Chapter 7 

Contracted Bianchi Identities (Proposition 7.18 [Page 209]) 

Here I give my own proof of the following theorem since I don’t understand the proof given in 

the book. 

Theorem: Suppose that (𝑀, 𝑔) is a Riemannian 𝑛-manifold or pseudo-Riemannian manifold 

possibly with boundary. Then 

tr𝑔(∇𝑅𝑚) = −𝐷(𝑅𝑐), 

tr𝑔(∇𝑅𝑐) =
1

2
𝑑𝑆. 

where both traces are being taken in the first and last components. In components, these 

equations take the form 

𝑅𝜇𝑖𝑗𝑘;
𝜇 = 𝑅𝑖𝑗;𝑘 − 𝑅𝑖𝑘;𝑗 , 

𝑅𝜇𝑗;
𝜇 =

1

2
𝑆;𝑗. 
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Proof: Take any point 𝑝 ∈ 𝑀. We will prove that the above equations hold at 𝑝. Let (𝑈, (𝑥𝑖)) be 

normal coordinates of 𝑀 centered at 𝑝 (i.e. 𝑝 is (0, … ,0) in these coordinates). Recall that in such 

coordinates the Christoffel symbols and the first partials of the entries of metric tensor and its 

inverse are zero at 𝑝: for any 𝑖, 𝑗, 𝑘 ∈ {1, … , 𝑛}, 

Γ𝑖𝑗
𝑘|

𝑝
= 0,        𝜕𝑘𝑔𝑖𝑗|

𝑝
= 0,        𝜕𝑘𝑔𝑖𝑗|

𝑝
= 0. 

The reason for choosing normal coordinates is that it will make computing the components of the 

above traces at 𝑝 so much simpler. We have by the differential Bianchi identity that for any 

𝑗, 𝑘, 𝑙 ∈ {1, … , 𝑛} (where not specified, all of the following quantities are being evaluated at 𝑝 

where possible) 

[tr𝑔(∇𝑅𝑚)]
𝑗𝑘𝑙

= 𝑔𝜇𝜈𝑅𝜇𝑗𝑘𝑙;𝜈 = 𝑔𝜇𝜈(−𝑅𝜇𝑗𝜈𝑘;𝑙 − 𝑅𝜇𝑗𝑙𝜈;𝑘) = −𝑔𝜇𝜈𝜕𝑙𝑅𝜇𝑗𝜈𝑘 − 𝑔𝜇𝜈𝜕𝑘𝑅𝜇𝑗𝑙𝜈 

= −𝜕𝑙(𝑔𝜇𝜈𝑅𝜇𝑗𝜈𝑘) − 𝜕𝑘(𝑔𝜇𝜈𝑅𝜇𝑗𝑙𝜈) = −𝜕𝑙(𝑅𝜇𝑗
𝜇 𝑘) − 𝜕𝑘(𝑅𝜇𝑗𝑙

𝜇) = 𝜕𝑙(𝑅𝑗𝑘) − 𝜕𝑘(𝑅𝑗𝑙) 

= 𝑅𝑗𝑘;𝑙 − 𝑅𝑗𝑙;𝑘. 

This proves the first equation. To prove the second, we have that for any 𝑗 ∈ {1, … , 𝑛} 

[tr𝑔(∇𝑅𝑐)]
𝑗

= 𝑔𝜇𝜈𝑅𝜇𝑗;𝜈 = 𝑔𝜇𝜈𝜕𝜈(𝑅𝜇𝑗) = 𝑔𝜇𝜈𝜕𝜈(𝑔𝑟𝑠𝑅𝑟𝜇𝑗𝑠) = 𝑔𝜇𝜈𝑔𝑟𝑠𝜕𝜈(𝑅𝑟𝜇𝑗𝑠) 

= 𝑔𝜇𝜈𝑔𝑟𝑠𝑅𝑟𝜇𝑗𝑠;𝜈 = 𝑔𝜇𝜈𝑔𝑟𝑠(−𝑅𝑟𝜇𝜈𝑗;𝑠 − 𝑅𝑟𝜇𝑠𝜈;𝑗) = −𝑔𝑟𝑠𝑔𝜇𝜈𝜕𝑠(𝑅𝑟𝜇𝜈𝑗) − 𝑔𝑟𝑠𝑔𝜇𝜈𝜕𝑗(𝑅𝑟𝜇𝑠𝜈) 

= −𝑔𝑟𝑠𝜕𝑠(𝑔𝜇𝜈𝑅𝑟𝜇𝜈𝑗) − 𝑔𝑟𝑠𝜕𝑗(𝑔𝜇𝜈𝑅𝑟𝜇𝑠𝜈) = −𝑔𝑟𝑠𝜕𝑠(𝑅𝑟𝜇
𝜇 𝑗) − 𝑔𝑟𝑠𝜕𝑗(𝑅𝑟𝜇𝑠

𝜇) 

= −𝑔𝑟𝑠𝜕𝑠(𝑅𝑟𝑗) + 𝑔𝑟𝑠𝜕𝑗(𝑅𝑟𝑠) = −𝑔𝑟𝑠𝑅𝑟𝑗;𝑠 + 𝜕𝑗(𝑔𝑟𝑠𝑅𝑟𝑠) = −[tr𝑔(∇𝑅𝑐)]
𝑗

+ 𝜕𝑗𝑆. 

Rearranging finally gives 

[tr𝑔(∇𝑅𝑐)]
𝑗

=
1

2
𝜕𝑗𝑆 

which is the second equation in the theorem. 

∎ 

Conformal Transformation of the Cotton Tensor 

Here I prove the following theorem.  

Theorem: Suppose that (𝑀, 𝑔) is a Riemannian or pseudo-Riemannian manifold possibly with 

boundary of dimension 𝑛 ≥ 3. Suppose also that 𝑓 ∈ 𝐶∞(𝑀) is a smooth function over 𝑀 and 

consider the metric 𝑔̃ = 𝑒2𝑓𝑔. If we let 𝐶 and 𝑊 denote the Cotton and Weyl tensors of 𝑔 

respectively and 𝐶̃ denote the Cotton tensor of 𝑔̃, then the two Cotton tensors are related by 

𝐶̃ = 𝐶 + 𝑔𝑟𝑎𝑑 𝑓 ⨼ 𝑊 
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where 𝑔𝑟𝑎𝑑 𝑓 ⨼ 𝑊 denotes the 3-tensor obtained by inserting 𝑔𝑟𝑎𝑑 𝑓 into the first argument of 

𝑊. In local coordinates, this equation takes the form 

𝐶̃𝑖𝑗𝑘 = 𝐶𝑖𝑗𝑘 + 𝑊𝑙
𝑖𝑗𝑘𝜕𝑙𝑓. 

Remark: Observe that the conformal invariance of the Cotton tensor in dimension 3 follows 

immediately from the above theorem since the Weyl tensor is always zero in dimension 3. 

Proof: Let’s agree on the convention here that if I put a tilde “ ̃ ” over something, then it’s the 

quantity related to the metric 𝑔̃. Otherwise, it’s the quantity related to 𝑔. For example, 𝐶̃ refers to 

the Cotton tensor of 𝑔̃ while 𝐶 refers to the Cotton tensor of 𝑔. Furthermore, if I put a tilde “ ̃ ” 

over a semicolon in the index of a tensor, then the covariant derivative of that tensor is taken 

with respect to 𝑔̃. Otherwise, the covariant derivative is taken with respect to 𝑔. 

The proof of this theorem really just boils down to a long calculation. We’ll do some tricks along 

the way to minimize what must be written down, the first of which is choosing normal 

coordinates with respect to 𝑔. Take any point 𝑝 ∈ 𝑀. We will prove that the equation in the 

theorem holds at this arbitrarily chosen point 𝑝. Let (𝑥𝑖) denote normal coordinates for 𝑔 

centered at 𝑝. Recall that in such coordinates we have that the following two properties are 

satisfied: 

1.) The Christoffel symbols of 𝑔 vanish at 𝑝. 

2.) The first partials of 𝑔 vanish at 𝑝. 

Now, for any fixed 𝑖, 𝑗, 𝑘 ∈ {1, … , 𝑛} we have that 

𝐶̃𝑖𝑗𝑘 = 𝑃̃𝑖𝑗 ;̃ 𝑘 − 𝑃̃𝑖𝑘 ;̃ 𝑗 

(note the tildes, even on the semicolons). Let’s take a look at what the expression for the first 

quantity on the right-hand side 𝑃̃𝑖𝑗 ;̃ 𝑘 is equal to at 𝑝. The expression for the other quantity 𝑃̃𝑖𝑗 ;̃ 𝑘 

evaluated at 𝑝 will be exactly the same but with all of the 𝑗’s and 𝑘’s interchanged. From now on 

every quantity I write is being evaluated at 𝑝, even though I won’t explicitly write it so. We have 

that 

𝑃̃𝑖𝑗 ;̃ 𝑘 = 𝜕𝑘𝑃̃𝑖𝑗 − Γ̃𝑘𝑖
𝜆 𝑃̃𝜆𝑗 − Γ̃𝑘𝑗

𝜆 𝑃̃𝑖𝜆. 

Plugging in the results of Proposition 7.29 and Theorem 7.30 (conformal transformation of the 

Christoffel symbols and curvature tensors) in the book gives us that (here I use property (1) from 

above) 

𝑃̃𝑖𝑗 ;̃ 𝑘 = 𝜕𝑘 (𝑃𝑖𝑗 − 𝜕𝑖𝑗𝑓 + Γ𝑖𝑗
𝜆𝜕𝜆𝑓 + 𝜕𝑖𝑓𝜕𝑗𝑓 −

1

2
𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑖𝑗) 

−(𝜕𝑘𝑓𝛿𝑖
𝜆 + 𝜕𝑖𝑓𝛿𝑘

𝜆 − 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖) (𝑃𝜆𝑗 − 𝜕𝜆𝑗𝑓 + 𝜕𝜆𝑓𝜕𝑗𝑓 −
1

2
𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝜆𝑗) − Γ̃𝑘𝑗

𝜆 𝑃̃𝑖𝜆. 
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Before we continuity let me make two remarks. First of all, I didn’t simply erase Γ𝑖𝑗
𝜆 inside the 

above 𝜕𝑘 partial since it is not true that the partials of the Christoffel symbols are zero at 𝑝. 

Second, I didn’t plug in the results of the two theorems mentioned into the last quantity Γ̃𝑘𝑗
𝜆 𝑃̃𝑖𝜆 of 

a reason that will be clear later. Distributing the above 𝜕𝑘 partial and the (… )(… ) quantity, and 

then using properties (1) and (2) above to simplify gives us that 

𝑃̃𝑖𝑗 ;̃ 𝑘 = 𝜕𝑘𝑃𝑖𝑗 − 𝜕𝑘𝑖𝑗𝑓 + 𝜕𝑘Γ𝑖𝑗
𝜆𝜕𝜆𝑓 + 𝜕𝑘𝑖𝑓𝜕𝑗𝑓 + 𝜕𝑖𝑓𝜕𝑘𝑗𝑓 − 𝑔𝜇𝜈𝜕𝑘𝜇𝑓𝜕𝜈𝑓𝑔𝑖𝑗 

−𝜕𝑘𝑓 ⋅ 𝑃𝑖𝑗 + 𝜕𝑘𝑓𝜕𝑖𝑗𝑓 − 𝜕𝑘𝑓𝜕𝑖𝑓𝜕𝑗𝑓 +
1

2
𝜕𝑘𝑓𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑖𝑗 

−𝜕𝑖𝑓 ⋅ 𝑃𝑘𝑗 + 𝜕𝑖𝑓𝜕𝑘𝑗𝑓 − 𝜕𝑖𝑓𝜕𝑘𝑓𝜕𝑗𝑓 +
1

2
𝜕𝑖𝑓𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑘𝑗 

+𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝑃𝜆𝑗 − 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝜕𝜆𝑗𝑓 + 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝜕𝜆𝑓𝜕𝑗𝑓 −
1

2
𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝑔

𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝜆𝑗 − Γ̃𝑘𝑗
𝜆 𝑃̃𝑖𝜆. 

Now, as mentioned before, the expression for 𝑃̃𝑖𝑘 ;̃ 𝑗 is exactly the same except that all of the 𝑗’s 

and 𝑘’s are interchanged. Imagine that I write out that other expression too and subtract it from 

the above expression for 𝑃̃𝑖𝑗 ;̃ 𝑘 to get an expression for 𝑃̃𝑖𝑗 ;̃ 𝑘 − 𝑃̃𝑖𝑘 ;̃ 𝑗 (this requires some 

imagination). Almost all of the terms will cancel. To see this, let’s discuss what terms in the 

above expression for 𝑃̃𝑖𝑗 ;̃ 𝑘 would cancel after we do such a subtraction. Observe that in the 

above expression for 𝑃̃𝑖𝑗 ;̃ 𝑘 the following terms are symmetric in 𝑗 and 𝑘 (colors appear here to 

help locate the terms in the above expression): 

𝜕𝑘𝑖𝑗𝑓, 𝜕𝑖𝑓𝜕𝑘𝑗𝑓, 𝜕𝑘𝑓𝜕𝑖𝑓𝜕𝑗𝑓, 𝜕𝑖𝑓 ⋅ 𝑃𝑘𝑗 , 𝜕𝑖𝑓𝜕𝑘𝑗𝑓, 𝜕𝑖𝑓𝜕𝑘𝑓𝜕𝑗𝑓, 

1

2
𝜕𝑖𝑓𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑘𝑗, Γ̃𝑘𝑗

𝜆 𝑃̃𝑖𝜆, 

𝜕𝑘𝑖𝑓𝜕𝑗𝑓 + 𝜕𝑘𝑓𝜕𝑖𝑗𝑓, 𝑔𝜇𝜈𝜕𝑘𝜇𝑓𝜕𝜈𝑓𝑔𝑖𝑗 + 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝜕𝜆𝑗𝑓, 

and one more that requires some algebraic simplification: 

1

2
𝜕𝑘𝑓𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑖𝑗 + 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝜕𝜆𝑓𝜕𝑗𝑓 −

1

2
𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝑔

𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝜆𝑗 

=
1

2
𝜕𝑘𝑓𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑖𝑗 + 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝜕𝜆𝑓𝜕𝑗𝑓 −

1

2
𝜕𝑗𝑓𝑔𝑘𝑖𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓 

=
1

2
𝜕𝑘𝑓𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑖𝑗 +

1

2
𝜕𝑗𝑓𝑔𝜇𝜈𝜕𝜇𝑓𝜕𝜈𝑓𝑔𝑘𝑖. 

Thus these terms will also appear in the expression for 𝑃̃𝑖𝑘 ;̃ 𝑗 and hence will cancel out when we 

subtract 𝑃̃𝑖𝑘 ;̃ 𝑗 from 𝑃̃𝑖𝑗 ;̃ 𝑘. Therefore, after all such cancellation we’re only left with (colors here 

will again be used to help locate terms in what appears afterwards): 

𝐶̃𝑖𝑗𝑘 = 𝑃̃𝑖𝑗 ;̃ 𝑘 − 𝑃̃𝑖𝑘 ;̃ 𝑗 = 𝜕𝑘𝑃𝑖𝑗 + 𝜕𝑘Γ𝑖𝑗
𝜆𝜕𝜆𝑓 − 𝜕𝑘𝑓 ⋅ 𝑃𝑖𝑗 + 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝑃𝜆𝑗 
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−𝜕𝑗𝑃𝑖𝑘 − 𝜕𝑗Γ𝑖𝑘
𝜆 𝜕𝜆𝑓 + 𝜕𝑗𝑓 ⋅ 𝑃𝑖𝑘 − 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑗𝑖𝑃𝜆𝑘 

Now by property (1) above we have that 𝜕𝑘𝑃𝑖𝑗 and 𝜕𝑗𝑃𝑖𝑘 are equal to 𝑃𝑖𝑗 ; 𝑘 and 𝑃𝑖𝑘 ; 𝑗 

respectively. By property (1) again we have that 

𝜕𝑘Γ𝑖𝑗
𝜆𝜕𝜆𝑓 − 𝜕𝑗Γ𝑖𝑘

𝜆 𝜕𝜆𝑓 = 𝑔𝜆𝑙(𝜕𝑘Γ𝑖𝑗
𝜆 − 𝜕𝑗Γ𝑖𝑘

𝜆 )(grad 𝑓)𝑙 = 𝑅𝑘𝑗𝑖𝑙(grad 𝑓)𝑙 = 𝑅𝑙𝑖𝑗𝑘(grad 𝑓)𝑙 

where in the last equality I used the symmetry/anti-symmetry properties of the indices of the 𝑅𝑚. 

For the remaining four terms we have that 

−𝜕𝑘𝑓 ⋅ 𝑃𝑖𝑗 + 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑘𝑖𝑃𝜆𝑗 + 𝜕𝑗𝑓 ⋅ 𝑃𝑖𝑘 − 𝑔𝜆𝑟𝜕𝑟𝑓𝑔𝑗𝑖𝑃𝜆𝑘 

= −𝑔𝑘𝜆𝑃𝑖𝑗(grad 𝑓)𝜆 + 𝑔𝑘𝑖𝑃𝜆𝑗(grad 𝑓)𝜆 + 𝑔𝑗𝜆𝑃𝑖𝑘(grad 𝑓)𝜆 − 𝑔𝑗𝑖𝑃𝜆𝑘(grad 𝑓)𝜆 

= (𝑃
KN
∧ 𝑔)

𝑗𝑘𝑖𝜆
(grad 𝑓)𝜆 

= − (𝑃
KN
∧ 𝑔)

𝜆𝑖𝑗𝑘
(grad 𝑓)𝜆 

Thus applying all of the above simplifications gives us that 

𝐶̃𝑖𝑗𝑘 = 𝑃𝑖𝑗 ; 𝑘 − 𝑃𝑖𝑘 ; 𝑗 + 𝑅𝑙𝑖𝑗𝑘(grad 𝑓)𝑙 − (𝑃
KN
∧ 𝑔)

𝑙𝑖𝑗𝑘
(grad 𝑓)𝑙 

= 𝐶𝑖𝑗𝑘 + 𝑊𝑙𝑖𝑗𝑘(grad 𝑓)𝑙 = 𝐶𝑖𝑗𝑘 + 𝑊𝑙
𝑖𝑗𝑘𝜕𝑙𝑓. 

This proves the theorem. 

∎ 

The Weyl-Schouten Theorem 

I don’t fully understand the proof in the book for this theorem, and so here I give my own 

presentation of it. It’s probably the same thing with the only difference being that I do the 

calculation needed for the Frobenius theorem a bit more explicitly. 

Theorem: Suppose that (𝑀, 𝑔) is a Riemannian or pseudo-Riemannian manifold possibly with 

boundary of dimension 𝑛 ≥ 3. 

1.) If 𝑛 = 3, then (𝑀, 𝑔) is locally conformally flat if and only if its Cotton tensor is identically 

equal to zero. 

2.) If 𝑛 ≥ 4, then (𝑀, 𝑔) is locally conformally flat if and only if its Weyl tensor is identically 

equal to zero. 

Proof: First suppose that (𝑀, 𝑔) is locally conformally flat. If 𝑛 = 3, we have that the Cotton 

tensor is identically zero since the Cotton tensor is conformally invariant in dimension three (see 

“Conformal Transformation of the Cotton Tensor”) and the Cotton tensor of Euclidean space is 

trivially zero. If 𝑛 ≥ 4, then the Weyl tensor is zero because the Weyl tensor being zero is a 
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conformally invariant phenomenon and the Weyl tensor of Euclidean space is also trivially zero 

(see Corollary 7.31 in the book). 

Now suppose that the Cotton tensor is identically zero if 𝑛 = 3 or that the Weyl tensor is 

identically zero if 𝑛 ≥ 4. I claim that in both cases, both the Cotton tensor and the Weyl tensor 

are identically zero. If 𝑛 = 3, the fact that the Weyl tensor is zero follows from the well-known 

fact that Weyl tensor is always equal to zero in dimension 3 (see Corollary 7.26 in the book). If 

𝑛 ≥ 4, then the fact that the Cotton tensor is zero follows from the well-known equation 

tr𝑔 ∇𝑊 = (𝑛 − 3)𝐶, 

where the trace on the left-hand side is being taken in the first and last index (see Proposition 

7.32 in the book). We will now show that 𝑔 is locally conformally flat. 

Take any point 𝑝 ∈ 𝑀. We will show that there exists a smooth function 𝑓 ∈ 𝐶∞(𝑈) over some 

(open) neighborhood 𝑈 of 𝑝 such that if we consider the metric 𝑔̃ = 𝑒2𝑓𝑔, then the Schouten 

tensor 𝑃̃ associated to 𝑔̃ will be zero. I claim that this will then imply that 𝑔̃ is flat and hence that 

𝑔 is conformally flat over 𝑈. To see this, let 𝑅𝑚, 𝑃, 𝑊 and 𝑅𝑚̃, 𝑃̃, 𝑊̃ denote the Riemann 

curvature, Schouten, and Weyl tensors respectively for 𝑔 and 𝑔̃ respectively. Since 𝑊 = 0 we 

have that 𝑊̃ = 0 because, as mentioned before, the Weyl tensor being zero is a conformally 

invariant phenomenon. Thus, we have that 

𝑅𝑚̃ = 𝑃̃
KN
∧ 𝑔̃. 

From this equation we indeed see that if we find an 𝑓 such that 𝑃̃ ≡ 0, then we’ll have that the 

Riemann curvature tensor of 𝑔̃ is identically zero and hence that 𝑔̃ is flat. Thus, the proof will be 

finished if we find such an 𝑓. 

By the result of Proposition 7.30 (conformal transformation of the curvature tensors), we have 

that we need to find an 𝑓 that satisfies the following over 𝑈: 

𝑃̃ = 𝑃 − ∇(𝑑𝑓) + 𝑑𝑓 ⊗ 𝑑𝑓 −
1

2
〈𝑑𝑓, 𝑑𝑓〉𝑔𝑔 ≡ 0. 

Our approach will be to first find a covector field 𝜉 over 𝑈 that satisfies 

𝑃 − ∇𝜉 + 𝜉 ⊗ 𝜉 −
1

2
〈𝜉, 𝜉〉𝑔𝑔 ≡ 0 

and then find 𝑓 that satisfies 𝑑𝑓 = 𝜉. Ok, first let’s prove the existence of a solution to the above 

equation. Suppose that 𝑈 is the domain of some coordinates (𝑥𝑖) of 𝑀. Notice that in such 

coordinates the above equation can be written as the following overdetermined system of first 

order partial differential equations: 

𝜕𝜉𝑘

𝜕𝑥𝑖
= Γ𝑘𝑖

𝜆 𝜉𝜆 + 𝑃𝑘𝑖 + 𝜉𝑘𝜉𝑖 −
1

2
𝑔𝜇𝜈𝜉𝜇𝜉𝜈𝑔𝑘𝑖            ∀𝑘, 𝑖 ∈ {1, … , 𝑛}.        

For every 𝑘, 𝑖 ∈ {1, … , 𝑛}, let 𝛼𝑖
𝑘 ∶ 𝑈 × ℝ𝑛 be the function given by 
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𝛼𝑖
𝑘(𝑥1, … , 𝑥𝑛, 𝑧1, … , 𝑧𝑛) = Γ𝑘𝑖

𝜆 𝑧𝜆 + 𝑃𝑘𝑖 + 𝑧𝑘𝑧𝑖 −
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑖. 

Thus our overdetermined system can be rewritten as 𝜕𝜉𝑘 𝜕𝑥𝑖⁄ = 𝛼(𝑥1, … , 𝑥𝑛, 𝜉1, … , 𝜉𝑛). A 

theorem in the theory of overdetermined systems which is proved using the Frobenius theorem 

[Proposition 19.29 in John M. Lee’s Introduction to Smooth Manifolds 2nd Ed] tells us that a 

solution to this overdetermined system exists in some neighborhood of 𝑝 in 𝑈 if and only if the 

compatibility conditions 

(Eq 1)                                             
𝜕𝛼𝑖

𝑘

𝜕𝑥𝑗
+ 𝛼𝑗

𝑟
𝜕𝛼𝑖

𝑘

𝜕𝑧𝑟
=

𝜕𝛼𝑗
𝑘

𝜕𝑥𝑖
+ 𝛼𝑖

𝑟
𝜕𝛼𝑗

𝑘

𝜕𝑧𝑟
. 

are satisfied (the necessity here is clear because the above merely states that 𝜕2𝜉𝑘 𝜕𝑥𝑖𝜕𝑥𝑗⁄ =

𝜕2𝜉𝑘 𝜕𝑥𝑗𝜕𝑥𝑖⁄ ). To do this, we will instead show that the left-hand side of the above equation 

minus the right-hand side is equal to zero. First let’s compute the expression for the left-hand 

side. The expression for the right-hand side will be exactly the same except that all of the 𝑖’s and 

𝑗’s will be switched. We have that the left-hand side is equal to 

𝜕𝛼𝑖
𝑘

𝜕𝑥𝑗
+ 𝛼𝑗

𝑟
𝜕𝛼𝑖

𝑘

𝜕𝑧𝑟
= 𝜕𝑗Γ𝑘𝑖

𝜆 𝑧𝜆 + 𝜕𝑗𝑃𝑘𝑖 −
1

2
𝜕𝑗𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑖 −

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝜕𝑗𝑔𝑘𝑖 

+ (Γ𝑟𝑗
𝜆 𝑧𝜆 + 𝑃𝑟𝑗 + 𝑧𝑟𝑧𝑗 −

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑟𝑗) (Γ𝑘𝑖

𝑟 + 𝛿𝑘
𝑟𝑧𝑖 + 𝑧𝑘𝛿𝑖

𝑟 − 𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖) 

Distributing the (… )(… ) quantity gives (colors appear here to help locate the terms later) 

𝜕𝛼𝑖
𝑘

𝜕𝑥𝑗
+ 𝛼𝑗

𝑟
𝜕𝛼𝑖

𝑘

𝜕𝑧𝑟
= 𝜕𝑗Γ𝑘𝑖

𝜆 𝑧𝜆 + 𝜕𝑗𝑃𝑘𝑖 −
1

2
𝜕𝑗𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑖 −

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝜕𝑗𝑔𝑘𝑖 

+Γ𝑟𝑗
𝜆 𝑧𝜆Γ𝑘𝑖

𝑟 + Γ𝑘𝑗
𝜆 𝑧𝜆𝑧𝑖 + Γ𝑖𝑗

𝜆𝑧𝜆𝑧𝑘 − Γ𝑟𝑗
𝜆 𝑧𝜆𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 

+𝑃𝑟𝑗Γ𝑘𝑖
𝑟 + 𝑃𝑘𝑗𝑧𝑖 + 𝑃𝑖𝑗𝑧𝑘 − 𝑃𝑟𝑗𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 

+𝑧𝑟𝑧𝑗Γ𝑘𝑖
𝑟 + 𝑧𝑘𝑧𝑗𝑧𝑖 + 𝑧𝑖𝑧𝑗𝑧𝑘 − 𝑧𝑟𝑧𝑗𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 

−
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑟𝑗Γ𝑘𝑖

𝑟 −
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑗𝑧𝑖 −

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑖𝑗𝑧𝑘 +

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑟𝑗𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖. 

Observe that the following term in the above expression is in fact equal to zero (here I use the 

fact that the covariant derivative of 𝑔 is zero): 

1

2
𝜕𝑗𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑖 + Γ𝑟𝑗

𝜆 𝑧𝜆𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 = −Γ𝑗𝑟
𝜇

𝑔𝑟𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑖 + Γ𝑟𝑗
𝜆 𝑧𝜆𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 = 0. 

Now, as mentioned before, the expression for the right-hand side of (Eq 1) is exactly the same 

except that all of the 𝑖’s and 𝑗’s are interchanged. Imagine that I write out that other expression 

too and subtract it from the above expression to get an expression for the left-hand side of (Eq 1) 

minus right-hand side of (Eq 1) (this requires some imagination). Almost all of the terms will 

cancel. To see this, let’s discuss what terms in the above expression would cancel after we do 
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such a subtraction. Observe that in the above expression the following terms are symmetric in 𝑖 

and 𝑗: 

Γ𝑖𝑗
𝜆𝑧𝜆𝑧𝑘, 𝑃𝑖𝑗𝑧𝑘, 𝑧𝑘𝑧𝑗𝑧𝑖 , 𝑧𝑖𝑧𝑗𝑧𝑘,

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑖𝑗𝑧𝑘, 

Γ𝑘𝑗
𝜆 𝑧𝜆𝑧𝑖 + 𝑧𝑟𝑧𝑗Γ𝑘𝑖

𝑟 , 

and two more that require some algebraic simplification: 

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝜕𝑗𝑔𝑘𝑖 +

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑟𝑗Γ𝑘𝑖

𝑟 =
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑟Γ𝑖𝑗

𝑟 +
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑟𝑖Γ𝑘𝑗

𝑟 +
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑟𝑗Γ𝑘𝑖

𝑟 , 

and 

𝑧𝑟𝑧𝑗𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 +
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑗𝑧𝑖 −

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑟𝑗𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 

= 𝑧𝑟𝑧𝑗𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖 +
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑔𝑘𝑗𝑧𝑖 −

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑧𝑗𝑔𝑘𝑖 

=
1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑧𝑗𝑔𝑘𝑖 +

1

2
𝑔𝜇𝜈𝑧𝜇𝑧𝜈𝑧𝑖𝑔𝑘𝑗. 

Thus these terms will also appear in the expression for the right-hand side of (Eq 1) and hence 

will cancel out when we subtract the right-hand side of (Eq 1) from the left-hand side of (Eq 1). 

Therefore, after all such cancellation we’re only left with (here colors appear to help indicate 

what turns into what): 

(
𝜕𝛼𝑖

𝑘

𝜕𝑥𝑗
+ 𝛼𝑗

𝑟
𝜕𝛼𝑖

𝑘

𝜕𝑧𝑟
) − (

𝜕𝛼𝑗
𝑘

𝜕𝑥𝑖
+ 𝛼𝑖

𝑟
𝜕𝛼𝑗

𝑘

𝜕𝑧𝑟
) 

= (𝜕𝑗Γ𝑘𝑖
𝜆 𝑧𝜆 + 𝜕𝑗𝑃𝑘𝑖 + Γ𝑟𝑗

𝜆 𝑧𝜆Γ𝑘𝑖
𝑟 + 𝑃𝑟𝑗Γ𝑘𝑖

𝑟 + 𝑃𝑘𝑗𝑧𝑖 − 𝑃𝑟𝑗𝑔𝑟𝑠𝑧𝑠𝑔𝑘𝑖) 

−(𝜕𝑖Γ𝑘𝑗
𝜆 𝑧𝜆 + 𝜕𝑖𝑃𝑘𝑗 + Γ𝑟𝑖

𝜆 𝑧𝜆Γ𝑘𝑗
𝑟 + 𝑃𝑟𝑖Γ𝑘𝑗

𝑟 + 𝑃𝑘𝑖𝑧𝑗 − 𝑃𝑟𝑖𝑔
𝑟𝑠𝑧𝑠𝑔𝑘𝑗) 

= 𝑅𝑗𝑖𝑘𝑟𝑧𝑟 + 𝐶𝑘𝑖𝑗 − (𝑃
KN
∧ 𝑔)

𝑗𝑖𝑘𝑟
𝑧𝑟 

= 𝑊𝑗𝑖𝑘𝑟𝑧𝑟 + 𝐶𝑘𝑖𝑗 , 

where 𝑧𝑟 denotes 𝑔𝑟𝜆𝑧𝜆 (I technically have to mention this since the 𝑧𝜆’s are not tensors but 

variables, and hence you can’t technically raise their index). As we proved earlier, both the Weyl 

and Cotton tensors are zero and hence the above quantity is zero. Thus equality in (Eq 1) holds, 

and so we have that a solution to the mentioned overdetermined system for 𝜉 indeed exists in 

some neighborhood of 𝑝. Let 𝜉 be any such solution over some neighborhood 𝑉 ⊆ 𝑈 of 𝑝. 

For our last step, we need do show that there exists an 𝑓 such that 𝑑𝑓 = 𝜉 in some neighborhood 

of 𝑝. By the Poincaré Lemma we have that this will be true if we can show that 𝜉 satisfies 
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𝜕𝜉𝑘

𝜕𝑥𝑖
=

𝜕𝜉𝑖

𝜕𝑥𝑘
. 

Looking back at our overdetermined system, we see that this is equivalent to showing that 𝛼𝑖
𝑘 =

𝛼𝑘
𝑖 . But this is immediately seen from the fact that the expression for 𝛼𝑖

𝑘 is symmetric in 𝑖 and 𝑘. 

Thus the above condition holds and hence the theorem is proved. 

∎ 

 


