The Non-Abelian X-Ray Transform on Asymptotically

Hyperbolic Spaces

Haim Grebnev

February 18, 2025

Abstract

In this paper we formulate and prove a gauge equivalence for unitary connections
and skew-Hermitian Higgs fields of suitable regularity that are mapped to the same
function under the non-abelian X-ray transform on nontrapping asymptotically hyper-
bolic spaces with negative curvature and no nontrivial twisted conformal Killing tensor
fields with certain regularity. If one furthermore fixes such a connection with zero cur-
vature, a corollary provides an injectivity result for the non-abelian X-ray transform
over skew-Hermitian Higgs fields.
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1

Conventions/notations

In this paper we employ the following conventions/notations:

1.
2.

2

2.1

We employ the Einstein summation convention.

The dimension of our manifold will be n + 1, and we will denote all indices related to
its dimension by 0, 1,...,n. When using the Einstein summation convention on indices
related to the manifold’s dimension, we employ the convention that Latin indices run
from 0 to n while Greek indices run from 1 to n.

The notation C* denotes k times continuously differentiable objects. If the object is
scalar valued, we always assume that it is complex valued (e.g. C* (M ) = ¥ (M ; (C))

. Whenever we say “smooth,” we mean “C>.” All diffeomorphisms are smooth.

If #: E — N is a vector bundle over a manifold N and S C N is a subset of N, then
we let E|g denote the restriction of £ to the fibers over S (i.e. more precise notation
would be 771[S]).

Continuing off of point 5), we write C°°(N; E) for smooth sections of E (i.e. not simply
smooth maps from N to E).

. We denote the geodesic vector field over the tangent and cotangent bundles (i.e. in-

finitesimal generator of the geodesic flow) by X. We will also let X denote its restriction
to the sphere and cosphere bundles SM and S*M (described below), which makes sense
because X is tangent to it.

Introduction

Motivation

We begin by providing motivation for the non-abelian X-ray transform - the object of our
interest, delaying precise definitions for a later section. This transform is a generalization of
the so-called “scalar X-ray transform,” the latter of which is used in reconstructing images



of the internals of patients after irradiating them with X-rays at various angles. The typical
mathematical problem for the scalar X-ray transform is the following: suppose that we have
a bounded subset D C R™ with smooth boundary and a continuous function ¢ : D — (0, 00)
over it. In our analogy, D represents the shape of our patient and ¢ the body’s X-ray
absorption coefficient at various points. Suppose we have a parametrized line [(¢) that
enters D at t = 0 and leaves at ¢ = .y, which represents the motion of an X-ray moving
through the body. The ray’s intensity /() along this path decays according to the law

dl

dt
where [ represents the initial intensity of the ray. We record I(te;) (i.e. the intensity
of the ray when it exits) and then repeat this procedure for all possible lines [ that pass
through D, using the same value for [y every time. The inverse problem is then to recover
the coefficient ¢ from knowing such data, which is equivalent to recovering a gray-scale image
of the patient’s internals. Immediately we may note that a necessary condition for this to
be possible is that two different ¢’s cannot generate the same observation data. If this is the
case, we say that the scalar X-ray transform that takes ¢ to the observed data is “injective.”
It turns out that this is the case: one can indeed recover ¢ from the mentioned data - see
for instance Theorem 1.1.6 in [42].

We mention that in the literature it is standard to use a slightly different formulation

of the mentioned X-ray transform. We have that is a separable differential equation;
solving for I gives that

—ol, 1(0) = Iy, (2.1)

I(texit) = loe™ Jot ol (t)dt

From here we see that knowing I (e) and |, Foxit

o @ ol(t)dt is equivalent, and so it is standard
to instead study the map

tcxit
b — {/ ¢ o l(t)dt : for all possible lines l}, (2.2)
0

which is called the scalar X-ray transform (typically using some parametrization for the set
of lines [). This form of the transform has the advantage of being linear in ¢. However,
we will not make use of this formulation because it does not suit the way we generalize the
above scalar problem to the non-abelian X-ray transform.

The non-abelian X-ray transform is defined by taking and turning it into a system of
equations by letting I by a column vector and ¢ a square matrix. The question is also whether
one can recover the matrix ¢ from the collected data, or in other words if the transform
involved is injective. One application of this is in the recently introduced polarimetric neutron
tomography, which attempts to reconstruct the structure of magnetic fields inside materials
after sending neutron beams through them and measure their spin changes - see for instance
[22] and [9]. We will mention a few more applications of this problem with references in
Section below. We also remark that it is not possible to define an analogous linear
transform as once we set I to be a column vector and ¢ to be a matrix because the
equation is not necessarily separable anymore. We note that even defining I to be a
matrix will not force to be separable due to the non-commutativity of matrices, which
is the motivation behind calling this the non-abelian X-ray transform.



We will actually be interested in a more sophisticated generalization of this problem, for
instance by allowing the paths “I” to be geodesics with respect to some Riemannian metric
g on D where D is now a smooth manifold. We will also formulate I and ¢ to be a section
and endomorphism field respectively of a smooth vector bundle over M and generalize the
time derivative to be a connection (which may also be unknown) in the direction of the
curve’s velocity. It turns out that in this more general setting it is not possible to recover
all of the coefficients involved except in a special case when an additional assumption is
made on the connection - see Theorem and Corollary below. However, in the case
when we cannot recover the coefficients, we do have a “gauge equivalence” understanding of
coeflicients that produce the same data.

Such transforms have been well studied in the context of compact domains, and so a direc-
tion of research that has received significant attention in recent years is whether its possible
to generalize X-ray results to noncompact domains. We will be pursuing this direction of
research, in particular we will generalize known results for the non-abelian X-ray transform
to a certain class of noncompact manifolds called “asymptotically hyperbolic spaces.”

2.2 Asymptotically Hyperbolic Spaces

In this section we introduce the geometry on which our transform will be defined. Let M
be a compact smooth manifold with smooth boundary of dimension n + 1 with n > 1,
whose interior we denote by M. A Riemannian metric g on M is called asymptotically
hyperbolic (AH) if for any (and hence all) boundary defining function p : M — [0, 00)
(i.e. p is smooth, p =0 on and only on M, and dp|,5; # 0) the tensor g = p*g extends to
a smooth Riemannian metric on all of M with ]dp\iQ , = 1 along OM. The boundary oM is
thought of as the “infinity” where the metric g blows up. Hence recalling that hyperbolic
space has constant sectional curvature —1, the known fact that the sectional curvatures of ¢
tend to —1 as one approaches M (Proposition 1.10 in [31]) explains why such metrics are
given the name “AH/[T

In fact, the Poincaré ball model of hyperbolic space is the archetypical example of an AH
space. It is given by M = {|z| < 1} € R, where |z| denotes the Euclidean length, and

(de')* + ... + (dx"+1)2.
(1= o)’

g=4

Indeed if one takes the boundary defining function p = 1 — |z|°, then an elementary exercise
shows that |dp|l2)gg = 1 along {|z| = 1}.

Given an AH metric on M, it is proven in [16] that there exist infinitely many boundary
defining functions p such that \dp\iz , = 1 on the neighborhood {p < e} of OM for some
e > 0 (i.e. not simply on dM). Fixing such a p, if (y,...,y") are coordinates of M, then
it follows from the theory of Fermi coordinates applied to p%g (see Corollary 6.42 in [26])
that

B dp® + hywdytdy”

p2

(2.3)

'More generally, the sectional curvatures approaches —|dp|2 restricted to the boundary.



on [0, ) xdom (y*). We call such boundary coordinates (p, y*) of M asymptotic boundary
normal coordinates. Such functions p are called geodesic boundary defining functions
(the reason is that the curves ¢ — (t,y") are geodesics of p?g). Throughout the paper we
will often assume that our boundary coordinates are of this form because several results that
we cite from [I5] are only stated in such coordinates.

By Proposition 1.8 in [31], AH spaces are complete. Furthermore, in some cases we
will assume that ¢ is also nontrapping which means that for any complete g-geodesic
v 1 (—o0,00) = M, liminf, 1o p(7(¢)) = 0. Intuitively speaking, this condition requires
that v eventually “escapes to infinity.”

2.3 Results

We now state our results. Suppose that (M C M, g) is an asymptotically hyperbolic (AH)
space and that p is a boundary defining function. Assume that we have a smooth complex
Hermitian vector bundle (€, (-, -)¢) over M, meaning that (-, -)¢ is an inner product on every
fiber £, that varies smoothly over M. Suppose also that we have a smooth section of the
endomorphism bundle ® : M — End €. We will often require that ® is skew-Hermitian with
respect to (-, -)g, which means that it satisfies (Pu,v)s = —(u, Pv)¢. If this is the case, we
will write ® € C* (H; Endské’). Lastly, assume that we have a smooth connection V¢ in &
over M. We will often require that V¢ is unitary with respect to (-, -)¢, which means that

V{u,v)e = (Vf/u, v)e + (u, Vf/v)g,

whenever V is a smooth vector field over M and u,v are smooth sections of £. It is easy
to check that if (z) are coordinates of M, (b;) are an orthonormal frame, and ¢T¥; are the
connection symbols of V¢ with respect to (9/a2%) and (b;), then V¢ is unitary if and only if
the connection symbols satisfy the skew-symmetry property € I’fj = I’fk
Take any unit-speed complete geodesic 7 : (—o00, 00) — M such that liminf, . p(y(t)) =
0. It follows from Lemma 2.3 in [I5] that the limits of v(¢) in M exist as t — +oo and is
equal to a point on the boundary M. The analog of that we will be considering is the
following initial value problem for a section u : (—o0,00) — &:
Vi(t)u(t) + O(y(¢))u(t) =0, tE@mu(t) =e, (2.4)
where e is any element in &,, where zo € OM is the limit of y(¢) as t — —oco. The data

point that we “record” is
lim w(t). (2.5)

t—o00

The question that we are interested then becomes whether we can recover ® and V¢ from
the data recorded for all such possible pairs v and e.

A bit of vocabulary: is a type of differential equation called a transport equation,
and @ is called a Higgs field. Going from the pair (Vg , <I>) to the map that takes every
(v, e) as above to its associated data is called the non-abelian X-ray transform, of
which we give a more precise definition in Section below.

To make rigorous sense of our problem however, we need to establish the well-definedness

of the solution to (2.4)) and the data (2.5)). Considering that we are making use of the values
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of the solution to (2.4) at plus or minus infinities, we accomplish this by imposing a decay
condition on ®. Part 1) in the following lemma establishes the well-definedness of our
problem; part 2) is a result that we will need later in the paper.

Lemma 2.6. Suppose that (M C M, g) 15 an asymptotically hyperbolic space, p is a boundary
defining function, € is a smooth complex vector bundle over M, ® € pC'™ (H; End 5), and
that V¢ is a smooth connection in €. Suppose also that v : (—00,00) — M is a complete
geodesic such that liminf, 4. p(y(t)) = 0. Let xg = lim;, o, v(t) € OM, which exists by
Lemma 2.3 in [15].

1. Then for any e € &,,, the unique solution u to ezrists and so does the limit .

2. Furthermore, the maps e € E,, — limy_,o u(t) and e € E,, — u(ty) for any fized time
to € (—00,00) are isomorphisms between fibers of &.

For future use, we remark that the above lemma and its proof work equally well if one
changes “t = +00” to “t — Foo” in its statement and in and .

Before we state our main result, we establish a way of talking about the decay regularity
of the connection V¢:

Definition 2.7. Suppose that M is a smooth manifold with smooth boundary, p is a boundary
defining function, £ is a smooth complex vector bundle over M, and that V¢ is a smooth
connection in E. If N > 0 is an integer, we say that the “connection symbols of V¢ are in
pNC>®(M) in any boundary coordinates (of M) and frame (for £)” if the following holds.
For any boundary coordinates (x°) of M and any frame (b,) of € over these coordinates’
domain, the connection symbols 5Ffj i the expression

Vfu = v(uk)bk + gfi?jviujbk

satisfy gFfj € pNO (H), where v* are the components of v with respect to (°/o+*) and u* are
the components of u with respect to by.

As we mentioned earlier, the answer to our main problem is that we cannot recover the
connection and Higgs field from the data because such data can come from two distinct
pairs (V‘g, CID) and (%8, 5) However, if that is the case, the two pairs (VS, CID) and (657 5)
are related by a well understood gauge relation. The following is our main result on the
matter. To state it, we use the unit tangent bundle SM, the notion of pullback bundles
(e.g. 7 End &), and connections on endomorphism fields VE*¢  which we define in Sections
, and respectively. We also use the regularity spaces R¥(SM;...) and the notion
of nontrivial twisted conformal Killing tensor fields (CKTs for short) which are defined in
Section |5.1f and at the end of Section [5.3| respectively.

Note the “skew-Hermitian” and “unitary” assumptions in the theorem’s statement.

Theorem 2.8. Suppose that (M C M, g) 15 a nontrapping asymptotically hyperbolic space,
that the sectional curvatures of g are megative, p is a boundary defining function, and that
(&,(-,")¢) is a smooth complex Hermitian vector bundle over M. There exists an integer
N >0 big enough dependent only on (M, g) such that the following holds.
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Suppose we have a ® € pNtIO> (ﬂ EndSkf,’) a unitary connection V¢ in € whose
connection symbols are in p™ C* (_) mn any boundary coordinates and frame (in the sense

of Definition , and that we have another pair ® and V€ satisfying the same conditions.
Consider the unit tangent bundle SM C TM with projection map © : SM — M. Let
A = V¢ — V¢, consider the connection V'U := VU — UA, and suppose that V' has no
nontrivial twisted CKTs in R*(SM;m* End ).

Lastly, suppose that the data (2.5 (W for all possible v and e as above are the same for (|
and with ® and V¢ replaced by ® and V¢ respectively. Then there exists a umtar
Qe CO(M, End &) N C=(M;End €|,,) such that Q|5 = id and over M satisfies

Ve = Q'VeQ, = Q'oQ. (2.9)

Furthermore, (Q — id) € R3(SM;7* End £) when Q — id is lifted from M to SM by setting
(Q —id)(v) = (@ —id)(x) for any v € S, M wusing the canonical identification (7*End €), =
(End€),.

Remark 2.10. The notation V€ = Q-'V¢(Q means
Viu=Q™'Vi(Qu)

for any tangent vector v € T'M and any section u € C'* (M; 5). The equations 1' are
called the gauge relation between the pairs (V‘g , <I>) and (65 , 5), and we will provide

intuition below for where it comes from.

A natural question arises of whether one can explicitly determine or estimate the value
of N in the above theorem’s statement. We do not attempt to answer this question or to
prove an upper bound. In this paper we prove that it only depends on the geometry of
the space (M, g). Its size comes up when proving the regularity theorem for the transport
equation, and in particular we will need it to be big enough so that the decay rate of ® and
the connection symbols will overpower the growth of the derivatives of the geodesic flow.
Since the latter are difficult to compute, except perhaps in some special cases such as the
hyperbolic space, our approach does not indicate exactly how big /N needs to be for the proof
to work.

We point out that in the special case of when the connection is known and has zero
curvature (see Section below for the latter), then it is possible to recover the Higgs
field. Furthermore, in this case we can also drop the assumption about the nonexistence of
twisted CK'T's with suitable regularity because we will get it for free from the zero-curvature
assumption. Here is the precise statement:

Corollary 2.11. Suppose that (M C M, g) 1S a nontrapping asymptotically hyperbolic space,
that the sectional curvatures of g are negative, p is a boundary defining function, and that
(&,(-,)¢) is a smooth complex Hermitian vector bundle over M. Suppose also that we have
a unitary connection V¢ in €& whose curvature is zero. There exists an integer N > 0 big
enough dependent only on (M, g) such that the following holds. Suppose that the connection

2An endomorphism section Q : M — End € is called unitary if |Qe|. = |e|. for any e € €.
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symbols of V¢ are in pNC>® (M) in any boundary coordinates and frame (in the sense of
Definition . Suppose also that ®,® € pNT1C> (M; EndSkS) are such that the data

for all pos%ble v and e as above are the same for , and with ® replaced by .
Then ® = .

By the explicit formula for the curvature , a simple example of when the corollary
applies is if M is a subset of R"*', & = M x C% is the trivial bundle whose sections we write
as column vectors, and the connection V¢ is simply given by Viu = [v(ul), e ,v(ud)}.

We end this section with discussion on intuition and outline of the proofs. The relation
(2.9) may look mysterious at first, so let us give intuition for it. The proof of Theorem
essentially begins with taking and rewriting it in terms of an endomorphism field
U:R — End€ in a way that it encodes the same data:

VESEU(t) + @(yv(t)U(E) =0,  lim U(t) = id, (2.12)

t——o00

where “VFrd€” is the natural connection on the space of endomorphism fields End £ induced

by V¢ (see Section [4.7). Precisely, we read of the data (2.5) from (2.12) as follows: for any
e € &, where zy € OM we solve Vg(t)w(t) = 0 with lim;_, ., w o y(t) = e and show that the

data is given by limy_,o, U(t)w(t).

Then we ask the following question. Having our unitary connection V¢, skew-Hermitian
®, and the data that they generate, how can we “come up” with another unitary V¢
and skew-Hermitian @ that generates the same data set? To do this, we take an arbitrary
unitary endomorphism field () and manipulate the above equation as follows:

Vi (QQT'U) +2(QQT'U) =0, since QQ ' = id,

VsndE(Q)Q—lU + stnd5<Q—1U) +@(QQ™U) =0, product rule,

Q—lvgndg(cg)ﬁ + Vgndgﬁ + (Q_I(I)Q)fj =0, multiply by Q7! and set U= Q'U,
VEMED | AT 4 50 = 0,

where in the last step we set A = Q~!VE"€(Q) and d = Q7 1®Q. As we will show, from
the way we read off the data from |} it follows that V€ = V€ + A and ® generate
the same data set if Q|s57 = id and @ satisfies . The main point of Theorem
is that this is the only way that we can produce another unitary V¢ and skew-Hermitian
® that generates the same data set. This example is illustrative in the sense that, in our
objective to prove the existence of () satisfying the desired gauge relation , the above

tells us that we should try B
Q=U0U" (2.13)

where U and U are defined as above.
To elaborate more on the outline of the proof, we will show that () —id satisfies a transport
equation of the specific form

VY W U = f (2.14)

on the sphere bundle SM where X is the geodesic vector field (c.f. (5.86) below). The
right-hand side f will be sufficiently regular at infinity and have Fourier modes of order
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no bigger than one with respect to the vertical Laplacian. In Section we will prove
a regularity theorem for transport equations that will imply that the solution W is also
sufficiently regular at infinity. In Section [5.3| we will conduct a Fourier study of transport
equations that, combined with the just mentioned result, will imply that W, and hence @),
have Fourier degree zero (i.e. are of the form C'* (M; End & ) ). This, in particular, is the step
where we use the nonexistence of nontrivial twisted conformal Killing tensor fields (CKTs)
in R3(SM;7*End&). From there it will quickly follow that @ satisfies the conclusions in
Theorem 2.8

One of the key steps in our investigation will be to generalize an identity called the
“Pestov identity” to vector bundles over asymptotically hyperbolic (AH) spaces (i.e. Theo-
rem [5.9 below). This is similar to the Pestov identity for scalar functions that was generalized
to nontrapping AH spaces in [15] (see bottom of page 2892 there) which the authors accom-
plished by also generalizing Santalé’s formula to nontrapping AH spaces. We will take a
different approach which will allow us to not assume that the manifold nontrapping to prove
this intermediate step. Of course, this will be more than we need since in our final result
Theorem we do assume that (M, g) is nontrapping.

Another key feature of this paper is the formulation of regularity spaces to which solutions
of transport equations over SM of the form belong to and to which we can apply
vertical differential operators while maintaining sufficient regularity at infinity. Precisely,
we have chosen the regularity spaces R¥ that we introduce in Section because they are
subsets of L? and the differential operators that we use in this paper have the mapping
properties R*¥ — RF¥"L. Both properties play a crucial role in our generalization of the
Pestov identity to asymptotically hyperbolic spaces (Theorem [5.9)). The approach that we
take to study the existence and regularity of solutions to transport equations (see Proposition
is to embed SM as a subset of the b-cosphere bundle *S*M and the 0-cosphere bundle
08*M (defined in Section . The domain *S*M provides a natural setting to prove the
existence of solutions to transport equations with boundary conditions at infinity due to the
nice behavior of the geodesic vector field X at the boundary 0°S*M. The bundle °S*M on
the other hand provides a convenient domain to prove the regularity of solutions at infinity
due to its compactness.

2.4 Existence of Examples

Here we address the question of the existence of manifolds (M, g) and connections V¢ that
satisfy the assumptions of our main results Theorem and Corollary 2.11] The existence of
a nontrapping asymptotically hyperbolic (AH) space (M, g) with negative sectional curvature
is provided by the Poincaré ball model. More examples can be produced by (smoothly)
deforming the metric slightly in small enough regions; we provide a brief argument for this.

Suppose that we have an AH space (M C M, g) that is nontrapping and has negative
sectional curvature. Let p be a geodesic boundary defining function as defined in Section
2.2] It is clear that if one takes any open U C M whose closure is compact and contained
in the domain of local coordinates, then small enough deformations of the metric g over U
with respect to the coordinates’ C*-norm will preserve its negative curvature. So, let us
demonstrate that if this region and deformation are small enough, then we can also preserve
the nontrapping property of (M, g). It follows from Lemma 2.3 in [I5] that there exists an



g0 > 0 small enough such that if a g-geodesic v makes its way into the region {p < &} at
some time tp, then it will stay in {p < o} for all t > ¢, and will escape to infinity (i.e.
liminf; o p(7(t)) = 0). Now, let us suppose that our U above is outside of this region:
U C {p>eo}. Let 6, be the flow of the geodesic vector field X, over TM (we wrote “g”
here for emphasis). The continuous dependence of solutions to ordinary differential equations
on parameters (e.g. see Theorem 7.4 of Chapter 1 in [6]) implies that the map 6, depends
continuously on the values of g and its first and second order partials in U. By assumption
g is nontrapping, and hence all of its geodesics coming out of U will eventually make their
way to {p < &9} and escape to infinity. If we make U precompact in coordinates, it is not
hard to see then that small enough deformations of the metric g over U with respect to the
C?-norm will also satisfy that all of their geodesics coming out of U will eventually make
their way to {p < g0}, and hence such deformations will be nontrapping. This proves our
claim.

Finally, the following result addresses the question of the existence of connections V¢
on such AH spaces that satisfy the assumption that the connection V' in Theorem [2.8] has
no nontrivial twisted CKTs in R3(SM;7* End £). To make the notation simpler, we prove
instead a result for when V¢ has no nontrivial twisted CKTs in R*(SM;7*E), from which
the former will follow by substituting V'’ into V€. Similar results can be found in [41,
Corollary 3.6] and [8, Theorem 1.6]. We refer the reader to Section |4.6| for the definition of
the curvature operator F¢ of V<.

Theorem 2.15. Suppose that (M C M, g) 15 a nontrapping asymptotically hyperbolic space,
that the sectional curvatures of g are negative, and that (€,(-,-)e) is a smooth complex
Hermitian vector bundle over M. Then the sectional curvatures are bounded above by —k for
some k > 0. For any unitary connection V¢ in £ whose curvature norm satisfies HF‘SHLOo <
k+/n, there are no nontrivial twisted CKTs in R*(SM;7*E).

Similar to the remark made after Corollary an example of when this lemma applies
is if M is a subset of R"*!, & = M x C is the trivial bundle whose sections we write as column
vectors, and the connection V¥ is given by Viu = [v(u') +Tjvi/, ... v(u?) + ETviud]
where the connection symbols € Tfj decay fast enough at the boundary (i.e. gf‘fj € pNCe (M)
for big enough N > 0), and such that they and their first partials are small enough so that

the curvature estimate in the above lemma is satisfied.

2.5 Non-Abelian X-Ray Transform

We mention a way to formalize the operator that takes (V, ®) to the map taking pairs (v, e)
as above to using the b and 0 cotangent bundles that we introduce in Sections and
below. We will not make use of this formulation, and only the material up to and
the two sentences afterwards here will be used later in the paper. Suppose that (M C M, g)
is a nontrapping asymptotically hyperbolic (AH) space, £ is a smooth complex vector bundle
over M, ® € pC*® (M; End 5), and that V¢ is a smooth connection in &.

Consider the cotangent and b-cotangent bundles T*M and *T*M respectively, and their
unit cosphere bundles S*M and ®S*M respectively. Suppose (p,%',...,y") are boundary
coordinates of M and consider the frame (%/,, dy', ..., dy™) spanning covectors in 7M. On
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page 2865 of [15] the authors remind the reader that this extends to the boundary to become
a smooth frame of *T*M and that furthermore if ¢ = nodr/p + n,dy" € bT"‘MbH is over the
boundary, then the map

dp
770? + Nudy" — o

is well defined (i.e. independent of the coordinates (p,y") that we choose). The boundary
of the unit cosphere bundle *S*M C °T*M turns out to have the following two components:

0_°S*M = {C € bT*M}E)M i1y = 1} called the “incoming boundary,”
0,°8*M = {¢e bT*M|aM o =—1} called the “outgoing boundary.”

Let 7 : SM — M and m, : °S*M — M denote the natural projection maps. Recall that
any unit-speed geodesic v : (—o0,00) — M is the image under 7 of an integral curve
o : (—00,00) = SM of the geodesic vector field X. Letting X, denote the pushforward of
X onto bS*M‘ ,; Via the canonical identification between 7'M and bT *M’ 0 We have that
is the image under 7, of an integral curve o, : (—00, 00) — bS*M‘ y Of Xp. Tt follows from
the proof of Corollary 2.5 in [15] that the limit of any such curve exists in *S*M:

limy_, oo 0p = O_"S*M,
limy_yo0 0p = 0,2S* M.

Intuitively, the first limit here can be thought of as the “initial velocity” of the geodesic as it
“enters” the AH space at infinity, while the second its “exit velocity” as it “leaves” at infinity.
Conversely, it follows from the same proof that every ¢ € 9_°S*M (resp. ¢ € 9,°S*M) is
the limit in ®S*M of a unique (up to reparameterization) such curve o, as t — —oo (resp.
t — 00).

Hence we may define the map

(2.16)

&
(v T Elo_vsemr — €l vsear

as follows. Take any e € m;&|, »q.37 Whose base point we denote by (¢ € 0_bS*M. Let oy
be an integral curve of X, with ( = lim;_,_, 0, and let (oy = lim;_.o, 0. Take the geodesic
v =m0 0y and let u be the solution to (2.4) where we let e also denote the element in &, (¢
that is canonically identified to e € (7}€) ¢~ Then we set

T7(V92) (¢) = 1i

(€) = lim w(?),
making the similar canonical identification (m;€), = &, (¢ We point out that this limit
exists by Lemma part 1), and that the “T” here stands for “transport equation.”

Definition 2.17. Suppose that (M C M, g) 1s an asymptotically hyperbolic space, &€ is a

smooth complex vector bundle over M, ® € pC™ (M; Endﬁ), and that V¢ is a smooth
connection in £. The operator

(VE, @) —s T(V"2)
15 called the non-abelian X-ray transform. This is well defined by the discussion above.

For instance, another way to formulate Corollary above is that for any g and V¢
satisfying the conditions there, the non-abelian X-ray transform is injective over the set of
all skew-Hermitian Higgs field satisfying the decay condition also described there.
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2.6 Prior Research Discussion and Applications

A standard approach for studying injectivity properties of X-ray transforms is via energy
identities that was first introduced in [35]. The type of energy estimate that is used in this
approach is called the Pestov identity (or Muhometov-Pestov identity) which over the
years has taken many forms as authors apply them in various contexts - see for instance [12],
[40], [43], and [44]. The mentioned paper [12] furthermore explains the connection between
X-ray transform over connections and inverse problems related to the wave equation. Of
recent works, in dimension two the authors of [39] used a Pestov identity to prove solenoidal
injectivity of the X-ray transform over tensors, and in their earlier work [38] they proved a
“Pestov type identity” to study the attenuated ray transform with a connection and Higgs
field.

The paper [41] proceeded to generalize these methods to manifolds of dimensions greater
than two, but it did not cover the case of connections. In [I8] the authors generalized
the setup in [41] where they studied the X-ray transform for connections and Higgs fields
together. For instance, Theorem above was proved in [I8] in the case when (M, g)
is a compact Riemannian manifold, has strictly convex boundary, has negative sectional
curvature, the boundary condition in is changed to u(y(a)) where 7 : [a,b] — M is a
unit-speed geodesic traveling between boundary points, and is changed to “recording”
u(y(b)). In this paper we also generalize the Pestov identity proved in [18] to asymptotically
hyperbolic (AH) spaces, of which a similar formula also appears in [45].

We prove the nonexistence of nontrivial twisted conformal tensor fields (CKTs) in The-
orem under the condition that the curvature of the connection is small enough. Our
approach is based on [41, Corollary 3.6] that proved a similar result in the compact setting,
which was also proved in [8, Theorem 1.6]. Additionally, the work [I8] proved that a twisted
CKT that vanishes on 7~ '[['] where T is a hypersurface in M and 7 : SM — M is the
projection from the unit-sphere bundle must be trivial. By setting I' = 0M, the authors
of [I§] were able to state their analog of our Theorem without any assumption of the
nonexistence of nontrivial twisted CKTs. The work [I§] also proved the nonexistence of
nontrivial twisted CKTs on closed surfaces and for sufficiently high Fourier modes on closed
manifolds under certain regularity conditions. The nonexistence of nontrivial twisted CKTs
on closed manifolds was further studied in [5].

We mention the early work [I] that studied the injectivity of the X-ray transform for one-
forms. The work of [47] studied injectivity on tensor fields of rank m < 2 for analytic simple
metrics and a generic class of two-dimensional simple metrics, and proved a stability estimate
for the normal operator. Later, [46] proved injectivity on two-tensors for all two-dimensional
simple metrics which was then extended to tensors of all rank in [39]. The papers [52] and
[50] proved injectivity for functions and two-tensors respectively on Riemannian manifolds
that admit convex foliations. The paper [17] proved injectivity on tensors of all ranks over
Riemannian manifolds with negative curvature and strictly convex boundary. We mention
that the work [4] characterized the range of the non-abelian X-ray transform on simple
surfaces in terms of boundary quantities and that [3] and [33] proved stability estimates for
it over Higgs fields. Microlocal techniques have also been applied to the study of the X-ray
transform in the presence of conjugate points - we refer the reader to the works [23], [34],
[48], and [49].

12



In the noncompact realm, injectivity for the scalar X-ray transform over hyperbolic spaces
was proved in [21], and inversion formulas are given in [2] and [20]. In [27] the author proved
analogous injectivity over Cartan-Hadamard manifolds and in [28] the results were extended
to higher dimensions and tensor fields. The paper [37] proved a gauge equivalence for the
X-ray transform for connections on Euclidean space assuming a bound on the size of the
connection in dimension two.

AH manifolds have gained interest in the past two decades partly due to their role in
physics such as the AdS/CFT conjecture made in [29]. The work [7] for instance described
the role of integral geometry in the AdS/CFT correspondence. In this setting, the paper [15]
proved injectivity of the X-ray transform for tensor of all orders on asymptotically hyperbolic
spaces. On simple AH manifolds, the work [10] generalized their result for the scalar X-ray
transform by proving a stability estimate for the normal operator. Analogous to the local
problem studied in [52], [11] proved a local injectivity result for the scalar X-ray transform
on AH spaces.

Regarding applications of the non-abelian X-ray transform, we also mention its appear-
ance in the theory of solitons when studying the Bogomolny equations in dimensions 2 + 1
- see [30] and [53] for details. The paper [24] describes its applications to coherent quantum
tomography. For a survey of the non-abelian X-ray transform and to read more about its
applications, we refer the reader to [36].
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3 Well-Definedness of the Non-abelian X-Ray Trans-
form

In this section we prove Lemma We start with part 1). Take any e € &,,. The plan is
to do the following three tasks:

1. prove the existence and uniqueness of the solution to the initial value problem ({2.4)),
on an interval of the form (—oo, to] for some tq € R,
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2. argue the existence and uniqueness on the rest of the interval [ty, 00) (and hence ev-
erywhere),

3. and finally prove that the limit (2.5)) exists.

We begin with task 1), which we prove by mapping the infinite interval to a bounded
one and then applying standard existence and uniqueness results of ordinary differential
equations (ODEs). Let d = rank&. Let (p,y',...,y") = (2%) be asymptotic boundary
normal coordinates of M containing xo in their domain and let (b;) be a frame for £ over
the same domain. Let °T'}; denote the connection symbols of V& with respect to (?/ox) and
(bi). Let ty € R be a time such that the image of v is contained in these coordinates for all
times t € (—00,tg]. Then, writing u = u*by, in these coordinates for ¢t € (—o0, ] we have
that becomes the following system of ODEs

dub o .

o + Ty + ®fu’ =0, tl}linoou e”, ke{l,...,d}, (3.1)
Let us look at the growth rate of the 4%’s. By definition, g = 9/? for some smooth metric g
on M. Since v has a constant speed one, we have that

gij"yi'.yj = PQ-

Clearly the closure of the image v(—00,t] is a compact subset of our coordinates’ domain,
and so the matrix in the bilinear form v @jvivj has a minimum positive eigenvalue along
this set. Hence from the above we get that there exists a C' > 0 such that each |§*| < Cp.

Now, take the diffeomorphism h : (—7/2, s9] — (—00, to] given by h(s) = tans. Making
the change of variables ¢t = h(s) in gives that for each k € {1,...,d}

k
% + ‘SFiﬂi—Suj + P2 —Su’ =0 ons€ (=7f,sy), uF(—7h)=_c" (3.2)
In other words, the existence and uniqueness of a continuous solution w to this system of
initial value problems will prove task 1). This in turn will follow from standard results on
linear ODEs (see for instance [6]) if we show that the above coefficients “I'};4'h/ and ®FR’
extend continuously to s = —7/a.

It follows from Lemma 2.3 in [I5] (specifically (2.11) there) that there exists a constant
C" > 0 such that for t € (—o0, tg],

por(t) < C'e. (3.3)

Since by assumption SFZ € C=(M), |5'| < Cp, and ®F € pC*(M), we have that there
exists a constant C” > 0 such that for s € (—7/2, s¢] both |£Ffjﬁih" and |@FR| are bounded
above by
C"(pory(h(s))H (s) < C"C'e™ & sec? (s) =0  ass— —7/"
Hence indeed ¢T4'h’ and ®FR’ extend continuously to s = —7/2.
Task 2) follows by applying standard existence and uniqueness theory of ODEs in coor-
dinates and frames for £ as one travels along the geodesic. Task 3) is proved similarly to 1)
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except one uses Lemma 2.3 in [I5] in forward time (for instance, the e’ in (3.3)) will change
to e ).

To prove part 2) of Lemma we recall the fact from ODE theory that for linear
homogeneous systems of the form

dw
—r )+ AQuw(t) =0, wlto) = e,

were w is a column vector and A is a continuous matrix, the map ey — w(¢;) is an isomor-
phism for any fixed ¢; (e.g. see Chapter 3 Section [2|of [6] - in particular Theorem 2.2). Part
2) of Lemma [2.6] then follows by applying this result to (3.2)).

4 Geometric Preliminaries

Throughout this section we assume that (M C M, g) is an asymptotically hyperbolic space,
p is a boundary defining function, (&, (-, -)¢) is a smooth complex Hermitian vector bundle
over M, and that V¢ is a smooth connection in &.

4.1 The b and 0 Cotangent Bundles

In this section we introduce the b and 0 cotangent bundles. We will only state their properties,
referring the reader to Section 2.2 in [32] for more details. We begin by recalling that lowering
and raising an index with respect to g provides a bundle isomorphism between the tangent
and cotangent bundles over the interior:

b TM —s T*M, 8 T*M — TM.

The first bundle that we introduce is the b-tangent bundle “®T'M,” which comes with a
canonical smooth map F : *T'M — TM that has the following two properties:

1. F induces a bijection between smooth sections of *T’M and smooth sections of TM
that are tangent to the boundary oM.

2. For any fixed point © € M, F restricts to a linear homomorphism F, : *T,M — T, M
that is also an isomorphism when z is in the interior M.

The second is the O-tangent bundle “OT'M " which is defined similarly as coming with
a smooth map H : “T'M — T'M that has the following two properties:

1. H induces a bijection between smooth sections of °T'M and smooth sections of TM
that vanish at the boundary oM.

2. For any fixed point & € M, H restricts to a linear homomorphism H, : °T,M — T, M
that is also an isomorphism when x is in the interior M.
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Of more importance to us will be the dual bundles *T*M and °T*M, which are called
the b and 0 cotangent bundles respectively. They naturally generate pullback maps
F*:T*M — *T*M and H* : T*M — °T*M which are also bundle homomorphisms that are
isomorphisms on fibers over the interior M (c.f. points 2) above)

Remark 4.1. Considering that b, f, F, H, F*, H* are all isomorphisms (on fibers) over the
interior M, we will often identify two points in T'M, T* M, bTM}M, bT*M|M, OTM}M, and
0T*M| s a8 being the same if it is possible to go from one to the other by a composition of
the “canonical identification” maps mentioned above.

We mention important frames for the b and 0 cotangent bundles near the boundary M.
Suppose (p,y*,...,y") = (z) are boundary coordinates of M. Then it turns out that

F* (%) JFr(dyt), ... FH(dy™)

0 n
H*(di),...,H*<di)
p p

extend smoothly to the boundary OM to be frames of *T*M and °T*M respectively. It is
standard to abuse notation by simply writing that d¢/p, dy!, ... dy"™ and d=°/p, ... d="/, are
frames for *T*M and °T*M respectively. Hence we often write coordinates of *T*M and
OT*M as no®/p + n.dy* — (p,y",n0,m,) and 79"/, — (2%,7;) respectively. For example,
if we consider the coordinates v*9/oxi +— (z°,v%) of TM, then the canonical identification
H*ob: TM|,, = °T*M is given by v'9/oxi + (pg;;v')de? .

4.2 The b and 0 Cosphere Bundles

Suppose (p,y',...,y") are asymptotic boundary normal coordinates of M as described in
Section above. We know that T*M has a fiber metric g. Thus the maps F* : T*M —
*T*M and H* : T*M — °T*M push g to become fiber metrics on *T*M|, and °T*M|, ,
which we denote by ¢, and gy respectively. If we consider the boundary frames for *T* A
and °7*M introduced at the end of Section above, we have that these metrics are given

by (c.f. (2.3))

‘Tlodf + nudy“ = 77(2) + thMVn,Lﬂ?w

2
o (4.2)
2
mode p vt

‘770,) +np p %

=T + 7,7,

where (h*") denotes the inverse matrix of (hyw). From here we see that both g, and gy extend
smoothly to all of *T*M and °T*M respectively. In analog of the unit sphere bundle:

SM = {v €TM : |v], = 1},
the equations (4.2) allow us to define the unit cosphere bundles in *T*M and °T*M:
bSN = {g € TN : |Cls, = 1},
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"M = {C € TN : [¢],, = 1}.

We note that in [15], they use the notation “S*M” for what we denote by “@S*M.” We let
w2 °S*M — M and 7 : °S*M — M denote the natural projection maps.

Remark 4.3. Similarly to the remark made in Remark [4.1 we will often identify two points
in SM, S*M,*S*M, and °S*M to be the same if it is possible to go from one to the other
by a composition of the maps mentioned there.

We point out that it is easy to see that both *S*M and °S*M are smooth embedded
submanifolds with boundary of *T*M and °T*M. We also note that by (4.2), g, degenerates
over OM (i.e. stops being positive definite) while gy does not. In particular this implies that
S*M is not compact while °S*M is compact.

4.3 Splitting the Tangent Bundle

Next we define a natural Riemannian metric on the tangent space T'M, called the Sasaki
metric, generated by g. We recommend that when checking many of the claims below,
to check them above the center of normal coordinates since in many cases the expressions
simplify considerably due to the vanishing of the Christoffel symbols and the first order
partials of g. Consider the tangent bundle’s projection map 7 : TM — M and its differential
dr : TTM — TM. There is another natural map between these tangent spaces called the
connection map: K : TT'M — T'M, which is defined as follows. Take any w € T, TM and
let a : (a,b) — M be a smooth curve and V : (a,b) — T'M a smooth vector field along «
such that (a, V))'(0) = w. Then we set K(w) to be the covariant derivative

K(w) = 2 (0).

To check that this is independent of the o and V' that we choose, a quick computation shows
that taking coordinates (x%) of M and the coordinates v*9/osi s (2%, v%) of TM, K is given

by
K(‘)‘ ozt

where Ffj are the Christoffel symbols of g with respect to (?/s27). Next, an easy exercise
shows that the kernels of dm and K partition the tangent bundle’s tangent space at any
vel,M:

0

+6%

vif’/az’i

iy 0
)Z(ﬁkwfﬂw)@’

Uia/{‘)zi

T,TM =H, &V, (4.4)

where B N
H, = ker IC|TUTM and V, = ker d7T|TvTM.

The “V” stands for “vertical” because it can be imagined as being a tangent subspace at v
standing vertically above z, while the “H” stands for “horizontal.” As one can check, both
spaces are canonically identified (i.e. isomorphically mapped to) with T, M by the restricted
maps B

dr: H, — T, M,
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K:V, — T,M.

With this splitting in hand, the Sasaki metric G on T M is defined as follows: for any
w,s €T, TM,

(w,S)a = {dm(w), dr(c))g + (K(w), K())g-
It follows immediately that (4.4]) is an orthogonal decomposition with respect to G.

We will only work with unit speed geodesics and hence most of our work will be done on
the unit sphere bundle

SM = {véTM:]v[gzl}.

The Sasaki metric on T'M induces a metric on SM which we will also call the Sasaki metric
and denote by G, relying on context to differentiate the two. It is not hard to see that at
any v € SM the tangent space of SM splits into the form

T,SM =H, DV,

where V), is the subspace of ]2, that is G-perpendicular to the unit normals to the “sphere”
Sy M above x. Now, take the geodesic vector field X over SM. It is easy to check that X
always lies in H,, for all v € SM and hence we obtain the splitting

T,SM = (RX,) & H, © V), (4.5)

where H, denotes the orthogonal complement of RX,, in ﬁv. We emphasize that this is an
orthogonal decomposition T,,SM. For future use, we point out that restrictions of dw and IC
map bijectively
. L C
dr: Hy — {UL} CT,M, (4.6)
KIVU—>{U }QTIM.

4.4 Integration on the Sphere Bundle

Since SM has a Riemannian metric G, it has a Riemannian density and hence the Lebesgue
measure generated by it (the latter two are independent of orientation). Hence we may
perform Lebesgue integration on SM with respect to G. If (z%) are local coordinates of M,
(r;) is a frame of TM, and we take the coordinates v'r; — (2%, v") of TM, then it turns out
that the integral of any function f € L'(SM) supported over our coordinates is given by the
iterated integral

/f // ”,vo,...,v”)dSz(vO,...,v”)\/detgdxo...dx”, (4.7)
Sy M

where (v%,...,0v™) are on the sphere |v| = 1 and dS, is the Lebesgue measure on S, M
induced by T, M with inner product g,. We refer the reader to Section 3.6.2 in [42] for a
proof. We point out that the (total) measure of S, M is the Euclidean surface area of the
Euclidean n-sphere for all x € M, which for instance follows by looking at the center of
normal coordinates.

One example of the usefulness of this observation is the following. Since g = 9/, for some
smooth metric g, v/det g is p~ "1 times “something smooth” on M. So by , it follows
that any function of the form p"*1L°>°(SM) is integrable.
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4.5 Splitting the Connection Over the Unit Tangent Bundle

Let us take the natural projection map 7 : SM — M. The pullback (vector) bundle 7*&
over SM is defined as the set obtained by taking any point x € M and attaching a copy of
&, to every point of the sphere S, M above it. Formally,

7€ :={(v,e) :v € SM,e € Exny }-

Y

We often canonically identify (v,e) = e for fixed v. To every fiber (7*£), we impose the
inner product space structure of (&, (-, )e,). If (b;) is a smooth frame for &, then we turn
7€ into a smooth vector bundle over SM (with smooth inner product) by declaring?| (7*b;)
to be smooth frames for 7*€. The pullback connection V™ ¢ = 7*V¢ in 7*€ is defined to be
the unique connection so that if w € T'SM and ug : M — &£ is smooth, then

VT E (rrug) = 7 (Vgﬂ(w)uo). (4.8)
For a smooth section u = w/n*b; : SM — 7*&, the pullback connection is explicitly given by
VItu = w(w) b + uin* (Vgﬂ(w)bj). (4.9)

Remark 4.10. In the same way we can define the pullback bundles 7;& and ;€ on
bS*M and °S*M respectively. In fact, over the interior we will often identify a section
u € C®(SM;7m*E) as an element of COO(bS*H{M, €|y and C’OO(OS*M}M, €|y via
the natural identification (7*e), = (mye). = (m5e)z = e where v = ¢ = ( are identified points
on S, M, °S*M, and *S* M respectively.

Having defined the splitting of the unit tangent bundle in (4.5)), we now define a natural
splitting of the connection of any section u : SM — 7*& in the following form:

* X * h * v *
V™ u 2 V™ ey + V™ u+ V™ . (4.11)

The reason we put “=" here is that the left-hand side is a tensor of the form C*(SM;T*SM ® 7*E)
while we will define the terms on the right-hand side to be tensors of the form C*(SM; TSM ® ©*&).

h
Let us start by defining V™ ¢u. As we just mentioned, the full connection V™ ¢u is a
tensor of the form C*(SM;T*SM @ n*E). Now, consider the same tensor but with the

first index raised with respect to G: [V’r*‘gu}ti € C®(SM;TSM @ 7*€). Next, it is an easy
exercise to check that there exists a unique linear map

Py C®°(SM;TSM @ &) — C*(SM; TSM @ 1*€) (4.12)
that satisfies
Py(w®e) = (projyw) @ e

where proj,, : T, TM — H C T,TM is the orthogonal projection map onto H. We then
define

%”*5u = Py < [V’r*gu] ﬁ) .

3 Applying 7* to b; means “b; o 7.”
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As noted above, this is a tensor of the form C*(SM;TSM @ *&).
X v
We define V™ €4 and V™ €u in the same way but instead use analogous map Prx, Projgx

X
and Py, proj,, respectively. However instead of using V™ €u, it is more common to use the

related quantity
Xu := V% u. (4.13)

X
The quantities Xu and V™ €u are equivalent in the sense that knowing one allows you to
compute the other. Hence we often record the decomposition (4.11]) instead as

h v
V™ = <Xu,v7f*5u, V“*fu). (4.14)

The second two components are called the horizontal and vertical derivatives of u re-
spectively. However, it is convenient to change the interpretation of the latter two derivatives
as follows.
We define the bundle N over SM by attaching to every v € S, M a copy of {UJ‘} CT,M.
Formally,
N ={(v,w):v € S;M where z €M and we {v'}}.

To every fiber N, we impose the inner product space structure of ({vl}, gx) which we denote
by “(-,-)n,.” It is an easy exercise to show that this is a smooth subbundle of 7*T'M. By
(4.6) we can think of dm and K as mapping bijectively

dm : H, — N,,

K:V, — N,. (4.15)

At every v € TM, the maps Py and P, above map into H, ® (7*), and V, ® (7*E),
respectively, thus using the identification (4.15) we can think of the horizontal and vertical
derivatives as both being N ® 7*&-valued:

h * v *
V™ u € O°(SM; N @ 7€) and V™ u € C(SM; N @ 7*€).

We mention that we assign the natural inner product on N ® 7*E (i.e. the unique one
satisfying (z ® e,2' ® €Y yagre = (2,2 )n{e,€)rg). The reason that this interpretation is
useful is that it becomes natural to apply well-known adjoint formulas for the horizontal
and vertical derivatives over this space. In particular, it turns out that there are differential

operators
h

div™€ : C®°(SM; N @ 1) — C>®°(SM; 7*€),

div™€ : C®°(SM; N @ 1) — C>°(SM; 7*€),
with the property that if u € C*°(SM;7*E) and w € C®(SM; N ® 7*€) are such that at
least one of them is of compact support, then

(4.16)

. h
(VTou, w) pasarnene) = —(u, divEw) pa(sarine), (4.17)
(V7 u,w) p2(sarveme) = — (U, dVTEw) pa(sasimee).
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The operators in (4.16|) are naturally called the horizontal and vertical divergences
respectively. Since we will only make use of the vertical divergence, we only justify its
existence. To do this, fix any * € M and consider the sphere S,M as a Riemannian
submanifold of (SM, G). Let divg, s denote the “divergence” on S, M that takes any vector
field Ve C*(S,M; TS, M) and outputs a scalar function divg, V' € C®(S, M) (e.g. see
(2.19) and Proposition 2.46 in [20]).

Now, choose any coordinates (z') of M and any orthonormal frame (b;) for £ with the
same domain. Take any u € C*°(SM;7*E) and w € C*°(SM; N ® 7*&) which in coordinates
we can write as

, 0
uw=u'r*h; and w=wYr* QT *b;.

oxt

Let us first look at w. For fixed x € M and fixed v € S, M, we have by the definition of N
that for fixed j € {1,...,dim &}, w¥9/ai € {v}. An explicit expression for this is

()0 W™ = 0. (4.18)

Thus if we consider the coordinates (z%,v%) of TM given by v'%/ozt + (2%, v%), ([4.18) tells
us that w”9/si is a smooth tangent vector field to S, M. Hence we may apply divg,a to

w"9/svi. We define
d?v’r*gw = (diszM (wij 8?}1' ) ) b, (4.19)

We will justify shortly why this is coordinate and frame invariant. To check that this satisfies

the desired second equation in (4.17)), let us explicitly compute V™ ¢u. Let 5Ffj denote the
connection symbols of V¢ with respect to (?/a2*) and (by). Using (4.9) we have that (here
(dx™) is the dual frame of (9/a2i) with respect to g, and £ is associated to G)

V™ = du' @ 7°b; + °TF u'da™ @ m*by,
— V™= Py(dul @ 7 + T uida™ @ 7y)’
= K(projv(dui)ﬁ> ® b + °TF 'K (projv(dasm)ﬁ> ® by,

where I is as in - It is not hard to check that by construction V, = T,,S, M for any
v e S,M. Hence (dz™)* LV, since for any w tangent to S, M, dz™(w) = 0. It also quickly
follows that projy(du’ )jj = gradg ,,u’. Thus

V™ = K(gradg, pu') @ 7°b;. (4.20)

Let us fix x € M and integrate over S, M. It is not hard to see that K(v'9/avi) = v'n*0/pyi
and so

Vo«

a * *
(vr €u7w>L2(SzM;N®7r*€) :/ y <’C(gfadszMur),w” 8x’> NA(T by, b)) e d Sy M

- / (gradg, yu”, w¥ 8> (7 by, b, ) e d Sy M.
So M aU
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Y

Using that “divg,a/’
is equal to

is the formal adjoint of “gradg ,,” (c.f. Exercise 16.2 (b) in [25]), this

0 A
:/ <ur,diszMw”a NN (T, Tb1) e dSe M = (u, div™ Ew) 25, prmee)-
Sz M

/UZ

In other words, a stronger statement holds: V™ ¢ and div™ ¢ are L? formal adjoints on each
sphere S, M rather than simply on all of SM. For later use, we write this down explicitly:

/ <%”*Su, W) NgrredSe M = (u, d;V”*gw%*gdSmM.
Sy M Sa M

By varying u in this equality, this shows that the vertical divergence is unique and hence
is indeed independent of coordinates and frame. Because one can iterate integrals
over SM as in (4.7)), integrating both sides of the above equation in z € M shows that the
second equation in indeed holds if either u or w has compact support. We mention

2 7

v \'
that the operators “gradg ,,” and “divg,y/” are known as “V” and “div” respectively in the
literature (e.g. see [15], [18], and [41]).
For future reference, we end this section with one more definition. We define the differ-

ential operator

X : C®(SM;N @ 1) — C®(SM; N ® 7*€),

differentiated from the X introduced in (4.13]) by context, to be the unique operator satisfying
that for any Z ® b € C*°(SM; N ® 7*E),

X(Zob)=X(Z)®b+ ZxX(b), (4.21)

where X (Z) at any point v € SM denotes the covariant derivative of Z along the unit speed
geodesic vy with initial velocity v at time ¢t = 0:

X(2)l, = =20, (4.22)

Since Z 14 implies that P+Z/a: 14, we see that X indeed maps into smooth sections of N@7*E
(i.e. not simply into 7T'M ® 7*E).

4.6 Curvatures

We now cover the curvature operators of £, 7*€, and simply the metric g. We start with
the first one. The operator V¢ maps between the following spaces of sections:

Ve 0% (I €) — O~ (LT M © &)
Let AF (T*M) denote the bundle of covariant alternating k-tensors and let

C(M; \N(T"M) ® €)
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denote the space of smooth sections of 7*M ® ... ® T*M ® £ that are alternating in their
first £ arguments. The operators

VE : 0 (M AF(T7I) © €) — O (M A (T°1]) @ €)

are defined to be the unique operators that satisfy that for any § € C* (H; AF (T *H)) and
any u € C°(M;€)
Ve @u) =di @u+(—1)"0 A Vou,

where § A V&u denotes the wedge-like product:

1
(9 A V‘gu) (U1, .oy Vg1, 1) = T Z sgn(a)@(vg(l), e ,vg(k))Vgu(vU(kH), l),

UESk+1

where each v; € T,M, | € Ex, and S denotes the set of permutations of k£ + 1 elements.
The curvature of V¢ is defined to be

fE=VEo Ve O®(M;E) — C=(M; A*(T"M) ® €).

A straightforward computation shows that in any coordinates (") of M and any frame (b;)
of &, the curvature f¢ applied to any smooth section ©v € C* (M € ) is given by

OfT* 9Tk . .
fou=u <8—xﬂ e D N axfl +ETTETE L | da' @ da? @ by (4.23)

where €I}, are the connection symbols of V¥ with respect to (?/a2") and (by). The resemblance
of this tensor to the Riemann curvature tensor is the motivation for the name of f¢.

Next we define a curvature operator associated to f¢ which acts over SM. Notice that
f¢ can be viewed as a O (M; A? (T*M) REX® 5*) tensor field by thinking of the u in (4.23])
as the fourth argument of f¢ (i.e. the argument of £*). Hence it can also be canonically
identified with a map, denoted by the same letter, of the form

fEC®(M;TM) x C®(M;€) — C*(M; T"M ® &).

In our coordinates and frames it is given by the following: if f;;*; denotes the tensor com-

ponent written out in the parenthesis “(...)" in (4.23), then for any x € M, v € T, M, and
ee&,, o
fE(v,e) = e fijfv'da? @ by, (4.24)

We define the curvature operator associated to f¢ to be the map
F€ . C®(SM;n*E) — C®(SM; N @ 7*&)
given by the following. For any z € M, v € S; M, and e € (7*E),,
Fé(e) == [fE(v,e)]". (4.25)

where # raises the first index of f&(v,e) (ie. j in (4.24)). From (4.23) we see that the
component f;;*; in (4.24) is antisymmetric in ¢ and j, from which a quick computation
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shows that is perpendicular to v ® ¢’ € (7T M), ® (7*&), for any € € (7*E),. In
particular, this implies that ¢ is indeed N ® 7*&-valued.

The last curvature quantity that we want to establish notation for is the ordinary curva-
ture of g. Let

R:C*®(M;TM) x C®(M;TM) x C*(M;TM) — C*(M;TM)
denote the Riemann curvature endomorphism given by
R(X,Y)Z =VxVyZ -VyVxZ - Vixy|Z,

where V is the Levi-Civita connection and [-, -] is the Lie bracket. Recall that R is multi-
linear over C°°(M) and thus has well-defined restrictions to (1,M)* — T, M for any fixed
x € M. We define operators, denoted by the same letter,

R:C*(SM;N) — C*(SM;N)
R:C*(SM;N®@7*E) — C*(SM; N @ *&)
to be the unique ones satisfying that for any x € M, v € S,M, w € N, and e € (7*E),,

R,(w) := Ry(w,v)v and R,(w®e) = [Ry(w,v)v] ®e.

4.7 Connection on Endomorphism Fields

The connection V¢ in & over M generates a natural ‘connection VEME in the endomorphism
bundle End £ over M as follows. For any U € C* (M ;End & ) and any v € T, M, we define
VERET to be the unique element of End &, satisfying

(ViU h = [VE,U]h,

for any h € C* (M; & ) This is considered a natural connection on End £ because it im-
mediately follows that it satisfies the product rule V§(Uh) = (VEMEU)h + UVSh. Let us
see what this connection looks like in coordinates. Take coordinates (z°) of M, a frame (b;)
for £ over their domain, and let 5Ffj denote the connection symbols of V¢ with respect to
(9/ox') and (bg). Then, a quick computation shows that

ViEU =oU + (T)U = U(°T), (4.26)

where on the right-hand side U is thought of as a matrix in the basis (b;), vU denotes
applying v to every entry of U, and T represents the matrix with entry T}’ in the k™
row and ;'™ column. We will use the Frobenius inner product (-, -)g,qe on End E given by

(A, B)Enae = Trace(AB”). (4.27)

Of more importance to us will be the pullback bundle 7* End £ on SM with inner product
(-, -)Enae imposed on its fibers, whose connection we denote by V7 Endé .— gxyEnd& e
analogously define the operator X = V% 1€ ysing context to differentiate it from our other
operators also denoted by “X.”
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5 Gauge Equivalence of Connections and Higgs fields

In this section we build the necessary tools to prove Theorem [2.8] and then prove it at the
end. Throughout this section we suppose that (M C M, g) is an asymptotically hyperbolic
(AH) space, p is a boundary defining function, (&, (-,)¢) is a smooth complex Hermitian
vector bundle over M, and that V¢ is a smooth connection in &.

5.1 The Regularity Spaces

For the majority of this paper we will be working with the solution to a transport equation
over SM. In particular, we will be making use of its L? norm after we apply several differ-
ential operators to it that extend smoothly to the boundary of the 0-cosphere bundle. For
this reason, we will make use of the following regularity spaces:

Definition 5.1. Suppose that (M C M, g) 15 an asymptotically hyperbolic space, p is a
boundary defining function, (€, (-, )¢) is a smooth complex Hermitian vector bundle over
M, and that V¢ is a smooth connection in £. For any fired integer k > 0, we define the
spaces R¥(SM;7*E) and R*(SM; N @ 7*€) of order k to be the spaces of smooth sections

u € C®(SM;m*E) and w € C*°(SM; N @ n*&) respectively that satisfy the following.

We say that u € R¥(SM;7*E) if for any smooth vector fields Vi, ..., V}, € C*° (OS*M; TOS*M)

over the 0-cosphere bundle, any frame (b;) of €, and any compact subset K C dom (b;) C M,

u = uwm*b; must satisfy that

o, Vi, VeVidd, ... Vi Viwd are allin p" VAL (7K. (5.2)

We say that w € RE(SM; N @ 7*&) if for any smooth vector fields Vi, ..., V}, € C* (OS*M; TOS*M),
any boundary coordinates (p,y") = (x) or interior coordinates (z°) of M, any frame (b;) of
& over these coordinates’ domain, w is of the form

w = pwn %@)ﬂ' b; (5.3)
(note the p in front), and satisfies that for any compact subset K C dom (2*) C M,
wi, Viwd, VViw, .o Vi ViwYoare all in p" V2L [r K], (5.4)

We sometimes omit writing the domain of our space and simply write R*¥ when either
the domain is of no importance or clear from context. The power “(»+1) /A" above is chosen
to ensure that both u and w as above are in L? - see Remark [5.8 below.

Remark 5.5. We point out that 1) and 1) only need to be checked in an atlas of M
and do not depend on the chosen boundary defining function p. This is clear for interior
charts. To see why this holds near the boundary, take any pair of boundary coordinates and

frames (p,y*) = (z%), (b;) and (p, y*) = (T%), (bj> whose domains intersect. The coefficients

o) and (7 in the transformation laws /o2t = o’ 9/oz and b; = ﬁfgj will be smooth on M
and hence smooth on °S*M (when lifted). Thus o] and 3/ will be bounded over m;'[K]

25



for any compact subset K C dom (2°) N dom (%) of M, and the same thing will hold if we
apply smooth vectors Vi, ..., V) to them as in the above definition. We also have that any
two boundary defining functions are comparable (i.e. both #/5 7/, € C* (H)) From this it
quickly follows that and only need to be checked in an atlas of M and do not
depend on the chosen boundary defining function.

Remark 5.6. Regarding continuity at infinity, from it follows that any element of
RF(SM; m*E) extends continuously to °S* M if we identify it as an element of C* (OS*M‘M, 7T§5|M)
(see Remark by setting it to be zero on the boundary 9°S*M.

Although we will not make use of this, we also mention that one can similarly extend
elements of R¥F(SM; N ® 7€) to °S*M as follows. First one defines the following vector
bundle over °S* M analogous to N:

ON = {(Z, 19) :(€%*M where €M and ¥ €ker( C OTxM},

where in the last part we view ( as a linear functional ¢ : °T,M — R. To see the analogy
with N, it not hard to see that over M, ker{ = {(Zﬂ)l} where # and | are computed
using ¢ and the canonical identifications °T*M|,, =~ TM and °TM|,, = TM. It’s not
hard to check that °V is a smooth subbundle of 7§ (°T'M). With respect to the coordinates
and frames in Definition , the latter is spanned by (p?/o-i) and hence any section w €
CH(°S*M;°N @ mi€) is of the form

w = w9 (pd)ox') @ Tb;.

Up to canonical identification, this is the same as 1} over SM and thus indeed any element
of R¥(SM; N @ m*€) extends continuously to °S*M as an element of C*(°S*M;°N @ m;€).

Example 5.7. Building off of the previous remark, one can construct examples of u €
RF(SM,...) that are not in R¥T1(SM,...) where “...” is 7*€ or N @7*E as follows. One can
consider sections of the form u = pF*" " V2 where u € C*(°S*M;...) and @ # 0 everywhere
on 0°S*M. In this case, for any smooth V;,...,V, € C(°S*M;T°S*M), in the coordinates
and frames of Definition [5.1|it will hold that V; ... Vju/ is in p*="+" V20 (O5*D; ) and
hence in p™*V2L® (OS*M; . ) for r = 1,...,k. However, if one takes Vi,..., Vi1 = 9/op,
then Vi...Viswd = p 77 V240 for some @ € C*(°S*M;...) with @ # 0 everywhere on
9°S*M and hence it will not hold that Vi ... Viu? € p" "2 L>®[n"![K]]. Thus u ¢ R

Remark 5.8. We make a remark regarding integrability. In Definition [5.1| we have that each
|0 /oxt| = |2/oa’, is p~! times something smooth on M (since g is p~? times something

smooth on M). Furthermore, each |7*b;| .. = |b;|, is bounded over K since & is a smooth
bundle over M by our standing assumption. Hence, it follows that both [u| .g, |w|yg.e €
p" T VRL®[K]. Since M is compact and hence can be covered by a finite collection of such
sets K, it follows that R® C L? by the comment made at the end of Section above.
Furthermore, it follows straight from the definition that R¥ C RF if k > k. Hence, RF C L2
for all £ > 0.

The main reason for considering these spaces R” is that, in addition to being subsets of L?,
all differential operator that we use in this paper have the mapping properties R¥ — RF~1.
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5.2 Pestov Identity

In this section we prove the following version of the Pestov Identity with a connection
on asymptotically hyperbolic (AH) spaces, which appears as Proposition 3.3 in [I§] in the
setting of compact manifolds. It will be used in the Fourier analysis study of transport
equations. Note the “unitary” assumption on V¢ in the following theorem’s statement.

Theorem 5.9. Suppose that (M C M, g) is an asymptotically hyperbolic space, (€, (-,-)¢)

is a smooth complex Hermitian vector bundle over M, and that V¢ is a smooth unitary
connection in €. Suppose also that u € R2(SM;7*E). Then)

2 2

v

H%W*L‘:XU - (R%W*gu, V™) 2 — (Féu, %W*EWL? + | Xul 7.

= HX%W*EU

L2 L2

where L? stands for L>(SM; N @ 7*€) in the first four quantities and L*(SM;7*E) in the
last one.
Intuitively speaking, the above Pestov identity studies how the “energy” (i.e. L?*-norm

squared) changes when one switches the order of %“*S and X. We require that v is in
R2(SM;7*E) to ensure that all of the L? norms and inner products in the above equation
make sense. The order of the space R? is chosen to be “2” because both in the statement of
the theorem and its proof we will not be applying more than two smooth vector fields over the
0-cosphere bundle to the components of v at any one time. The theorem is proved by simply

v
starting with ||V™°¢ Xu||3, and then applying L*-adjoint relations and commutator formulas

v
until one arrives at |[XV™ €ul|2,. The following lemma provides us with the required set of
adjoint relations.

Lemma 5.10. Suppose that V¢ is unitary. The following are true, where m,m’ > 1 are
integers and all L* stand for appropriate L*>(SM;...) spaces.

1. Ifu € R™(SM;m*E), then Xu € R™Y(SM;n*E). Furthermore, ifw € R™ (SM;n*E),
then
(Xu,w)r2 = —(u, Xw) re.
2. If u € R™(SM; N @r*€), then Xu € R™ Y (SM;N ® 7*E). Furthermore, if w €
R™(SM; N @ &), then

(Xu, w)rz = —(u, Xw) 2.

3. Ifu € R™SM; 7€) andw € R™ (SM: N @ 7€), then V™" €u € R™(SM; N & 1)
and div™€w € R™ Y (SM;7*E). Furthermore,

v % v %
(V™ u,w) e = —(u, div™ Sw) po.

4Here we are implicitly restricting to the interior so that we may apply the differential operators involved
and integrate.
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In other words, X, V"¢ and div" ¢ map R™ — R™ ' and their well-known adjoint
relations are also satisfied on AH spaces as well. To prove the above lemma, we will use the
following compactly supported version of it:

Lemma 5.11. Suppose that V¢ is unitary. The following are true.

1. If uyw € C®(SM;n*E) are such that at least one of them is compactly supported in
the interior M, then

<XU, 'LU>L2 = — <U,, XU})LQ.

2. Ifuyw € C®°(SM; N ® *E) are such that at least one of them is compactly supported
i the intertor M, then

(Xu, w)rz = —(u, Xw) 2.

Proof: To prove point 1), let (z') be coordinates of M, let (b;) be a frame for £ over these
coordinates’ domain, and consider the coordinates v'9/az — (z°,v%) of TM. Let EF% denote
the connection symbols of V¢ with respect to (?/a2%) and (by,). Now, suppose first that u or w
is compactly supported over our coordinates’ domain and write v = u*7*b;, and w = wFr*by.
Then

Xu = [X (uk) + gFfjviuj]W*bk.

For convenience, assume that (b;) is orthonormal so that we may write
d
(Xu, w)pz = Z/ [X (u*)w* + EFZUZujwk}deM.
k=175M

In Appendix A of [41] the authors prove that the L? adjoint of X : C®°(SM) — C*(SM)
is —X. Furthermore, since V¢ is unitary it follows that the connection symbols are anti-
symmetric: °T}, = —€T7, . Applying these identities to the right-hand side above gives
—(u, Xw) 2. Point 1) then follows by a partition of unity argument. Point 2) is proved simi-
larly where instead one uses the fact that the L? adjoint of the operator X : C>(SM; N) —
C*®(SM; N) defined in is also —X, which is proved in Appendix A of [41].

Proof of Lemma part 1):

Let u be as described in part 1). Suppose p : M — [0, 00) is a geodesic boundary defining
function as defined in Section and let ¢ > 0 be as described there. Let (y',...,y") be
coordinates of 9M and let (p,y*) = (2%) be the asymptotic boundary normal coordinates of
M that they generate on [0,¢) x dom (y*) as in . Let (b;) be a frame for £ over these
coordinates’ domain. Consider the coordinates v'?/ozt — (2*,v") of TM. Let T'}; denote the
connection symbols of V& with respect to (9/a2) and (by) and let T'; denote the Christoffel

symbols with respect to (9/a2¢). Consider also the coordinates 7,9%' /[, — (2,m,) of “T*M and
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observe that the canonical identification H*ob : TM — UT*H{ o 18 given by v* = p~! 9Ty
Recall that g;; and g% are respectively p=2 and p? times something smooth on M.
Writing u = u*7*b;,, we have that

Xu = [X (u*) + gf‘fjviuj]w*bk. (5.12)

Pulling v¢ to °S*M via the canonical identification gives p~'¢*7,, which is smooth over
05*M. The terms € L' k- are smooth over M by our standing assumption and hence on °S*M
when lifted. Hence 1t quickly follows that the term ‘Tfjv uw/m*by, on the right-hand side of
the above equation is in R™ C R™~!. So, let us take a look at the other term: X(uk)w*bk.

Consider the coordinates &da® + (2°,&;) of T*M. In (2.3) of [I5] the authors write out
an explicit equation for X over 7*M in asymptotic boundary normal coordinates (recall the
convention about Greek and Latin indices):

0 0 0
X = P+ i~ Lol +I68) + 5706l | 5 - 5oOmlelie

where |£ |2 = h"¢,€,. Since canonical identification is given by 7, = p§;, it is a quick
calculation to show that pushing X to °S*M gives

) 0 [ls 1010 1. 510
X = il + P Mg 5 = [|77Ii - §p5’p|nli} o T [nonu —~ §p3yu|n|i} o (5.13)
0 H

In particular, X extends to be a smooth vector field on all of °S*M and hence X (uk)w*bk is
in R™~. Thus by we have that indeed Xu € R™ 1.

Now suppose that w is as in 1). We will prove the equality in 1) by multiplying w by
a compactly supported (smooth) bump function, use Lemma above, and then let the
support of the bump function go out to infinity. To construct the suitable family of bump
functions, let f; : [0,00) — [0,00) be a smooth function that is identically zero on [0,1/2],
increasing on [1/2, 1], and then identically one on [1, 00) (see Lemma 2.21 in [25] for an explicit
construction). For any 6 > 0, let f5 : [0,00) — [0,00) denote the function fs(z) = f(</s).
Finally, for § < ¢ let ¢5 : M — [0,00) denote the one parameter family of bump functions

given by
be(2) = {fa op(x) pla) <3

1 otherwise

By Lemma |5.11] we have that
(Xu, psw) 2 = —(u, X(dsw)) 2
since ¢sw is compactly supported. Applying the product rule on the right-hand side gives
(Xu, psw) 2 = —(u, psXw)pz — (u, X (¢s)w) 2. (5.14)

We now let § — 07 and show that this equation tends to the equality in 1). We have that
uw € R weRY, Xue R, Xw € R™~! and hence all are in L?*(SM,...). Thus
both (Xu,w)+¢ and (u,Xw) ¢ are in L'(SM). Next, differentiating in 6 demonstrates

29



that ¢s; monotonely increases to the identically one function as § — 0%. Hence by the
dominated convergence theorem, we get that the first two terms in tend to (Xu,w) 2
and — (u, Xw) 2 respectively as § — 0.

Hence we will have proved 1) if we can show that the third term in (| - ) tends to zero
as & — 0%. This will follow if we show that for any compact set K C M contained in the
domain of some interior coordinates (z°) of M or boundary coordinates (p,y") = (2') as
above,

/ (u, X (¢5)w)pe — 0 as & — 0.
K]

If K is contained in the domain of interior coordinates, then this follows immediately since
¢s = 1 on K for sufficiently small § > 0. So suppose that K is contained in the domain of
our boundary coordinates (p, y*) = (z'). Writing the above integral in these coordinates as
in Section |4.4| gives (here di = dz°...dx")

< sup | {u, 0 m(// X (69)]dS. (v)di

The sup .. . is finite because |u| ., |w| g € p" " 2L*[x[K]] and /det g € p~"*VC>(M).
Now, the explicit equation for X in coordinates of TM (e.g. see page 104 in [26]) gives that
X(¢ps) = v fi(p), which we note is supported in {p < 6}. Since g = (do* +huwdy*dy") /2 and
v], = 1, we have that [v°] < p. Letting K, denote the (compact) ordinary projection of K
onto the set {(0,y*)} in our coordinates, we can bound

// ¢5|d8()x<wn/ /5f5 dpdy—d/ dy — 0 as § =0T,
« M Ky Ky

where w,, denotes the surface area of the Euclidean n-sphere. Hence the third term in ([5.14))
indeed tends to zero as § — 0.

(u, X (pg)w)zredSy(v)/det gdz:

Proof of Lemma parts 2), 3):
Let us begin with proving 2). Let u be as described there. We keep working in the same

coordinates that we used in part 1) above. Writing u = pu"7*9/az* ® 7*b;, we have that

Xu
Iy 0
= X (pu)m* W@W *b; (5.15)
Tt o gt 0 *b; 5.16
+Mvpu7rﬂ®7r (5.16)
Pk i gyt 2 b. 5.17
+ 0" pur* — @ 7 (5.17)

a 7

In part 1) we observed that v* is p times something smooth on °S*M and hence it follows
that the term (5.17) is in R™(SM; N ® 7*€) € R™ 1(SM; N @ n*E). Next, we have that
since ¢ is p~2 times a smooth metric on M, the conformal transformation law of Christoffel
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symbols (e.g. see Proposition 7.29 in [26]) give that Ffj are p~! times something smooth on
M. Thus the term is also in R™ C R™~!. Finally, from (5.13) we have that X(p) is
p times something smooth on °S*M and thus it follows from the product rule that the term
(5.15) is in R™~!. Hence indeed Xu € R™ 1. The equality in 2) follows the same way that
we proved the equality in 1).

Finally, let us prove 3). Let u = w/7*b; and w = pw"7*9/ost @ 7*b; be as described there.
In the proof of Lemma 3.2 in [I8] the authors give an equation for the vertical derivativd’| of

w in terms of an operator “V” for which an explicit equation is given on page 350 of [41]. As
the authors do in [I8], we assume that (b;) is orthonormal so that we may use their formula
to write that 9
V™ éu over SM = 8%/#*; ® 7bj, (5.18)
x’l
where for any f € C>*(SM)

Y

0
82- = -
f [aw (fop)} .
O f = g0 f,
where p : TM \ {0} — SM is the radial projection map v — v/j|, over the tangent bundle
minus the zero section. Alternatively, the equality (5.18) also follows from (4.20)). Since the

canonical identification °S *M‘ y = SM is given by 7; = pgizv® , pushing 2/av to °S*M gives

o . .9
goi P g

Thus 9/ovi extends to p~! times a smooth vector field over °S*M and hence so does 0;.
Hence 0 is p times a smooth vector field over °S*M. Thus by we have that the
vertical derivative of u is indeed in R™1(SM; N @ *&).

Next let us take a look at w. Using above, a straightforward generalization of the

derivation of the equation for “div Z” given on page 352 of [41] gives
divEw = 9 (pw) 7*b;. (5.19)

Alternatively, this equality also follows from (the w® there is our pw” here). Since
0; only involves derivatives in v®, we can pull p out of the derivative on the right-hand
side. Since 0; is p~! times a smooth vector field over °S* M, it follows that this is indeed in
R™-YSM;7*E).

The equality in 3) follow essentially the same way we proved the equality in 1). An
example of a minor change that is needed is that the analog of will be

(%W*gu, ¢5w>L2 = —<u, ¢5d\{Vﬂ*g’w>L2,

which we note does not have an analogous “third term” as in ([5.14)) because ¢4 only depends
on position and thus is not affected by the vertical divergence. From here one proceeds as
before.

v v
SWe remark that in their work they write “V¢” for what we denote by “V™ €.”
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For use in Section below, we record the R™-mapping property of the horizontal
derivative as well.

Lemma 5.20. Suppose that V¢ is unitary. If u € R™(SM;7*E) with m > 1, then %’r*gu €
R™YSM;N @ n* £).
Proof: Take any such u. Let (p,y*) = (%), (b;), °T'%;, and ¥, be as in the beginning of
the proof of Lemma part 1) and consider the coordinates v'9/azi — (2%, v") of TM and
7,47 [p — (2%,7;) of °T*M described there as well.

We write u = u/m*b;. By the equations for the horizontal and vertical derivatives given
in the proof of Lemma 3.2 in [I8] and on page 350 of [41],

%”*gu
= (8" — (VFépul)v’) 7 8. ® b, (5.21)
Ox?
+ul V™ E (ET b, ) (5.22)

where for any f € C>*(SM)

0 -0
if = [( - Piww) (f op)]

8 f =g b, f, (5.24)

where p : TM \ {0} — SM is the radial projection map v — /jv|,.

Let us start by taking a look at the term . Recall our standing assumption that
each 51"21 is smooth on M. Next, we observed in the proof of Lemma part 1) that
each v* is p times something smooth over °S*M. By the vertical derivative only
involves derivatives in v* and so we can pull the just mentioned factor of p out of the vertical
derivative in . Thus the term is equal to pu' times &° of something smooth on
05*M times 79/ox* ® m*b;. We observed in the proof of Lemma parts 2) and 3) that
9" is a smooth vector field over °S*M and thus 9 of something smooth on °S*M is again
smooth on S*M. From here it follows that the term (5.22)) is in R™ C R™L,

Finally let us take a look at the term @D Recall that g;; and ¢" are respectively
p~2 and p? times something smooth on M. We observed in the proof of Lemma m parts
2) and 3) that each )7 is smooth on °S*M. Next, canonical identification is given by
n; = pgi;v’, from which it is a quick computation to show that the differential of this
canonical identification takes (recall that z° = p)

0 0 0Gij 0
=5 7% p T + 9ij gii Ny
T

7 (5.23)
SM

90 9 007 ) om,
%) 0 99ij jy— \_9 —
8x/\'—>3x)‘+(3x’\g ;i a_ﬁ, for A=1,...,n,



- PG -
ovt P on,

The important observation is that these are all p~! times vector fields that are smooth over
05*M. Thus by (5.23) and (5.24), the §; and ¢* are respectively p~! and p times vector fields
that are smooth over °S*M. Plugging all of these observations into finally gives that
indeed the horizontal derivative of u is in R™1.

Next we need the following lemma that tells us that the curvature operators have the
mapping property R™ — R™. Note that we do not need V¢ to be unitary for this lemma.

Lemma 5.25. Suppose that w € R™(SM; N @ &) and w € R™(SM;n*E) for integers
m > 0. Then Ru € R™(SM; N @ n*€) and Féw € R™(SM; N @ n*€).

Proof: Let (p,y") = («%), (b;), °T'};, and T¥; be as in the beginning of the proof of Lemma
5.10 part 1) and consider the coordinates v'?/oz' > (2°,0v") of TM and 742" fp — (2',7);) of
OT*M described there as well.

We write u = pu7*9/o2¢ @ 7*b; and w = w/m*b;. We have that

oL or . 0
— J k _ ik m l _ m1l ij ]l k « 9 .
Ru = ( O GYRT + T U — Uil | pu?0? o' 9 @ 7°b;.
In the proof of Lemma part 1i we observed that each v is p times something smooth

on YS*M. In the proof of Lemma parts 2) and 3) we observed that each I'}; is p~" times

something smooth on M and hence its first partials oI /ot are p~2 times something smooth
on M. From this it follows that indeed Ru € R™.
Next, looking at (4.24) and (4.25)) we have that

o 0
Féw = w'gh fijklvzﬂ*—,, ® 7 by.

oz’

By (4.23)), we have that each f;;* is smooth on M, and recall that each g% is p? times
something smooth on M. From here it follows that Féw € R™ as well.

We need one final lemma that provides the needed commutator formulas to prove Theo-
rem [5.9) The following lemma is Lemma 3.2 in [I§], where one can also find a proof.

Lemma 5.26. The following are true, where |...,...| denotes the commutator bracket.

L. h |

[X, Al 5] = V"¢, (5.27)
h * v *
[X, V™ 5} = RV™ ¢ + F¢, (5.28)
divTEV™E — divT VT ¢ = nX, (5.29)
v h

{X, div™ 5} = —div™ ¢, (5.30)
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Proof of Theorem[5.9:
Let u be as described in the theorem. By Lemma [5.10] we have that

(V™ EXu, VT EXu) 2 = (Xdiv™ EV™ €Xu, ) p.

We get that this is equal to (see right after for justifications)
h v Voo, Vo,
(—div™ EV™ € Xu + div™ *XV™ € Xu, u) 2,
= (—div™ V™ ¢ Xu + div™ EXVT o + div™ XXV Cu, u) e,
h * v * v * v * v * h * v * v *
= (—div™ V™ ¢ Xu + div™ © (RV” €4 Fg)u + divT EVT EXu + divT EXXVT Cu, u) e,

— (—nXXu + div™E (R%”*f v Ff) w+ divTEXXVT Eu, ) g,

where in the above four lines we used respectively (5.30)), (5.27)), (5.28), and (5.29). Applying
Lemma [5.10] again gives that this is equal to

n(Xu, Xu) 2 + <div”*‘5R%W*gu + divT E Féu, u) 2 + (X%”*gu, X%’r*guﬁz.

Splitting the second inner product over the “+” sign and then applying Lemma to the
resultant middle two terms proves the theorem.

5.3 Finite Degree of Solutions to Transport Equations

Throughout this section only we make the additional assumption that V¢ is a smooth unitary
connection in £.
In the proof of Theorem we will end up showing that ) — id satisfies an equation of
a form similar to
Xu+ du=f

over SM, which is called a “transport equation.” It turns out that this equation has good
behavior with respect to vertical Fourier analysis, which we now introduce. Consider the
vertical Laplacian:

ATE = _divTEVTE L 0(SM; 1E) —s OF(SM;TE).
By Lemma 3) this operator has the R'-mapping property RY(SM; 7*E) — R©"2H(SM; 7€)
for [ > 2. Let us see what this operator looks like in coordinates. Let (z%) be coordinates of

M, let (r;) be an orthonormal frame of T'M over their domain, let (b;) denote an orthonormal
frame of £ over their domain, and consider the coordinates

v'ri — (2, 0") (5.31)
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of TM. We claim that for any smooth section u = u/m*b;,
ATy = (=A% w7 (5.32)

where “—AS"” is the positive Laplacian on the n-sphere in the variables v*. This is most easily
seen as follows. Pick an arbitrary point xqg € M in the domain of our coordinates, choose
normal coordinates (#%) of M centered at x¢, and consider the coordinates 9'9/ozi — (77, 0%)
of TM. Then observe that and tell us that on the sphere S, M, the operator
A™¢ applied to u = @/7*b; is given by (—AS"@)n*b;. The claim then follows by pushing
this expression through the change of variables (7%, ¢°) — (2%, v").

From this observation and the theory of spherical harmonics (c.f. Section 2.H in [13] for
the latter), we obtain several important implications regarding the vertical Laplacian. First,
we get that the eigenvalues of A™ ¢ match those of —A®", which are explicitly given by

Am =m(m+n—1) for integers m > 0.

Furthermore, letting €2,,, denote the set of smooth eigenfunctions of A™ ¢ with eigenvalue \,,,
any u € C*°(SM;7*E) can be uniquely decomposed as the (pointwise converging) “Fourier
series”

o
U= E U, Uy, € Q.
m=0

Furthermore, for any fixed © € M this convergence also holds in L*(S,M; (7*E),). The
u,,’s are called u’s Fourier modes. The maximum index m for which u,, # 0 is called the
degree of u and is denoted by “degu” (which could be infinity). Naturally, we say that u
is of finite degree if its degree is finite. We can write an explicit equation for the Fourier
modes as follows. For each m € Z, we let

(Y k=1, 1.}

denote a real-valued orthonormal basis of eigenfunctions of —AS" with eigenvalue \,,. Then
in the coordinates (5.31)) and frame (b;) there

lm

ul, (2',0") = Z {/ W (2, w) Y (w') dwsn | Y (V') (5.33)

k=1

(no implicit summation meant in m here). An important property of the vertical Laplacian
eigenspaces is that they are orthogonal (see right after for justification):

Proposition 5.34. For any x € M, the spaces Q,, N L*(S, M;7*E) and Q,,y N L*(S, M; 7*E)
are orthogonal with respect to L*(S,M;7*E) when m # m'. The same holds for Q, N
LA(SM;7*E) and Qpy N L2(SM; 7*E).

From (4.19) and (4.20)) (observing that w"9/ovi = K1 (w" ™ 9/ssi) there) it follows that
another way to express the vertical Laplacian is

A€y = (diszMgradSmMui)ﬂ*bi = (—ASIMui)W*bi.
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The first part of the above proposition then follows from the fact that eigenspaces of
Laplacian-Beltrami operators, such as —Ag, s, are orthogonal (e.g. see Problem 16-15 in
[25]). The second part of the proposition follows from this and the fact that integrals over
SM can be partitioned as described in Section {4.4] above.

Another important property is that the Vertlcal Laplacian commutes with taking the m!™"

Fourier mode:

Proposition 5.35. If u € C®(SM;n*E), then A™ ¢ (u,,) = (A™ ¢u)

Proof: Using the coordinate expression for the vertical Laplacian (5.32)), this follows by
taking ([5.33) and integrating by parts:

) Im lm
(AT (uy)]” = Aty =Y {/ uj)‘mYkdeS’L} e {/ W (=A%) Y dwsa | V"

k=1 k=1

lm

Z [/ ASn UJ)Ykmden:| Y= (A’T*gu)zn
-1
|

Next we will need the fact that Fourier modes have the same regularity as their original
section:

Proposition 5.36. Ifu € R/(SM;7*E) forl > 0, then each Fourier mode u,, € RY(SM;r*E)
as well.

Proof: Take any u € R'(SM;7*E) with [ > 0 and fix m > 0. Let (2%) be coordinates of
M, let (r;) be an orthonormal frame of TM over dom (2'), and consider the coordinates
v'r; = (2%, 0") of TM. Let (b;) denote an orthonormal frame of € over dom (z*). We write
u = w7*b;. Furthermore, let K C dom (z") C M be any compact subset.

First suppose that [ = 0. Since w/ € p" "2 L>[x~![K]], tells us that each u/, €
p" PP L2[r71[K]] as well and so indeed u,, € R'.

Next suppose that [ = 1. Suppose that the frame (r;) was obtained by mapping a local
orthonormal frame (') of °T*M via the canonical identification fo H : °T*M|, — TM, and

consider the coordinates ﬁizi — (27,7,;) of °T*M. Observe that this identification is given
by 77, = v'. Now, take any smooth vector field V; € C* (OS*M; TOS*M) which we write as
V = (V4)"9)oar + (V1),9/om,.. Pushing V to SM give| V = (V1) 0foar + 3" (V1),/ovr. Thus

by
Vifuh) = 04 S { /. giﬂmdw]y’f " Z V

k=1

4 " oYy;m
uJYkmdwgn} > (), 5~ -
r=0

(o

Now, the components (V;)", (V1), are bounded over °S*M N, '[K] because they are smooth
over this compact set. For future use, we point out that this also holds for their 2/s., 9/v7 first

®We cannot use the Einstein summation convention on (V;),9/av" because it has two lower indices.
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and higher order partials as well. Furthermore, since 9/a2" is a smooth vector field over the
0-cosphere bundle, we have that each 9/ /o, in the above expression is in p" ¥ /2 L>®[r71[K]]
by assumption. Hence the above expression tells us that Vi(u/)) € p™* 2 L>[x71[K]| and
so indeed u,, € R'. The cases [ > 2 are handled similarly.

One of the central properties of X = V% ¢ is that it maps
X: Qm — Qm—l D Qm+1- (537)

This is proven in Section 3.4 of [I8]. Similarly, multiplication on the left by ® maps €2,,, — Q,,
since ¢ has no dependence on the vertical variable “v.” In particular, we see that the operator
in the transport equation “X + ®” maps sections of finite degree to sections of finite degree.
The converse is also true, which is the main result of this section (note the assumptions of
“skew-Hermitian” and “unitary”):

Theorem 5.38. Suppose that (M C M, g) is an asymptotically hyperbolic space, (€, (-, )¢)

is a smooth complex Hermitian vector bundle over M, ® € C™ (M; Endskc‘f), and that V¢
is a smooth unitary connection in £. Assume also that the sectional curvatures of g are
negative. If u € R3(SM;7*E) solves

Xu+Qu=f (5.39)

for some f € C®(SM;n*E) of finite degree, then u is also of finite degree.

We note that the above theorem appears as Theorem 4.6 in [1§] in the setting of compact
manifolds. To prove Theorem [5.38] we need several preliminary results.

Lemma 5.40. It holds that
v h
[X, A™¢] = 2div™EV™E 4 nX.

The above lemma is stated as Lemma 3.4 of [I8], whose proof is essentially identical to
that of Lemma 3.5 in [41].

To state the next preliminary result we observe that because of , over each 2, we
can decompose X = X_ + X, where

Xi : Qm — Qmil' (541)

We point out that the maps X, are distinct for different €2, even though we use the same
notation to denote them.

Remark 5.42. Like X, the operators X, map R' — R'~! for [ > 1 by Lemma and
Proposition [5.36| above.

We mention that the idea of splitting the action of the geodesic vector field as above was
first introduced by Guillemin and Kazhdan - see [I9]. The following preliminary result is a
special case of the Pestov identity with a connection (Theorem [5.9):
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Proposition 5.43. Suppose that u € Q,, N R*(SM;7*E). Then

(2m + )| X a2

2
+(2m4n—2)|X ul2 — (RV™ €u, V™ u) 12 — (FEu, V™ €u) s

L2

Proof: We have that u satisfies the equation in Theorem [5.9} Let us take a look at the term

h *
\VARZY

2

Voo h * Vo« h * Vo«
Hwi Eull = (=V"u+ V" EXu, -V U+ V™ EXu) 2 by (5.27),
L2
h 2 v h v 2
- HV” Cull 4 2(Xu, divT EVT ) 2 + HV’T £Xu Lemma 3) and Lemma [5.20]
L2 L2

Applying Lemma [5.40] we see that the middle term in the last quantity is equal to
(Xu, XA™ ¢y — A™ Xu — nXu) 2.
Splitting Xu = X_u + X, u € Q,,,_1 D Qy,11, using that
A"y = \ou, A™EX = My X, AT EX u = A Xyu,

using the orthogonality of the vertical Laplacian eigenspaces, and then plugging the result
into the equation in Theorem proves the proposition after several cancellations.

The following lemma provides the contraction property that is needed in the proof of
Theorem (.38

Lemma 5.44. Suppose that the sectional curvatures of g are negative. Then there exist real
constants c,, — oo such that for sufficiently large m,

(5.45)

I ullZ + cmlluls < [Keul? # n#2,
I ull2s + cnlluls < dullXpul2e i n=2,

for all u € Q,, NR2*(SM; 7*E) where d,,, = 1 + 1/[(2m - 1)(m +1)?].

Proof: We begin by using the fact that the sectional curvatures of g tend to —1 at OM.
Precisely, by the remark after Proposition 1.10 in [31] there exists an £ > 0 so that the
sectional curvatures of g are less than —x' for some k' > 0 over the region {p < ¢}. Hence
this, the compactness of {p > €}, and the negative curvature assumption imply that there
exists a k > 0 such that the sectional curvatures of g are bounded above by —x on all of M.

Now, take any u as in the statement of the lemma. We have that u satisfies the equation

h
in Proposition [5.43| above. We begin by estimating the L? norm of the term V™ ¢u by
utilizing the trick of looking at its vertical divergence. By Lemma [5.40| we have that

v * h * 1 * 1 *
div V™ Ey = §XA7T fu— §A” Xu — gXu,
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n

1 1
= §(X+/\mu + X hu) — (A Xpu + A1 X w) 5 (Xpu+X_u),

2
= —(m+n)Xju+ (m—-1)X_u,

v * v * _].V *
— _div” 5<—m TOEX u + ”; v 8Xu>.

m+1 m—1

Plugging the expression for the A;’s into this, we conclude that

V™= ——V" X, u— VX _u+Z

m+1 m-+n—2

where Z € C®°(SM;N ® 7*€) is such that div"'¢Z = 0. Since div™ ¢ is the formal L?

adjoint of %”*5 over each sphere S, M, it follows that Z is perpendicular to the other two
terms on the right-hand side with respect to L*(S,M;7*E). From the orthogonality of the
vertical Laplacian eigenspaces with respect to L*(S,M;7*E) we get the following estimate
over each sphere:

2 m-+n m—1

h *
V™ éu >

L2(S.Mireg) Mt 1

2
9 ||X—UHL2(S;,;M;W*5)'

2
X ullze (s, pmeey + 2

Integrating this in z € M and using (4.7 implies that this holds for L?(SM;7*E). Plugging
this observation into the equation in Proposition gives (here L? = L*(SM;7*E))

m-+n 9
<2m+n— p— )||X+UHL2 (5.46)

We have that the term

2
= K |u|7s- (5.47)

L2

v

Voo * Vo«
—(RV™u, V™ )2 > k||V™ “u

Furthermore,

—(FEu, VT > — || FE||, ]2 ||V

) - _”FgHLoo)‘;?HuHiz- (5.48)

Hence, letting a,,,, and by, , denote the coefficients of || X, ul[3, and [|X_ul[7, in (5.46) above
respectively we get that

i = | FE o A

Am.n m 2
— [l 72

X ullze > X ullz. +

bmﬂ bm,n

Elementary algebra shows that am.n /b, , is less than or equal to 1 if n # 2 and m > 1, and is
equal to d,, if n = 2. Since \,, = O(m?), the lemma follows.
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We need one last technical lemma:
Lemma 5.49. If u € R}(SM;7*E), then | X it — 0 as m — .

Proof: Take any u € R*(SM;7*E). Let (z%) be coordinates of M, let (b;) denote a frame of
& over dom (z%), and consider the coordinates v*9/az¢ — (z,v") of TM. Take any compact
subset K C dom (2°) € M and suppose for convenience that (b;) is orthonormal. We will
show that [|X w2157y — 0 as m — oo, from which the lemma will follow by covering

the compact M by a finite number of such sets K.
We have that (we omit writing 7= ![K] for the rest of the proof)
Xt || 2 < (Xt 2 = [|[X (ul) + ET5 0 ud, | 70y

m

|, (5.50)

d
k Erk il .j
<D X Gl + sup TG0 [l 2 )
1 ver—1[K]
Since g;;v'v’ =1 and g;; blows up like p~2 at the boundary, we have that each v* is bounded
over the compact K and hence each sup... above is finite. From Proposition [5.35|it follows
that

4 1 . 1 .
el < Tmlze = 51870, < A7 Sule 0 asm = o

where we have used that A™¢u € R3“2(SM;7*E) C L2(SM;7*E) and so the last L*norm
is finite. Thus by , the lemma will be proved if we show that HX’(@Li“,J”L2 — 0 as
m — 00.

Let (r;) be an orthonormal frame of TM over dom (z") and now consider the coordinates
vir; = (2%, v%) of TM. Suppose furthermore that the frame (r;) was obtained by mapping a

local orthonormal frame (C') of °T*M via the canonical identification fo H 0T*M| v = ITM,

and consider the coordinates 7, — (7, 7;) of °T*M. Recall that this identification is given
by 7, = v'. In we pointed out that X extends to a smooth vector field X, over
05*M. Let us write Xo = (Xo)'?/ost + (Xo),2/om, over °S* M, which if we push to SM we get
X = (X0)'9foct + > " (Xo),2/6v'. Thus

Ouk " ouk
XuF = (X)) =2 X,) —2
h = (X0) i + 2 (Kol

where 9u, [ovi denotes 9/avi applied to any smooth extension of u¥, from SM. For definitive-
ness, let us say that we extend u* to T'M minus the zero section by making u* constant along
the radial lines ¢ + tv for ¢ € (0,00) and v € SM. Now, the components (Xo)’, (Xo), are
bounded above K because they are smooth over the compact °S*M N7, '[K]. Hence by the
above equation, the lemma will be proved if we show that both ||0uf fozi|| 2, |04k fovi|| 2 — O
as m — 00.
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First let us take a look at ||9uf, /o
it follows that
ouk o \"
= TR
oz’ oz’

where 94/527 denotes (9u* /a21)m*by. Thus

5] -G |
= - U
L2 Ox m||p,

where we have used the fact that 9/a2 is a smooth vector field over the 0-cosphere bundle
and hence 3/azi(A“*5u) c R332 C L2

Finally, let us take a look at ||our, /ov
for any fixed x € M we have that

foul 5
So M 8'Ui

where grad, g, means the gradient in (v") over the Euclidean sphere {(v1)2 +... (") = 1}

2. By tucking 9/a.* under the integral sign in (5.33)),

2 2

—0 as m — 0Q,
L2

k
ou;’,

oxt

0
oxt

1
o A

0\
——AT¢
ozt

u u

2

;2. Since we extended u¥, to be constant radially,

2

dS,M =

aufn i ’
o @)

2
dvgn < / |gradvegnum dvgn
Sn Sn

with respect to usual spherical metric. Looking at the last integral, integrating by parts
gives
/ lgrad, gt | dugn = / W (— AT Y dvgn = A / [k [2dS, M.
sn sn SeM
Integrating in x then gives that

2

1
< lfelly < 5
L2 m

HA”*guH; —0 asm — oo.

ouk,
ov'

As discussed above, this proves the lemma.

Proof of Theorem[5.38:
We start by assuming that n # 2 since the proof of the case n = 2 requires a slight

modification. Comparing Fourier modes of order m > deg f in ([5.39)) gives that
Xyt 1 + X Uiy + Pu,, = 0. (5.51)
Using this relation and plugging w,,+1 into u in ((5.45) gives that
1Kt 1B = 1Kt B + 10012 + ottt 5 + 2Re( @ty Xt 1)g2. (5.52)
The idea of the proof is the following. One can plug the relation ((5.51)) with “m+1” replaced
by “m — 1" into HX+um,1||iz in (5.52), use (5.45) again, and then proceed recursively. One
will get a long expression on the right which one needs to cleverly manipulate to bound

[thmo || 3> for some fixed index mg. Then using that ||Xtm 1], goes to zero as m — oo by
Lemma will force ||ty ||iQ = 0. We will show that this holds for large enough mg, from
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which the theorem will follow. The first obstacle to accomplishing this is the inner product
term 2Re(Puy,, Xy 1y, 1) 2 above. The following claim helps resolve this.

Recall from Section [4.7|the definition of X® = V7 Endé@p. In partlcular since @ is smooth
on M and hence on °S*M (when lifted), it follows from (4.26 - 5.12)) and the sentence after,
and ([5.13)) that the quantity X® extends smoothly to °S* M
Claim: The following identity is true (because ® is skew- Hermitian):

<X+Um_1, CI)Um>L2 + <X+Um_2, CI)Um_1>L2 = —<um_1, (X(I))Um>L2 — ||d>um_1 ||ig

Proof of claim: This is simply a computation:

(Xytm—1, Pum )z = (Xttyy—1, Py )2 use X = X_ 4+ X, and Proposition

— (U1, X( Py, )) 12 Lemma [5.10]

—(Um—1, (XP)ty, + DXy, ) 2 definition of X,

= —(Up_1, (X@)um>L2 — (U1, DX ) 12 X =X_ + X, and Proposition

—(Um—1, (XP)tup )2 + (U1, P[Py —1 + X Upy_2]) 2 used .

From here the claim follows by rearranging and using that ® is skew-Hermitian.
End of proof of claim.

We return to proving the theorem. The above claim tells us that to get rid of the last
term in ([5.52)), we can add (5.52)) and (5.52)) with “m” replaced by “m — 1”:

2 2 2 2 2 2
Xt [z + Xt |72 2 X pvmi 72 + [Xium—2l72 + [[Pumllz2 + [[Pun-1]72

tmit|[tmetllFe + Cmlltmlse + 2Re(Pt, Xy iy 1) 12 + 2Re(Pty 1, XUy —2) 12,

and then apply the equation in the claim to get the following inequality, where for brevity
2 2
am = [| Xy |72 + (X thm—1[[7e:

Am+1 > Up—1 + Hq)umHiQ + H(I)Umfluig + Cm+1Hum+lH%2 + CmHumHiQ
—2Re(um—1, (XP)uy,) 2 — QHCDUmlei?

> a1+ Cml [t 72 + ol 72 = lm-allze = [(X@)umlz2 — 1@ 7.

Since ® and X® are smooth (and hence continuous) on the compact manifold °S*M, there
exist constants B,C' > 0 such that

|@Al7. < Bl

I(X@)A72 < CAll7,
for any h € C*°(SM;7*E) N L*(SM;7*E). Hence

Uyt = Q1 + T (5.53)

where
Tm = Cm-i-l”um-l-l”i? + (Cm - C)||Um||i2 - (1 + B)||um—1||2L?'
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Applying (5.53)) recursively gives

for any pair of indices m, mg > deg f such that m = mg + 2k for some integer k£ > 0. We
seek to bound the resultant tail of ;’s. To do so, choose mg big enough so that for m > my,
¢m is bigger than both C' and B + 1. Hence if m = mq + 2k,

k-1
Tmo & Tmo42 + -+ 4 T = Gyt [ 72 + Z (emorrrai = (14 B))|[thmor142il 72
i=0
k
+ 3 (Cmprai = Oltmgraill 72 = (14 B)l|ttmg 1172
i=0

> Cm+1||um+1||i2 - (1 + B)”Umo—l”i?-

Hence for any such m = mg + 2k we get that
i1 > g1 = (14 B[ty 1|72

By the definition of a,,,—1 and we have that a,,,—1 > cm0_1||um0_1||2L2, and hence we
finally arrive at

Ayt > (Cmg—1 — (1 + B))Hum()*lui?'
Assume we defined my before so that c,,,—1 > 1+ B as well. Observe that a,,1; — 0 as
m — oo by Lemma Hence we get that |[tm,_1]/7» = 0 and thus u,,, 1 = 0 for all such
large enough mg. This proves the theorem in the case n # 2.

Finally, let us discuss the modification needed in the case n = 2. In this case we instead
use the second equality in and hence proceeding as above arrive at that for sufficiently
large m

dmam+1 > A1 + Tm,

where we have used that d,, > d,,.1 and that all d; > 1 for ¢ > 1. Multiplying through by
dm—2, applying the same inequality with “m” replaced by “m — 2” on the right-hand side,
and then repeating recursively gives

(A < oo g ) A1 = Amg—1 + Tmg + (g ) Tmga2 + oo+ (dm—g - o - dig)Tm

for any pair of m, mg > deg f such that m = mg + 2k for some integer k. Since the d; > 1,
we get the inequality

k
(H dm—2i> Am41 Z Amg—1 + Tmg + T'mo+-2 + .o T
i=0

Again by the definition of a,,,_1 and (5.45) we have that @y, > (“m0-1/dpy 1) |[tme—1]|72 and

SO N
Crno—
<H dm2¢> Ayl 2 <d o _ (1 +B))H“molHi2'

i=0 mo—1
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Since the d,,, — 1 as m — 0o, we can assume that we defined mg before so that emo-1/d,,, , >
B + 1 as well. Furthermore, [[~_, d,, converges by the infinite product criteria since
> (dm — 1) < 0o and so the coefficient on the left-hand side is bounded by some fixed
constant. Hence, as before, the theorem follows from the fact that a,,.1 — 0 as m — oo.

Theorem has one disadvantage. Though it tells us that f being of finite degree
implies that the solution u is also of finite degree, it gives no information about the degree
of u itself. The following proposition remedies this by assuming an additional condition on
the metric ¢ and connection V¥.

Definition 5.54. Suppose that (M, g) is a Riemannian manifold, € is a smooth complex
vector bundle over M, and that V¢ is a smooth connection in €. Letting Xy : Qp, — Qs
be the operators defined in , for any indexm > 0 we call elements of ker X+|Qm twisted
conformal Killing tensors (CKTs) of degree m of the connection V€. A nontrivial
twisted CKT is a twisted CKT of degree m > 1 that is not identically zero.

We remark that the word “twisted” comes up in the above definition because there is a
vector bundle involved.

Proposition 5.55. Suppose that (M C M, g) is an asymptotically hyperbolic space, (€, (-, )¢)
is a smooth complex Hermitian vector bundle over M, ® € C™ (H; Endskc‘f), and that V¢
is a smooth unitary connection in £. Assume also that the sectional curvatures of g are
negative and that V€ has no nontrivial twisted CKTs in R3(SM;7*E). If u € R3(SM;7*€)
solves

Xu+du=f
for some f € C®(SM;7n*E) of finite degree m, then u is of degree max{m — 1,0}.
Proof: We know by Theorem that v has finite degree, call it m’ > 0. If m’ = 0, then

we are done. So suppose that m’ > 1. We will prove this theorem by contradiction: suppose
that m’ > m. Then comparing the Fourier modes of order m’ + 1 of both sides of the above
equation gives

X+um/ = 0.

Hence, uy,, is a twisted CKT that is in R*(SM; 7*E) by Proposition [5.36] Since we assumed
that there are no such nontrivial CK'Ts, we conclude that w,, is identically zero. But this
contradicts that the degree of u is m’, and hence proves the proposition.

5.4 Regularity of Solutions to the Transport Equation

Before we prove the main result of our paper, we need to establish the regularity of solutions
to transport equations of a specific form. Here we use the material that we introduced
in Section up to ([2.16) there and the two sentences after. Below we consider sections
Ae(C*® (M; Hom (T M, E )) due to their role in Theorem and its proof when we study
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A=V —VE We point out that each A € C'*° (H; Hom (T M, 5)) is canonically identified
with a bundle homomorphism of the form A : TM — &, whose restriction to the unit tangent
bundle A : SM — £ we will also denote by the same letter.

The following is our regularity theorem:

Proposition 5.56. Suppose that (M C M, g) 1s a nontrapping asymptotically hyperbolic
space, p is a boundary defining function, £ is a smooth complex vector bundle over M, and
that V¢ is a smooth connection in €. Suppose also that we have a ® € pC> (M; End 5), a
¢ € pC™ (W; 8), and an A € C (M; Hom (TM; 5)) Then for any given boundary data

h e C> (@,bS*M; W;(g’aibs*ﬁ), there exists a unique solution u € C*> (bS*M; 7r§8) to
Xu+Pu=¢+A onSM, (5.57)

with uly vgoq7 = .

Furthermore, for any | > 0 there exists an N > 0 dependent only on (M,g) and 1
such that the following holds. Suppose that ® € pNT1C> (M; End 5), ¢ € pNtLC (M; 5),
A€ pNCOe (H; Hom (TW, 8)), and that the connection symbols of V¢ are in p¥NC> (M) in
any boundary coordinates and frame (in the sense of Definition . Then for all solutions
u as above that also satisfy h =0 and uly, g.57 =0, it holds that u € RISM;7*E).

Proof: Let d = rank . From Lemma 2.1 in [I5] we have that X = pX for some smooth
vector field X over ®S*M that is nonvanishing and transverse to 9°S*M. Let (p,y*) = (a*)
be asymptotic boundary normal coordinates of M, (b;) a frame for £ over their domain, and
consider the coordinates v'9/oz* — (*,v") of TM. Let ¢T% denote the connection symbols
of V¢ with respect to (?/a2) and (by). Then observe that the components of with
respect to (7*bg) and (9/aa?) are given by

XuF + gffjviuj + @?uj = ¢F + AR (5.58)

where k = 1,...,d. We point out that the A* are smooth on M over our coordinates’
domain. Dividing through by p gives

Xub + (p_l)gl“fjviuj + p_léfuj = p loF + ptARY (5.59)

Take the coordinates ny®/p + 1 mdy® — (2%,n;) of *T*M and observe that the canonical
identification o (F*) ™" : bT*M}M — T'M is given by

o mp i =0
i g . 5.60
v=9 {n i >1 (5.60)

We denote the right-hand side by ¢* {ns}. Pulling the above equation (5.59) to *S*M (in
the sense of Remark {4.10]) gives

Xut + p " oy + p ! = p~ik + pT A (s ). (5.61)

We remind the reader that each g¥ is p? times something smooth on M. Hence it follows
from our assumptions that all of the terms in this differential equation are smooth on *S*M.
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Since we assumed that ¢ is nontrapping, it follows from the proof of Corollary 2.5 in
[15] that any maximal integral curv o of X is of the form o : [a,b] — *S*M where a
and b are finite with o(a) € 9_°S*M and o(b) € 9,°S*M. Hence, (5.61) can be viewed as
ordinary differential equations (ODEs) along such curves o. Hence, since X is nonvanishing
and transverse to 9°S* M, it follows from the theory of flows and the existence, uniqueness,
and smooth dependence on initial condition of linear ODEs (see [0] and [25]) that indeed
a unique smooth solution u exists to and hence satisfying the given boundary
data.

Next suppose that h = 0 and u] 0,5 = 0. If I > 1, suppose that we also have smooth

vector fields Vi, ...,V € C*° (OS *M;T°S *M) over the O-cosphere bundle. Pick any point zy €
OM contained in our coordinates (z'). We will show that for some compact neighborhood
K of x (i.e. g is in the interior of K)

u(2)] < pYE)LX [ [K]] and |V, Viu(z)] < p%(2) L [ )]

over z € m'[K] where j = 1,...,l and N; > (®+1)/> are constants. From this and it
will follow that v € R!. Throughout the proof we will make N > 0 is as big as we need
whenever we need it. At the end of the proof, we will discuss why there exists a maximum
upper bound on the size of N that we need that is dependent only on (M, g) and I.

We begin by establishing a few facts about the flow of X. Let ¢ : SM xR — SM denote
the flow of X. For any point ¢ = ny®%/p + nady* € ®S*M we write its identified point on
SM as z € SM. In [15] the authors explain that close enough to the boundary, the flow ¢
moves away from the boundary when 79 > 0 and towards the boundary when 7y < 0. More
precisely, by Lemma 2.3 in [I5] and its proof there exists constants C,e > 0 such that if we
take any z € SM N {p < e} and write p(t) = po ¢.(t),

1. if 9o > 0 then lim,, o .(t) € 0_°S*M and for t < 0 we have that p(t) is both
increasing and satisfies p(t) < Cet,

2. if gy < 0 then limy_ o ¢.(t) € 0,°5*M and for t > 0 we have that p(t) is both
decreasing and satisfies p(t) < Ce™".

By the same lemma and its proof, it follows that there exist compact neighborhoods
K,K' C{p < e} of myin M satisfying K C K’ C dom () such that for any z € 77 '[K], .
will always be contained in 7 '[K’] for t < 0if g > 0 and ¢ > 0 if ny < 0.

Fix some Ny > (»+1) /> whose size will be increased later if needed. Our first goal is to
show that each u* € pNo L>°[r~![K]] where our approach will be to study the growth of the
solution to by writing that equation as an ODE along integral curves of X. Fix any
¢ &z € mYK]. Suppose that 7y > 0 since the proof below is essentially the same for the
case 19 < 0. We set B and b to be the d x d matrix and d x 1 column vector respectively
given by

Bf = (°Tjv' + @h) and vt = ¢F + AR, (5.62)
and we denote B(t) = Bop,(t), b(t) = bop,(t), and u(t) = uow,(t). This way, along
@, is given by the ODE

dut

— BFu' = V" (5.63)

i.e. integral curve whose interval domain cannot be extended.

7
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Since u|ygoq7 = 0 and limy_,_o @.(t) € 0_"S*M, we have that our solution u satisfies the
“Initial condition” lim;, o u(t) = 0. Now, for any matrix M or column vector w, let | M|
and |w| denote the norms Y, |M}| and Y, |w’|. Fixing any time to < 0, we get from ,
the fundamental theorem of calculus, and the triangle inequality that

u(t)] < Julto)] + / IB(s)|uls)|ds + / Ib(s) | ds. (5.64)

We will use this to bound |u(0)| = |u(z)| in terms of a power of p. We employ the standard
technique in ODEs of defining the function R : (—o00,0] — R given by the first integral on
the right-hand side above. Whenever |B(t)| # 0,

1
B RO < luto)] + R() /|b )|ds

e R(0) < 1BOIRO + B Ju(o)] + /|b lis).

Observe that this inequality also holds when |B(¢)| = 0 and hence for all ¢ < 0. This
resembles a separable ODE in R and ¢ and hence can be treated similarly. In particular, if

we take |B(t)|R(t) to the left-hand side, multiply through by exp [— fti\B s |ds} integrate
from t =ty to t = 0 (using that R(tg) = 0), and finally divide through by exp [ ft |B(s ]ds}

we will get

- / IB(s)|[u(s)|ds (5.65)

0 . t
Seft%B(sNds/ e_ftoB(S)dSyB(t)]<\u(to)|+/ ]b(s)|ds)dt.
to to

Before we let ¢ty — —o0, let us discuss integrability. Fix Ny > (»+1 /> whose size will be
increased later if needed. Because we are working on the sphere bundle and g = p~2g for
a smooth metric g, there exists a constant Co > 0 such that the magnitude of v in the
expressions for B and b in are less than Cyp on 7~ !'[K']. Hence by we have
that there exist constants C3, Cy, > 0 such that |B| < Csp and |b| < Cn,p™°™! on 771 [K]
(i.e. Cu, depends on Np). In particular, since p(t) < Ce' for ¢ < 0 we have that all of
the integrals on the right-hand side of converge if we let tg — —oo. Hence letting
to — —oo in (5.65]) gives that

/_ OOO|B(3)Hu(s)]ds < J0lBlas / ()| / 5)|dsdt (5.66)

where we have used that lim; , ., u(t) = 0 and that exp [ ft |B(s |ds]

<
the right-hand side further, observe that since p(¢) is increasing on ¢ < 0 we have that
[b()] < Chop(t)p™°(0) < C, Ce'p™(0) and so

1. To estimate

/ " (s)|ds < Cw,Cp™ (0). (5.67)

—0o0
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Doing a similar sort of thing for |B(t)|, we get from ([5.66) that

/0 |B(s)||u(s)|ds < eC3CCgCCNOC’pN°(O). (5.68)

—00

Finally, letting ¢ty — —oo in (5.64]) and plugging (5.67)) and (5.68)) into there finally gives us
that for some constant Cj > 0,

[u(2)] < Cop™(2) (5.69)
for all z € 7 ![K], where we have used that u(0) = u(z). Hence indeed each u* €
po Lo K]].

Next, suppose [ > 1 and fix N; > (»+1) /2 whose size will be increased later if needed. We
show that Viu* € p™ L*°[r~1[K]], after which it should be clear how the cases of the higher
order derivatives are handled (i.e. VoViuF, ...) if I > 2. We do this by applying V; to the
ODE and studying the growth of the solution. Applying V; to and rearranging,

we obtain

d[Vi(u* o p)]
dt

Considering that in form this is a similar ODE for V; (uk o gp) as (5.63)) is for u*, up to a few
details we describe below, a similar proof as for (5.69) shows that for some constant C] > 0

Vi(wo @)(z,0)] = [Viu(z)] < C1p™ (2)

+ (Bf o) Vi(u* o) = Vi (b 0 0) = Vi(Bf o) (u' 0 ). (5.70)

for all z € 77![K] and hence indeed each Vju* € p™ L>®[x~1[K]]. The only analogous steps
that we are missing and need to show is that V; (u’“ o <p) satisfies the “initial condition”

Jdim Vi (uf o) =0 (5.71)

and that there exists a constant 6]\/1 > 0 such that the right-hand side of ‘D satisfies
Vi(b* o @) = Vi(BF o) (u' 0 p)| < Crnyp™ o (5.72)

for all z € 7~ H[K'].

By shrinking everything if needed, we assume that there is another compact subset K of
our coordinates’ domain such that K’ C K” C dom (z*) and such that for any z € 7—![K],
o, will always be contained in 77} [K"] for t < 0if gy > 0 and ¢t > 0if ny < 0. Throughout the
rest of the proof, we again assume that we are working with points such that 7y > 0 because
the proof is similar for the case ny < 0. We begin with showing the “initial condition” .
Let (¢, ;) denote the components of ¢ in the coordinates (x,7;) of *T*M. Then over the
interior of ®S* M, we have by the chain rule that

ouF , ou*
Vi(uop) = (az,z- o 90)‘/190’ + (877 o 90)‘/1%- (5.73)

Since u|yg.37 = 0, and by 1) u vanishes like p™° at the boundary 9°S*M where we can
require Ny > 2, all of ©*’s partials vanish at the boundary like p¥o~!. In particular, for fixed

z e m K],
ou” ou” _
(&ri o gp), <am o gp) € O(e(N0 1)t) as t — —oo. (5.74)

7
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So let us take a look at size of the terms Vi¢' and Vip; in . Consider the coordinates
7,4 [p > (27,7;) of °T*M (note the bars to distinguish these from our coordinates of *T*M
above) and let (p', $;) denote the components of ¢ with respect to these coordinates. We
note that (2, %;) extends smoothly to the boundary 9°S*M since it is the flow of X and
the latter is smooth on °S*M by . Since canonical identification is given by ¢ = 27,
o = T and Ny = p 17, for A = 1,...,n, we have that by identification p' = &', py = Py,

and ) = (3°) '@, for A =1,...,n where we point out that 3° = po 3. Hence

Vigr = —(po @) Vi(@)@r + (po )" Vign  for A=1,...,n. (5.76)

We point out that @y are bounded over 7—![K”] because they are smooth over the compact
7 [K"]. Now, we showed in that X extends as a smooth vector field on °S*M.
Hence, as is noted at the end of the proof of Lemma 3.13 in [15], X has a Lipschitz constant
uniformly bounded on the compact °S*M. Since ¢ is the flow of X over °S*M, as the authors
explain there it follows by Gronwall’s inequality that there exist constants Cy, ¢y > 0 such
that all of the partials

Y

0%'| |0F'| |9%i| |0
‘8aci ’ ‘aﬁi ozt |’ ‘8@
on (z,t) for all z € m'[K'] : my > 0 and ¢ < 0. Next, if we write in coordinates V; =
(V1)'%oxt + (V1),2/om, over °S*M, we have that the components (V;)" and (V}), are also
bounded over 7~ !'[K’] because they are smooth over the compact m;'[K’]. Hence there
exists a constant C5 > 0 such that

< Cye ! (5.77)

‘V@Z‘ < Cse” " and Vigi| < Cse™ (5.78)

on (z,t) forall z € 7~ '[K'] : gy > 0 and ¢ < 0. Plugging this into (5.75)) and (5.76)), and then
into ((5.73)), we see that choosing Ny big enough in ((5.74]) will make the “initial conditions”
(5.71)) hold (in particular, any Ny > ¢4 + 1 will work).

Finally, let us show that (5.72) holds. By (5.69), we already have that |(u’ o )| <
Ch\pNoo . Next, the canonical identification T'M = 0T*M is given by v* = p~'¢*7, and so
by (5.62) we have that over °.S* M
Bf = <5F§jp—1gu‘ Ny + (P?) and b =" + AfpT g Ty
In particular, we see that these are pV*! times something smooth on °S*M. Hence, the
partials 9B fost, 9B [oz,, OV Jost, and 9% fog, are all p"V times something smooth on °S*M. In

particular,

OBF OBF ObF
d J — < CepN 5.79

on (z,t) for all z € 771[K'] : g9 > 0 and t < 0. Now, over °S*M we have that

Ob*
%0807

oy ¥

?

k ~] k ~
Vi(Bf o) = (%% ow)‘/lsol + (%% o )Vida, (5.50)
Vithog) = (Zhoo)id + (2L op) Vi
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Hence if in (5.79)) we write p~ o p < Ce? (pN*C‘1 o gp) it follows from (}5.78) and 1} that
requiring N > ¢4 + Ny + 1 will make hold. As discussed above, this completes the
proof that Viu* € pM L[~ K]].

As we mentioned above, if [ > 2 the proof that VaViuf € pMs L®°[r![K]] for some
N3 > (n+1) /5 and similarly for the higher derivatives follows similarly, starting with applying
V5 to . We end the proof with a discussion of how we can ensure that the N > 0 that
we used has an upper bound dependent only on (M, g) and [. Throughout the proof we
required that N (which determines the size of Ny, Ny,...) is bigger than fixed numbers (e.g.
2), numbers dependent on the dimension (e.g. (+1)/2), the constant ¢; in (5.77)), and the
analogs of ¢4 in ((5.77) when carrying out the proof for higher order derivatives (i.e. VaViuF,
...). We explain why the latter two can be bounded. Due to the compactness of the boundary
OM , we can cover M with a finite collection of neighborhoods of the form K, K’, and K" as
described above which in turn determine their own ¢4’s in and their higher derivative
analogs using only the geometry of the geodesic flow . Hence, taking the maximum of all
such ¢4’s and their higher derivative analogs will provide us with an upper bound for N that
works throughout the whole proof. In particular, this upper bound for N will be dependent
only on (M, g) and (.

5.5 Proof of Theorem 2.8

In our proof, we will assume that the N > 0 in the statement of the theorem is as big as
we need. It will be clear that the size of N that we need is dependent only on (M, g). The
first step is to provide a formulation of as a single transport equation of endomorphism
fields over SM. To begin, take coordinates (z%) of M, a frame (b;) for £ over their domain,
and let °T}; denote the connection symbols of V¢ with respect to (?/oz*) and (b;). Recall
from that in these coordinates

VrEU =oU + (PT)U — U(°T)

and that we denote XU = V7% Frdé{/. Tt is easy to check from here that this connection is
unitary with respect to (-, -)gade (see (4.27)) whose connection symbols are in p¥C*> (M) in
any boundary coordinates and frame (in the sense of Definition .

_ Next, by looking in local coordinates and an orthonormal frame for &, it follows that
V¢ = V& + A where A € pNC™ (H; Hom (TM, 8)) Consider solutions U and U to the
following transport equations on SM:

XU + U = 0, Uly vgeqr = id,

XU + AU + dU = 0, (7’ =i,
o0_bS* M

(5.81)

whose existence we now justify. It is not hard to check using (4.9) that in the second equation
“XU + AU” is given by “(7*V),U” for the connection V = V¢ + A Thus, by thinking
of U+ ®U and U + ®U as elements of p"'C*>(M;EndEnd £), by plugging End £ into
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& in Proposition [5.56| we get that the solutions to the above two equations indeed exist and
are unique. N
We demonstrate the usefulness of U and U. Suppose that v : (—o0,00) — M is a
complete unit-speed geodesic and that u : (—o0,00) — £ is the smooth solution along 7 to
the initial value problem
Vi(t)u(t) =0, lim wu(y(t)) =e, (5.82)

t——o0

where e is an element in &,, and xo € M is the limit of v(¢) as t — —oo. We point out
that such a u exists by Lemma part 1) with & = 0.

Let 0 : (—o00,00) — SM be the integral curve of X satisfying v = 7o o and let @
denote w lifted to o via the canonical identification of £ and 7*€. We claim that (U o o)u(t)

and <l7 o a)u(t) are solutions to 1} and 1} with ® and V¢ replaced by ® and V¢
respectively. It follows from that VI €4 & V u = 0. Thus
Vf;((U oo)u) +(Uoo)u) = [VSHdE(U o a)}u + (Uo U)Vgu + ®((Uoo)u) (5.83)
~ [V "¥U]a+ UV ®a+ ®(Ua) =0, with tlim (U oo)u(t) =e,
——00

where Vgndg(U oo) = Vi PMEU follows from a local coordinate calculation using (4.9)).
Similarly
6§<<(700)u> —i—@((fjoa)u) (5.84)

= Vg((ﬁoa>u> + (Aoa)(ﬁoa)ujsz)((ﬁoa)u)
= [Vgndg<(7 o 0)]u + <(N] o 0>V§u + (Aoo) ((7 o a>u + (5(((7 o 0)u>
o (V”X* Endf(?)a +OVTEq+ A(ﬁ@) + (V) =0, with lim_ ((7 ° J)u(t) —e.
Hence our claim above is indeed true. By our assumption the data is the same for
(V€,®) and (VE,®) and so

fim (U o o)utt) = Jim (ﬁ o))

By Lemma part 2) parallel transport such as above is an isomorphism between
fibers. Hence varying the “e” in 2)) implies here that U=0Uon 0,S*M as well (i.e.
they already agree on 0_"S*M by deﬁmtlon).

Intuitively speaking, we have demonstrated that knowing the parallel transport ,
the endomorphism fields U and U encode the transform that takes all possible (v,¢) to
the data 1) of V¢, ® and Ve , d respectively. Furthermore, the assumption that the two
transforms are equal gives us that U and U are equal on the boundary 9°S*M. Hence we
have reformulated our task to showing that U = U on 9"S* M implies the gauge equivalence
stated in the theorem.

Guided by the observation ([2.13)) in the introduction, we next study the behavior of U U-!
over the interior SM. We note that both U and U are invertible because if one rewrites
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(5.81) as in (5.59)), we get that they satisfy a matrix ordinary differential equations with
an invertible initial value (e.g. see (1.8) in Chapter 3 of [6]). A quick computation using
and (4.9) shows that X(id) = 0 and that X(W;W,) = X(W)W, + WX (W) for all
Wi, Wy € C=(SM;m* End £). Hence by (5.81),

X(ﬁ—g::—if4x(ﬁ)ﬁ—1:if*(Aﬁ>+§ﬁ)ﬁ”e=ﬁ‘b4+if%i
Next, we have that
X(Uﬁ—ﬁ::pnwmﬁ—ﬁ+U(ﬁ4Aw—ﬁ*$>,
and so we finally arrive at that ) =U U~! satisfies
XQ+PQ — QA — QP =0. (5.85)

This is a transport equation over SM. However, to apply our finite degree theorems from

Section [5.3] above, we need our solution to vanish at “infinity.” Hence we instead consider
W = @ — id which satisfies

XW +OW —WA-—Wd=—-d+ A+, (5.86)

and vanishes on the boundary o*S*M. It is an elementary exercise to check that W —
W — W is an element of pN*+1O> (M; EndgEnd 5) which we shall call ¥ (note the “sk”
with respect to (-, -)gndag). Similarly, XW — WA is given by (7*V’) W for the unitary con-
nection V'U = V€] — U A whose connection symbols are in pN (> (H) in any boundary
coordinates and frame (in the sense of Definition [2.7)). Thus can be rewritten as

(TV) W+ U(W) = f (5.87)

where f is the right-hand side of (note that U(W) is not a matrix multiplication but
rather W applied to U).

Hence assuming that N is large enough, by and Proposition and we have
that W is in R3*(SM;7*End€). Furthermore, by Remark we have that W extends
continuously to °S*M and vanishes on the boundary 0°S*M. Next, looking at in
coordinates and frame, above any fixed point z € M the entries of the right-hand side
f are restrictions of homogeneous polynomials of order zero and one in the variable v.
By the theory of spherical harmonics these are elements of (Fourier) degree zero and one
respectively (see Section 2.H in [13]). Since we assumed in the theorem statement that V'
has no nontrivial twisted CKTs in R*(SM;7* End £), by Proposition we have that W
and hence @ are of degree zero. Thus, we get that Q € C*(M;End &) N C° (M; End 5) (i.e.
up to identification) such that Q|57 = id and (Q —id) € R*(SM;7*E).

As the final step, let us show that this () is the gauge that we wanted. In our coordinates
above, we have that

XQ =v(Q) + (‘I)Q - Q(°T),
whose entries are first order polynomials in v. Plugging this into (5.85) and equating the
zeroth and first Fourier modes gives

dQ - Qd=0 and XQ — QA =0, (5.88)
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The first equation gives d = Q~'®Q over M and hence over M by continuity. The second
equation gives

A=Q'XQ=Q '@ + (FIQ - Q(I)],

= A+ (1) = Q@ (@) + Q7' (°I)Q,
Now, take any section u € C™(M;&) and write it as a column vector with respect to the
basis (b;). We have that (here v(u) denotes applying v to every entry of u)

65” = v( [ er )}u eq. for 65,
= U(Q_lQ ) +Q (Q)u+Q (5 )Qu QQ ™' = id and plug in eq. above,
=v(Q'Qu) — (Q )Qu + Q7' (°I)Qu Q 'v(Q) = —v(Q")Q (prod. rule),

= Q 'w(Qu)+ Q7' (°I) Qu prod. rule,

= Q7'Vi(Qu) eq. for V.

Again this relation extends to M by continuity and hence this proves

Lastly, let us show that @ is unitary. This is trivial on oM since Q 1d there. Over
SM, since Q = U U- . this will follow if we prove that U and U are unitary. We start
with U. Choose any eo € (T°E) (4y,00) Where vg € Sy, M. We will show that |Ueo|s = |eoe-
Consider the g-geodesic 7 : (—o0, oo% — M satistying v(0) = zo and +/(0) = vp and its lift
o (—00,00) = SM to SM which passes through vy at t = 0 (i.e. v = mo0). By Lemma
parts 1) and 2), there exists a parallel section E : (—00,00) — £ (i.e. VEE = 0) such
that lim;, o F(t) = e_« exists and F(0) = ey. Notice that since d/dt\E\Z = 2<V§YE, E)=0,
we have that |e_o|> = |eg|2. Now, by the calculation in we have that

%\(U o O')E|?— = 2<V§[(U o0)E|,(Uoco)E)e = (—P(Uoo)E,(Uoco)E)e =0,

where in the last equality we have used that @ is skew-Hermitian: (—Q®UE,UE)e = (UE, QUE)¢ =
(PUE,UE)s and hence is zero. By (5.81)) we have that U is the identity on 0_*S*M and so
(U o 0)E|s — |e_sl|” as t — —o0. These two observations imply that

Ueole = (U 0 ) E(O)z = le—scle = leol;

So U is indeed unitary over SM. A similar proof using 1) shows that U is unitary, and so
as discussed above we get that @) is indeed unitary. This fact extends to M by continuity.

6 Proof of Theorem 2.15|

Suppose that u € R*(SM;7*€) is a nontrivial twisted CKT of degree m > 1. We will
show that it is identically zero everywhere. We already proved the existence of a x as in
the statement of the lemma in the proof of Lemma above. Recalling that X, u = 0 by
definition, the idea here is to use our curvature bounds and Proposition to conclude
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that X_u = 0 as well. To do this, observe that plugging (5.47)) and ([5.48) into the equation
in Proposition gives
2

+@2m 41 = 2)[Xulge + (kA = [[FE]| o A7) 7

h
()l > [V
L2

Recalling the definition of \,,, our assumption ||F € H 1o < ky/n implies that the coefficient
of |Ju||?, on the right-hand side is nonnegative. Hence both sides of the inequality are
nonnegative, and thus the left-hand side being zero implies that X_u = 0. Hence Xu =
Xiu+ X u =0 as well.

Now, choose any point vy € S, M. We will show that u(vy) = 0. Consider the g-geodesic
v 1 (—00,00) = M satisfying v(0) = z¢ and +'(0) = vy and its lift o : (—o0,00) — SM to
SM which passes through vy at t = 0 (i.e. v =7 oo and o is an integral curve of X). As
we explained in Section above, since (M, g) is nontrapping the limit lim,_, .. y(t) € OM
exists. We have that u vanishes on the compact boundary 9°S*M by Remark and hence
it follows that that w o o(t) — 0 as t — —oo. This combined with the fact that Xu = 0
imply that uo o(t) =0 and so u(vg) = 0. Thus indeed u vanishes everywhere.

We point out that the conclusion of the theorem follows even faster if one assumes
|7l 1o < Ky/n since then the coefficient of |ul|3, in the above inequality is positive, and

hence ||u|3, = 0 giving u = 0.

7 Injectivity over Higgs Fields

In this section we prove Corollary [2.11]

Lemma 7.1. Suppose that_M s a smooth manifold with smooth boundary, £ is a smooth
complex vector bundle over M, and that V¢ is a smooth connection in €. Let V' be as defined
in Theorem with V& = VE. If V& has zero curvature, then so does V'.

Proof: Since in this case V€ = V¢ , the A in Theorem is zero and hence V' = VFndé,
So we must simply show that VE?¢ has zero curvature. Let (2°) be coordinates of M and
(b;) a frame for € over these coordinates’ domain. Let ¢ Fk’ denote the connection symbols
of V¢ with respect to (9/o2) and (b;). Because the curvature of V¢ is zero, by Proposition
1.2 of Appendix C in Volume IT of [51], we may choose the (b;) so that all of the SFZ = 0.
Let us write sections of End &£ as square matrices with respect to this frame (b;) (i.e. write
U:M — End€ as the matrix [U]} | Where U(a'b;) = Ula'b;). Then, if we let E! denote

the matrix with all zero entries except for a one in the i"" row and j* column, (E’) is a

smooth frame of End £. Observe that we may write any U : M — End € locally as U = U J Ez
Now, from the explicit equation | - for VE4€ we have that

VEME — (V7).

In other words, the connection symbols of VE4¢ with respect to (9/o2%) and (E;) are zero
and hence by (4.23)) has curvature zero.
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Proof of Corollary|2.11]:
Recall that d = rank €. By Lemma [7.1] we have that the curvature of V¢ is zero.

Hence, by plugging End £ into £ in Theorem we have that VF"¢ has no nontrivial
twisted CKTs in R3*(SM [;7*End £). Thus, by Theorem if N > 0 is big enough there
exists a unitary Q € C° (M; End 5) NC>(M;End ) such that Q|5 = id and satisfies |D

with V& = V¢, So, we will be done if we show that ) = id everywhere. Take coordinates
(z') of M, a frame (b;) for € over these coordinates’ domain, and consider the coordinates
v'd ozt v (27, v%) of TM. Let €T denote the connection symbols of V¥ with respect to (?/ox?)
and (b;). Since the curvature of V¢ is zero, by Proposition 1.2 of Appendix C in Volume II
of [51], we may suppose that the (b;) were chosen so that all of the T'}; = 0. Let us represent
@ as a d X d matrix in the basis (b;). Similarly we represent any section u € C'* (H; E ) as
a d x 1 column vector in this basis. Then for any section u = u/b; = [ul, e ,ud] whose
component functions u’ are constant, we have that for any v € T M in our coordinates
Viu =0,

v

Viu = Q7 'VE(Qu) = Q" (Q)u.

where v(Q) denotes applying v to the entries of ). Since 6fu = Véu by assumption and
the above is true for all such u, we get that v(Q) = 0. Hence @ is locally constant.

Thus the sets {35 eEM:Q= id} and {:E eM:Q # id} are both open. Observe that
because of nontrapping, for any point x € M and any geodesic 7 : R — M passing through
 has limits lim,_,+o, (t) € M. From this it follows that the intersection of every connected
component of M with OM, and hence with {x eM: Q= id}, is nonempty. Thus indeed @)
is equal to “id” everywhere.
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