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1 Notations and Conventions 

Convention 1.1: I use the Einstein summation convention. 

Convention 1.2: Unless specified otherwise, “smooth” means 𝐶∞. 

 

2 Chapter 5 

2.1 Definition of Distributions on Manifolds (Definition 5.15) 

Hintz defines distributions on manifolds as continuous linear functionals over 𝐶𝑐
∞(𝑀; 𝐸∗ ⊗ Ω𝑀) 

or 𝐶∞(𝑀; 𝐸∗ ⊗ Ω𝑀), but I can’t find where the author defines the mentioned notion of 

“continuity.” In this note, I’d like to define and discuss this continuity. Furthermore, Lars 

Hörmander on page 144 of Volume 1 in his work The Analysis of Linear Partial Differential 

Operators (c.f. [1]) describes an alternative definition of distributions. As a second objective in 

this note, I’d like to connect the two definitions provided by Hörmander and Hintz. The first part 

of the following is essentially me generalizing the exposition of distributions done in Friedlander 

and Joshi’s book Introduction to the Theory of Distributions (c.f. [2]) to the context of manifolds. 

* In this section all functions are complex valued and vector bundles are over the field of 

complex numbers (i.e. I don’t restrict only to real vector bundles since I don’t see a reason to). 

In this section, let 𝑀 be a smooth manifold without boundary and let (𝜋, 𝐹, 𝑀) be a smooth 

vector bundle over 𝑀 of rank 𝑘. We start with describing the topology of 𝐶𝑐
∞(𝑀; 𝐹). We won’t 

actually define a topology on 𝐶𝑐
∞(𝑀; 𝐹), but simply declare what we mean by the words 

“continuous” and “convergent” in this context. 
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Definition 2.1: We say that a linear functional of the form 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ is continuous if 

for any coordinate chart (𝑈, (𝑥𝑖)) (𝑈 ⊆ 𝑀 denotes the domain of the chart), for any frame (𝑏𝑗) 

of 𝐹 over 𝑈, and any compact set 𝐾 ⊆ 𝑈 there exists a real number 𝐶 > 0 and a nonnegative 

integer 𝑁 ≥ 0 such that 

|〈𝑢, 𝜙〉| ≤ 𝐶 ∑ ∑ sup|𝜕𝛼𝜙𝑗|
|𝛼|≤𝑁

𝑘

𝑗=1

                        ∀𝜙 ∶ supp 𝜙 ⊆ 𝐾 

Where the 𝜙𝑗  denote the components of 𝜙 with respect to (𝑏𝑗): 𝜙 = 𝜙𝑗𝑏𝑗. 

// 

Definition 2.2: We say that a sequence {𝜙𝑟} in 𝐶𝑐
∞(𝑀; 𝐹) converges to 𝜙 ∈ 𝐶𝑐

∞(𝑀; 𝐹) as 𝑟 → ∞ 

if there exists a compact set 𝐾 ⊆ 𝑀 that contains all of the supp 𝜙𝑟 and if for any coordinate 

chart (𝑈, (𝑥𝑖)), any frame (𝑏𝑗) of 𝐹 over 𝑈, any multi-index 𝛼, and any compact set 𝑄 ⊆ 𝑈, we 

have 𝜕𝛼𝜙𝑟
𝑗
 converges to 𝜕𝛼𝜙𝑗 uniformly over 𝑄 as 𝑟 → ∞. 

// 

Theorem 2.3 A linear functional 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ is continuous if and only if it is sequentially 

continuous in the sense of Definition 2.2 above. 

Proof: First suppose that 𝑢 is continuous. Take any sequence {𝜙𝑟} converging to 𝜙 in 

𝐶𝑐
∞(𝑀; 𝐹). Let 𝐾 ⊆ 𝑀 be a compact subset containing all of the supp 𝜙𝑟. Cover 𝐾 by coordinate 

charts {(𝑈𝑠, (𝑥𝑠
𝑖)) ∶ 𝑠 = 1, … , 𝑚} with frames (𝑏𝑗

𝑠) of 𝐹 over 𝑈𝑠 for 𝑠 = 1, … , 𝑚. Let 𝒰 =

⋃ 𝑈𝑠
𝑚
𝑠=1  and let {𝜌𝑠 ∶ 𝒰 → ℝ ∶ 𝑠 = 1, … , 𝑚} be a partition of unity subordinate to the cover {𝑈𝑠}. 

By linearity we have that 

〈𝑢, 𝜙𝑟〉 = ∑〈𝑢, 𝜌𝑠𝜙𝑟〉

𝑚

𝑠=1

 

and similarly with 𝜙𝑟 replaced by 𝜙. From this we see that it will be suffice to show that 

〈𝑢, 𝜌𝑠𝜙𝑟〉 → 〈𝑢, 𝜌𝑠𝜙〉 as 𝑟 → ∞ for every 𝑠 = 1, … , 𝑚. Fix any 𝑠 = 1, … , 𝑚. By the definition of 

𝑢’s continuity, there exist 𝐶 > 0 and 𝑁 > 0 such that in the coordinates (𝑥𝑠
𝑖) and frame (𝑏𝑗

𝑠) 

|〈𝑢, 𝜓〉| ≤ 𝐶 ∑ ∑ sup|𝜕𝛼𝜓𝑗|
|𝛼|≤𝑁

𝑘

𝑗=1

            ∀𝜓 ∶ supp 𝜓 ⊆ supp 𝜌𝑠. 

Hence by the product rule and the fact that 𝜌𝑠 and all of its partials are bounded, we get that 

|〈𝑢, 𝜌𝑠(𝜙𝑟 − 𝜙)〉| ≤  𝐶 ∑ ∑ sup|𝜕𝛼[𝜌𝑠(𝜙𝑟
𝑗

− 𝜙𝑗)]|
|𝛼|≤𝑁

𝑘

𝑗=1

≤ 𝐶′ ∑ ∑ sup
supp 𝜌𝑠

|𝜕𝛼[𝜙𝑟
𝑗

− 𝜙𝑗]|
|𝛼|≤𝑁

𝑘

𝑗=1
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for some constant 𝐶′ > 0 independent of 𝑟. Since by assumption each 𝜕𝛽𝜙𝑟
𝑗
 converges 

uniformly to 𝜕𝛽𝜙𝑗  over supp 𝜌𝑠, this shows that indeed 〈𝑢, 𝜌𝑠𝜙𝑟〉 → 〈𝑢, 𝜌𝑠𝜙〉 as 𝑟 → ∞. 

Now let’s prove the other direction: suppose that 𝑢 is sequentially continuous in the sense of 

Definition 2.2 above. We will prove that 𝑢 is continuous by contradiction: suppose not! Then 

there exists a coordinate chart (𝑈, (𝑥𝑖)), a frame (𝑏𝑗) of 𝐹 over 𝑈, and a compact set 𝐾 ⊆ 𝑈 such 

that for any integer 𝐶 > 0 and any 𝑁 > 0 there exists a nonzero 𝜓𝐶,𝑁 ∈ 𝐶𝑐
∞(𝑀; 𝐹) such that 

supp 𝜓𝐶,𝑁 ⊆ 𝐾 and 

(2. 4)                                          |〈𝑢, 𝜓𝐶,𝑁〉| > 𝐶 ∑ ∑ sup|𝜕𝛼𝜓𝐶,𝑁
𝑗

|
|𝛼|≤𝑁

𝑘

𝑗=1

. 

Consider the sequence {𝜙𝑟} for 𝑟 = 1,2,3, … given by 

𝜙𝑟 =
𝜓𝑟,𝑟

𝑟 ∑ ∑ sup|𝜕𝛼𝜓𝑟,𝑟
𝑗

||𝛼|≤𝑟
𝑘
𝑗=1

. 

All of the supp 𝜙𝑟 are contained in 𝐾 and it’s clear from the above expression that for every 

multi-index 𝛽 we have that 𝜕𝛽𝜙𝑟 → 0 uniformly. It’s not hard to see then that 𝜙𝑟 → 0 in 

𝐶𝑐
∞(𝑀; 𝐹) and hence by 𝑢’s continuity we have that 〈𝑢, 𝜙𝑟〉 → 0. But that’s a contradiction since 

by (2.4) above we have that each |〈𝑢, 𝜙𝑟〉| > 1. Hence indeed 𝑢 must be continuous. 

∎ 

Definition 2.5: Suppose that 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ is a continuous linear functional. We define the 

distributional support of 𝑢, denoted by supp 𝑢, to be the complement of the following set 

{𝑥 ∈ 𝑀 ∶  ∃ open neighborhood 𝑈 of 𝑥 such that 〈𝑢, 𝜙〉 = 0  ∀𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐹) ∶ supp 𝜙 ⊆ 𝑈}. 

// 

Warning: The distributional support of 𝑢 is not the support of 𝑢 in the topology of 𝐶𝑐
∞(𝑀; 𝐹). 

Furthermore, the term “distributional support” is not standard but will simply be used in this 

section. When talking about distributions, people call the “distributional support” simply the 

“support” of 𝑢. 

Definition 2.6: Suppose that {𝑢𝑟 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ where 𝑟 = 1,2,3, … } is a sequence of 

continuous linear functionals and that 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ is a continuous linear functional. We 

say that the sequence {𝑢𝑟} converges to 𝑢 if for all 𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐹), 〈𝑢𝑟 , 𝜙〉 → 〈𝑢, 𝜙〉 as 𝑟 → ∞. 

// 

Definition 2.7: Suppose that 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ is a continuous linear functional and that 𝜙 ∈

𝐶∞(𝑀). We define the left-multiplication 𝜙𝑢 to be the continuous linear functional 𝜙𝑢 ∶

𝐶𝑐
∞(𝑀; 𝐹) → ℂ given by 

〈𝜙𝑢, 𝜓〉 = 〈𝑢, 𝜙𝜓〉               ∀𝜓 ∈ 𝐶𝑐
∞(𝑀; 𝐹).                          
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We leave it to the reader to check the claim that 𝜙𝑢 is indeed continuous. 

// 

Next we transition to discussing what it means for a linear functional over 𝐶∞(𝑀; 𝐹) to be 

continuous. For 𝐶∞(𝑀; 𝐹) it’s actually not hard to define the topology and so, unlike above, we 

can define a genuine notion of continuity and convergence in this context. 

Definition 2.8: For any coordinate chart (𝑈, (𝑥𝑖)), for any frame (𝑏𝑗) of 𝐹 over 𝑈, for any 

compact set 𝐾 ⊆ 𝑈, for any 𝑙 = 1, … , 𝑘, and any multi-index 𝛼, we let 𝑝(𝑈,(𝑥𝑖)),(𝑏𝑗),𝐾,𝑙,𝛼 ∶

𝐶∞(𝑀; 𝐹) → [0, ∞) denote the seminorm given by 

𝑝(𝑈,(𝑥𝑖)),(𝑏𝑗),𝐾,𝑙,𝛼(𝜙) = sup
𝑥∈𝐾

|𝜕𝛼𝜙𝑙|. 

We define the topology on 𝐶∞(𝑀; 𝐹) to be the one generated by such seminorms. 

// 

Theorem 2.9: With the topology above, 𝐶∞(𝑀; 𝐹) is a Fréchet space. 

Proof: It will be sufficient to show that 

1. We can pick out a countable family of the seminorms in Definition 2.8 above that 

determines the same topology, 

2. Any Cauchy sequence in 𝐶∞(𝑀; 𝐹) converges (i.e. 𝐶∞(𝑀; 𝐹) is complete). 

Let’s start with showing (1). Let {(𝑈𝑟 , (𝑥𝑟
𝑖 )) ∶ 𝑟 = 1,2,3, … } be a countable cover of 𝑀 and let 

(𝑏𝑗
𝑟) be a frame of 𝐹 over each 𝑈𝑟. For each 𝑟, let {𝐾𝑟,𝑠 ∶ 𝑠 = 1,2,3, … } be a compact exhaustion 

of 𝑈𝑟 and consider the countable family of seminorms {𝑝𝑟,𝑠,𝑣,𝛽 = 𝑝(𝑈𝑟,(𝑥𝑟
𝑖 )),(𝑏𝑗

𝑟),𝐾𝑟,𝑠,𝑣,𝛽}. Now, take 

any coordinate chart (𝑈, (𝑥𝑖)), any frame (𝑏𝑗) of 𝐹 over 𝑈, any compact set 𝐾 ⊆ 𝑈, any 𝑙 =

1, … , 𝑘, any multi-index 𝛼, and consider their associated seminorm 𝑝 = 𝑝(𝑈,(𝑥𝑖)),(𝑏𝑗),𝐾,𝑙,𝛼. It’s not 

hard to see that if we can show that 𝑝 can be bounded by a finite sum of the 𝑝𝑟,𝑠,𝛽’s, we’ll be 

done. Let {𝐾𝑟𝑡,𝑠𝑡
∶ 𝑡 = 1, … , 𝑚} be a finite subset such that the interiors of the 𝐾𝑟𝑟,𝑠𝑡

 cover 𝐾. 

Then for any 𝜙 ∈ 𝐶∞(𝑀; 𝐹) we have that 

𝑝(𝜙) = sup
𝑥∈𝐾

|𝜕𝑥
𝛼𝜙𝑙| ≤ ∑ sup

𝑥∈𝐾∩𝐾𝑟𝑡,𝑠𝑡

|𝜕𝑥
𝛼𝜙𝑙|

𝑚

𝑡=1

≤ ∑ sup
𝑥∈𝐾𝑟𝑡,𝑠𝑡

|𝜕𝑥
𝛼𝜙𝑙|

𝑚

𝑡=1

. 

Now, over 𝐾𝑟𝑡,𝑠𝑡
 the partial 𝜕𝑥

𝛼 can be expressed as a big linear combination of partials of the 

form 𝜕𝑥𝑟

𝛽
 for |𝛽| ≤ |𝛼| with coefficients in terms of 𝜕𝑥𝜇/𝜕𝑥𝑟

𝜈 and their partials over 𝐾𝑟𝑡,𝑠𝑡
. 

Observe that such coefficients are bounded over 𝐾𝑟𝑡,𝑠𝑡
. Furthermore, over 𝐾𝑟𝑡,𝑠𝑡

 the “𝑙th” 

component of a section of 𝐹 with respect to (𝑏𝑗) (e.g. “𝜙𝑙”) can be expressed as a linear 

combination of the components of the same section with respect to (𝑏𝑗
𝑟𝑡) with coefficients in 

terms of the transition matrix from (𝑏𝑗
𝑟𝑡) to (𝑏𝑗) and their partials. Such coefficients are also 
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bounded over 𝐾𝑟𝑡,𝑠𝑡
. It’s not hard to see that this implies that there exists some 𝐶 > 0 

independent of 𝜙 such that (here 𝜙𝑣 in each term is the component of 𝜙 with respect to (𝑏𝑗
𝑟𝑡)) 

𝑝(𝜙) ≤ 𝐶 ∑ ∑ ∑ sup
𝑥∈𝐾𝑟𝑡,𝑠𝑡

|𝜕𝑥𝑟

𝛽
𝜙𝑣|

|𝛽|≤|𝛼|

𝑘

𝑣=1

𝑚

𝑡=1

= 𝐶 ∑ ∑ ∑ 𝑝𝑟𝑡,𝑠𝑡,𝑣,𝛽(𝜙)

|𝛽|≤|𝛼|

𝑘

𝑣=1

𝑚

𝑡=1

. 

Now let’s prove (2). Suppose that {𝜙𝜇} is a sequence such that each 𝑝𝑟,𝑠,𝑣,𝛽(𝜙𝜇 − 𝜙𝜈) → 0 as 

𝜇, 𝜈 → ∞. We have to show that {𝜙𝑗} converges to some 𝜙 in 𝐶∞(𝑀; 𝐹). By assumption then we 

immediately have that each 

sup
𝑥∈𝐾𝑟,𝑠

|𝜕𝑥𝑟

𝛽
[𝜙𝜇

𝑣 − 𝜙𝜈
𝑣]| → 0          as     𝜇, 𝜈 → ∞.                             

In other words, {𝜙𝜇
𝑣} is a sequence uniformly convergent in all partials over a compact 

exhaustion of 𝑈𝑟. It’s well known that this implies that there exists a function 𝜙𝑟
𝑣 ∈ 𝐶∞(𝑈𝑟) such 

that sup |𝜕𝑥𝑟

𝛽
𝜙𝜇

𝑣 − 𝜕𝑥𝑟

𝛽
𝜙𝑣| → 0 as 𝜇 → ∞. We leave it to the reader to show that for any 𝑟, 𝑟′ such 

that 𝑈𝑟 ∩ 𝑈𝑟′ ≠ ∅, 𝜙𝑟
𝑗
𝑏𝑗

𝑟 = 𝜙
𝑟′
𝑗

𝑏𝑗
𝑟′

 (no implicit summation in 𝑟 or 𝑟′), which in fact quickly 

follows from the continuity of the transition charts for 𝐹. Hence we can patch up to get a well-

defined smooth section 𝜙 ∈ 𝐶∞(𝑀; 𝐹) such that each 

𝑝𝑟,𝑠,𝑣,𝛽(𝜙𝜇 − 𝜙) = sup
𝑥∈𝐾𝑟,𝑠

|𝜕𝑥𝑟

𝛽
[𝜙𝜇

𝑣 − 𝜙𝑣]| → 0               as     𝜇 → ∞.          

In other words, {𝜙𝜇} converges to 𝜙 in 𝐶∞(𝑀; 𝐹) and hence we’re done. 

∎ 

Having defined the topology of 𝐶∞(𝑀; 𝐹), it’s clear what we mean by a linear functional 𝑢 ∶

𝐶∞(𝑀; 𝐹) → ℂ to be continuous. Since 𝐶∞(𝑀; 𝐹) is a Fréchet space, we automatically get that 

such a 𝑢 is continuous if and only if its sequentially continuous. 

Definition 2.10: We impose the weak* topology on the set of continuous linear functional of the 

form 𝑢 ∶ 𝐶∞(𝑀; 𝐹) → ℂ. 

// 

We define left multiplication of smooth functions on continuous linear functionals over 

𝐶∞(𝑀; 𝐹) analogously to Definition 2.7 above: 

Definition 2.11: Suppose that 𝑢 ∶ 𝐶∞(𝑀; 𝐹) → ℂ is a continuous linear functional and that 𝜙 ∈

𝐶∞(𝑀). We define the left-multiplication 𝜙𝑢 to be the continuous linear functional 𝜙𝑢 ∶
𝐶∞(𝑀; 𝐹) → ℂ given by 

〈𝜙𝑢, 𝜓〉 = 〈𝑢, 𝜙𝜓〉               ∀𝜓 ∈ 𝐶∞(𝑀; 𝐹).                          

We leave it to the reader to check the claim that 𝜙𝑢 is indeed continuous. 
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// 

It turns out that we can think of the set of continuous linear functionals of compact distributional 

support as the set of linear functionals over 𝐶∞(𝑀; 𝐹). The following theorem tells us how we 

make such an identification. 

Theorem 2.12: The following are true: 

1. If 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ is a continuous linear functional of compact distributional support, 

then there exists a unique continuous linear functional 𝑣 ∶ 𝐶∞(𝑀; 𝐹) → ℂ that extends 𝑢. 

2. If 𝑣 ∶ 𝐶∞(𝑀; 𝐹) → ℂ is a continuous linear functional, then 𝑣 restricts to a continuous 

linear functional 𝑢 over 𝐶𝑐
∞(𝑀; 𝐹) of compact distributional support. 

Proof: I will write “support” instead of “distributional support” in this proof for brevity. Item (2) 

follows if one shows that 𝑢 is sequentially continuous, which will follow if one shows that a 

sequence converging in 𝐶𝑐
∞(𝑀; 𝐹) implies that it converges in 𝐶∞(𝑀; 𝐹). It’s not hard to see 

however that the latter is true simply by looking at Definition 2.2 and Definition 2.8 above. 

Hence let’s just show (1). Suppose that 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ is a continuous linear functional with 

compact support. Let 𝜌 ∶ 𝐶𝑐
∞(𝑀) be a function that is identically one in a neighborhood of the 

support of 𝑢. For any smooth section 𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐹) we have that 

〈𝑢, 𝜙〉 = 〈𝑢, 𝜌𝜙〉 + 〈𝑢, (1 − 𝜌)𝜙〉. 

Since supp(1 − 𝜌)𝜙 ⊆ 𝑀 ∖ supp 𝑢, we have by the definition of the support of 𝑢 that the 

second term on the right-hand side is zero. Hence if we define 𝑣 ∶ 𝐶∞(𝑀; 𝐹) → ℂ to be the linear 

functional 〈𝑣, 𝜓〉 = 〈𝑢, 𝜌𝜓〉 for all 𝜓 ∈ 𝐶∞(𝑀; 𝐹), then 𝑣 will extend 𝑢. 

Let’s show that 𝑣 is continuous. Let {(𝑈𝑟, (𝑥𝑟
𝑖 )) ∶ 𝑟 = 1, … , 𝑚} be a finite collection of 

coordinates of 𝑀 that cover supp 𝜌 and let {(𝑏𝑗
𝑟) ∶ 𝑟 = 1, … , 𝑚} be a finite collection of frames 

for 𝐹 over the 𝑈𝑟 respectively. Let 𝒰 = ⋃ 𝑈𝑟
𝑚
𝑟=1  and let {𝜃𝑟 ∶ 𝑈 → ℝ for 𝑟 = 1, … , 𝑚} be a 

partition of unity subordinate to {𝑈𝑟}. Without loss of generality, we can suppose that we chose 

each 𝑈𝑟 to have compact closure and so each supp 𝜃𝑟 is compact. Now, we have that for any 𝜙 ∈
𝐶∞(𝑀; 𝐹) 

|〈𝑣, 𝜙〉| = |〈𝑢, 𝜌𝜙〉| ≤ ∑|〈𝑢, 𝜌𝜃𝑟𝜙〉|

𝑚

𝑟=1

. 

Observe that for any 𝜙 ∈ 𝐶∞(𝑀; 𝐹), the support of each 𝜌𝜃𝑟𝜙 is contained in the compact set 

supp 𝜃𝑟. Hence by the continuity of 𝑢 we see that there exist 𝐶, 𝑁 > 0 such that for any 𝜙 ∈

𝐶∞(𝑀; 𝐹) the above quantity is bounded by 

𝐶 ∑ ∑ ∑ sup|𝜕𝑥𝑟
𝛼 [𝜌𝜃𝑟𝜙𝑗]|

|𝛼|≤𝑁

𝑘

𝑗=1

𝑚

𝑟=1
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where for every 𝑟, 𝜌𝜃𝑟𝜙𝑗 is the component of 𝜌𝜃𝑟𝜙 with respect to (𝑏𝑗
𝑟). By applying the 

product rule to 𝜕𝑥𝑟
𝛼 [𝜌𝜃𝑟𝜙𝑗] and using that 𝜌𝜃𝑟 and its partials are bounded, we arrive that for 

some other 𝐶̃ > 0 

|〈𝑣, 𝜙〉| ≤ 𝐶̃ ∑ ∑ ∑ sup
𝑥∈supp 𝜃𝑟

|𝜕𝑥𝑟
𝛼 𝜙𝑗|

|𝛼|≤𝑁

𝑘

𝑗=1

𝑚

𝑟=1

               ∀𝜙 ∈ 𝐶∞(𝑀; 𝐹).        

Hence indeed 𝑣 is continuous. 

The only thing left to show is that 𝑣 is the unique such continuous extension. To see why, 

suppose that 𝑣̃ was another. Then 𝑣 − 𝑣̃ is also continuous. Hence by definition there exist a 

finite collection {(𝑈𝑟 , (𝑥𝑟
𝑖 )) ∶ 𝑟 = 1, … , 𝑚} of coordinates of 𝑀, a finite collection {(𝑏𝑗

𝑟) ∶ 𝑟 =

1, … , 𝑚} of frames for 𝐹 over the 𝑈𝑟 respectively, a finite collection {𝐾𝑟 ⊆ 𝑈𝑟 ∶ 𝑟 = 1, … , 𝑚} of 

compact sets, and constants 𝐶, 𝑁 > 0 such that 

|〈𝑣 − 𝑣̃, 𝜙〉| ≤ 𝐶 ∑ ∑ ∑ sup
𝑥∈𝐾𝑟

|𝜕𝑥𝑟
𝛼 𝜙𝑗|

|𝛼|≤𝑁

𝑘

𝑗=1

𝑚

𝑟=1

               ∀𝜙 ∈ 𝐶∞(𝑀; 𝐹),    

where for every 𝑟, 𝜙𝑗  in sup|𝜕𝑥𝑟
𝛼 𝜙𝑗| is the component of 𝜙 with respect to (𝑏𝑗

𝑟). From this 

equation we see that if 𝜙 ∈ 𝐶∞(𝑀; 𝐹) is such that supp 𝜙 is disjoint from all of the 𝐾𝑟, then 𝑣 −

𝑣̃ applied to it will be zero. Hence, if take a compactly supported 𝜌 ∈ 𝐶𝑐
∞(𝑀) that is identically 

one on all of the 𝐾𝑟, we see that 

〈𝑣 − 𝑣̃, 𝜙〉 = 〈𝑣 − 𝑣̃, 𝜌𝜙〉 = 〈𝑢 − 𝑢, 𝜌𝜙〉 = 0. 

Hence indeed 𝑣 = 𝑣̃. 

∎ 

We note that if 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ and 𝑣 ∶ 𝐶∞(𝑀; 𝐹) → ℂ are continuous linear functionals 

where 𝑣 is the unique extension of 𝑢 as described in Theorem 2.12 above and 𝜙 ∈ 𝐶∞(𝑀) is a 

smooth function, then it’s not hard to see that 𝜙𝑣 is the unique continuous extension of 𝜙𝑢. 

Furthermore, we remark that because of the Theorem 2.12 above, if we have a continuous linear 

functional 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ of compact distributional support then it’s standard to use the same 

letter 𝑢 to denote its unique continuous extension to 𝐶∞(𝑀; 𝐹). 

Theorem 2.13: It holds that 

1. 𝐶𝑐
∞(𝑀; 𝐹) is dense in 𝐶∞(𝑀; 𝐹), 

2. Linear functionals over 𝐶𝑐
∞(𝑀; 𝐹) of compact distributional support are dense in the 

space of continuous linear functionals over 𝐶𝑐
∞(𝑀; 𝐹). 

Proof: Let {𝐾𝑟 ∶ 𝑟 = 1,2,3, … } be a compact exhaustion of 𝑀 and let {𝜌𝑟 ∈ 𝐶𝑐
∞(𝑀) ∶ 𝑟 =

1,2,3, … } be such that each 𝜌𝑟 ≡ 1 on 𝐾𝑟. To prove (1), take any 𝜙 ∈ 𝐶∞(𝑀; 𝐹) and consider the 
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sequence {𝜌𝑟𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐹) ∶ 𝑟 = 1,2,3, … }. We claim that 𝜌𝑟𝜙 → 𝜙 in 𝐶∞(𝑀; 𝐹). To prove 

this, it’s sufficient to take any coordinate chart (𝑈, (𝑥𝑖)), any frame (𝑏𝑗) of 𝐹 over 𝑈, any 

compact set 𝐾 ⊆ 𝑈, any 𝑙 = 1, … , 𝑘, any multi-index 𝛼, and show that 

𝑝
(𝑈,(𝑥𝑖)),(𝑏𝑗),𝐾,𝑙,𝛼

(𝜌𝑟𝜙) = sup
𝑥∈𝐾

|𝜕𝛼[𝜌𝑟𝜙𝑙 − 𝜙𝑙]| → 0   as   𝑟 → ∞. 

But since the support of 𝜌𝑟 will eventually cover all of 𝐾 as 𝑟 → ∞, this obviously holds. 

To prove (2), take any continuous linear functional 𝑢 ∶ 𝐶𝑐
∞(𝑀; 𝐹) → ℂ. Consider the sequence 

{𝜌𝑟𝑢 ∈ 𝐶𝑐
∞(𝑀; 𝐹) ∶ 𝑟 = 1,2,3, … }. It’s not hard to see that each 𝜌𝑟𝑢 is of compact distributional 

support. Now, take any 𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐹). Eventually the support of 𝜌𝑟 will cover supp 𝜙 as 𝑟 →

∞, and hence eventually 

〈𝜌𝑟𝑢, 𝜙〉 = 〈𝑢, 𝜌𝑟𝜙〉 = 〈𝑢, 𝜙〉. 

In particular, we get that 〈𝜌𝑟𝑢, 𝜙〉 → 〈𝑢, 𝜙〉 as 𝑟 → ∞ for all 𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐹). This implies that 

𝜌𝑟𝑢 → 𝑢 and hence the theorem is proved. 

∎ 

Having discussed continuity of linear functionals over 𝐶𝑐
∞(𝑀; 𝐹) and 𝐶∞(𝑀; 𝐹), the notations 

𝒟(𝑀), ℰ(𝑀), 𝒟(𝑀; 𝐸), and ℰ(𝑀; 𝐸) in Hintz’ Definition 5.14 make sense. 

Finally, let’s discuss Hörmander’s definition of distributions and relate it to Hintz’ Definition. 

Definition 2.14: (Hörmander’s alternative definition of 𝒟′(𝑀)) Suppose that to every smooth 

chart (𝑈, 𝜑) of 𝑀 (i.e. 𝜑 ∶ 𝑈 → 𝜑[𝑈] ⊆ ℝdim 𝑀 is the chart) we assign a “classical” distribution 

𝑢(𝑈,𝜑) ∶ 𝐶𝑐
∞(𝜑[𝑈]) → ℂ as defined in §1.3 in [2]. Suppose furthermore that we assigned them so 

that for any two charts (𝑈, 𝜑) and (𝑈′, 𝜑′) such that 𝑈 ∩ 𝑈′ ≠ ∅ (I omit writing appropriate 

domain restrictions in the following equation), 

𝑢(𝑈,𝜑) = (𝜑′ ∘ 𝜑)∗𝑢(𝑈′,𝜑′) 

where the pullback is defined in §7.1 in [2]. Then we call this set {𝑢(𝑈,𝜑) ∶

(𝑈, 𝜑) smooth chart of 𝑀} a distribution in 𝒟′(𝑀). 

// 

There is a canonical one-to-one correspondence between Hörmander’s and Hintz’s definitions of 

𝒟′(𝑀), which we state in the next theorem. To get ready, let 𝒟Hörm
′ (𝑀) and 𝒟Hintz

′ (𝑀) denote 

Hörmander’s and Hintz’s definitions of distributions respectively. We proceed to define maps 

ℱ ∶ 𝒟Hörm
′ (𝑀) → 𝒟Hintz

′ (𝑀) and 𝒢 ∶ 𝒟Hintz
′ (𝑀) → 𝒟Hörm

′ (𝑀) that we will show are inverses of 

each other and hence provide the desired canonical one-to-one identification between 𝒟Hörm
′ (𝑀) 

and 𝒟Hintz
′ (𝑀). 

For any {𝑢(𝑈,𝜑)} ∈ 𝒟Hörm
′ (𝑀) as in Definition 2.14 above, let ℱ(𝑢) ∶ 𝐶𝑐

∞(𝑀; Ω𝑀) → ℂ be the 

following distribution. Take any 𝜙 ∈ 𝐶𝑐
∞(𝑀; Ω𝑀). Cover supp 𝜙 by charts {(𝑈𝑠, 𝜑𝑠 = (𝑥𝑠

𝑖)) ∶
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𝑠 = 1, … , 𝑚} of 𝑀. Let 𝒰 = ⋃ 𝑈𝑠
𝑚
𝑠=1  and let {𝜌𝑠 ∶ 𝒰 → ℝ ∶ 𝑠 = 1, … , 𝑚} be a partition of unity 

subordinate to the cover {𝑈𝑠}. For each 𝑠 = 1, … , 𝑚, let 𝜙𝑠 denote the component of 𝜙 with 

respect to |𝑑𝑥𝑠
1 ∧ … ∧ 𝑑𝑥𝑠

dim(𝑀)
|. Then we set 

(2. 15)                                        〈ℱ(𝑢), 𝜙〉 = ∑ 〈𝑢(𝑈𝑠,(𝑥𝑠
𝑖 )), 𝜌𝑠𝜙𝑠 ∘ 𝜑𝑠〉

𝑚

𝑠=1

. 

We need to show that this is well defined. Suppose that {(𝑈𝑟
′ , 𝜑𝑟

′ = (𝑥𝑟
′𝑖)) ∶ 𝑟 = 1, … , 𝑚′} and 

{𝜌𝑟 ∶ 𝒰 → ℝ ∶ 𝑟 = 1, … , 𝑚′} are similar objects as above. We need to show that 

(2. 16)                         ∑ 〈𝑢(𝑈𝑠,(𝑥𝑠
𝑖 )), 𝜌𝑠𝜙𝑠 ∘ 𝜑𝑠〉

𝑚

𝑠=1

= ∑ 〈𝑢(𝑈𝑟,(𝑥𝑟
′𝑖)), 𝜌𝑟

′ 𝜙𝑟
′ ∘ 𝜑𝑟

′ 〉

𝑚′

𝑟=1

 

where 𝜙𝑟
′  is the component of 𝜙 with respect to |𝑑𝑥𝑟

′1 ∧ … ∧ 𝑑𝑥𝑟
′ dim(𝑀)

|. The right-hand side is 

equal to 

∑ ∑ 〈𝑢(𝑈𝑟,(𝑥𝑟
′𝑖)), 𝜌𝑠𝜌𝑟

′ 𝜙𝑟
′ ∘ 𝜑𝑟

′ 〉

𝑚

𝑠=1

𝑚′

𝑟=1

 

= ∑ ∑ 〈(𝜑𝑟
′ ∘ 𝜑𝑠

−1)∗𝑢(𝑈𝑟,(𝑥𝑟
′𝑖)), |det 𝐷(𝜑𝑟

′ ∘ 𝜑𝑠
−1)|−1𝜌𝑠𝜌𝑟

′ 𝜙𝑟
′ ∘ 𝜑𝑠〉

𝑚

𝑠=1

𝑚′

𝑟=1

. 

Since 𝑢(𝑈𝑠,(𝑥𝑠
𝑖 )) = (𝜑𝑟

′ ∘ 𝜑𝑠
−1)∗𝑢(𝑈𝑟,(𝑥𝑟

′𝑖)) and 𝜙𝑠 = |det 𝐷(𝜑𝑟
′ ∘ 𝜑𝑠

−1)|−1𝜙𝑟
′ , this is equal to 

∑ ∑ 〈𝑢(𝑈𝑠,(𝑥𝑠
𝑖 )), 𝜌𝑠𝜌𝑟

′ 𝜙𝑠 ∘ 𝜑𝑠〉

𝑚

𝑠=1

𝑚′

𝑟=1

= ∑ 〈𝑢(𝑈𝑠,(𝑥𝑠
𝑖 )), 𝜌𝑠𝜙𝑠 ∘ 𝜑𝑠〉

𝑚

𝑠=1

 

and hence (2.16) is established. 

Next let’s show that ℱ(𝑢) is continuous. Take any coordinate chart (𝑈, (𝑥𝑖)), any frame (𝑏𝑗) of 

𝐹 over 𝑈, and any compact set 𝐾 ⊆ 𝑈. Since 𝑢(𝑈,(𝑥𝑖)) is a distribution as defined in [2], there 

exist 𝐶, 𝑁 > 0 such that 

|〈𝑢(𝑈,(𝑥𝑖)), 𝜓〉| ≤ 𝐶 ∑ sup|𝜕𝛼𝜓|

|𝛼|≤𝑁

     ∀𝜓 ∈ 𝐶𝑐
∞(𝑀) ∶ supp 𝜓 ⊆ 𝐾. 

Then for any 𝜙 ∈ 𝐶𝑐
∞(𝑀; Ω𝑀) such that supp 𝜙 ⊆ 𝐾, if we let 𝜙1 denote the component of 𝜙 

with respect to |𝑑𝑥1 ∧ … ∧ 𝑑𝑥dim(𝑀)|, then it’s not hard to see that (2.15) implies that 

|〈𝑢, 𝜙〉| = |〈𝑢(𝑈,(𝑥𝑖)), 𝜙1〉| ≤ 𝐶 ∑ sup|𝜕𝛼𝜙1|

|𝛼|≤𝑁

. 

Hence indeed ℱ(𝑢) is continuous and thus an element of 𝒟Hintz
′ (𝑀). 
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Now take any 𝑢 ∈ 𝒟Hintz
′ (𝑀) and let 𝒢(𝑢) be the following element of 𝒟Hörm

′ (𝑀). For any chart 

(𝑈, (𝑥𝑖) = 𝜑) and any 𝜓 ∈ 𝐶𝑐
∞(𝜑[𝑈]) set 

〈𝒢(𝑢)(𝑈,(𝑥𝑖)), 𝜓〉 = 〈𝑢, 𝜓 ∘ 𝜑|𝑑𝑥1 ∧ … ∧ 𝑑𝑥dim 𝑀|〉. 

Let’s check that this is indeed a distribution as defined in [2]. Choose any compact set 𝐾̂ ⊆

𝜑[𝑈]. Since 𝑢 is continuous, there exist 𝐶, 𝑁 > 0 satisfying that for any 𝜙 ∈ 𝐶𝑐
∞(𝑀; Ω𝑀) such 

that supp 𝜙 ⊆ 𝜑−1[𝐾̂] 

|〈𝑢, 𝜙〉| ≤ 𝐶 ∑ sup|𝜕𝛼𝜙1|

|𝛼|≤𝑁

 

where 𝜙1 denotes the component of 𝜙 with respect to |𝑑𝑥1 ∧ … ∧ 𝑑𝑥dim(𝑀)|. Hence for any 𝜓 ∈

𝐶𝑐
∞(𝜑[𝑈]) such that supp 𝜓 ⊆ 𝐾̂, 

| 〈𝒢(𝑢)(𝑈,(𝑥𝑖)), 𝜓〉 | ≤ 𝐶 ∑ sup|𝜕𝛼𝜓|

|𝛼|≤𝑁

, 

and so indeed 𝒢(𝑢) is a distribution as defined in [2]. 

Theorem 2.17: The maps ℱ ∶ 𝒟Hörm
′ (𝑀) → 𝒟Hintz

′ (𝑀) and 𝒢 ∶ 𝒟Hintz
′ (𝑀) → 𝒟Hörm

′ (𝑀) defined 

above are inverses of each other. 

Proof: We leave it to the reader as an exercise. It’s not hard: the above discussion essentially has 

all of the details. 

 

2.2 Proof of Schwartz Kernel Theorem 

Hintz states the Schwartz kernel theorem on manifolds in Theorem 5.16, however he doesn’t 

provide the proof since he’s probably leaving it as an exercise. Here I’d like to provide the proof 

of this theorem that uses the version of the Schwartz kernel theorem in Euclidean space (c.f. [2] 

for the latter). Furthermore, I’d like to work through the slightly more general form of the 

theorem in which we allow for two different manifolds to be involved. 

Theorem 2.18: Suppose that 𝑀 and 𝑁 are smooth manifolds without boundaries and that 𝐸 →

𝑀 and 𝐹 → 𝑁 are two smooth vector bundles. Let 𝜋𝐿 ∶ 𝑁 × 𝑀 → 𝑁 and 𝜋𝑅 ∶ 𝑁 × 𝑀 → 𝑀 

denote the maps (𝑝, 𝑞) ↦ 𝑝 and (𝑝, 𝑞) ↦ 𝑞 respectively, and let Ω𝑀 and Ω𝑁 denote the density 

bundles of 𝑀 and 𝑁 respectively. Then 

1. for any sequentially continuous linear map 𝐴 ∶ 𝐶𝑐
∞(𝑀; 𝐸) ↦ 𝒟′(𝑁; 𝐹), there exists a 

continuous linear functional 𝐾 ∈ 𝐶𝑐
∞(𝑁 × 𝑀; 𝜋𝐿

∗(𝐹∗ ⊗ 𝛺𝑁) ⊗ 𝜋𝑅
∗ 𝐸) → ℂ that satisfies 

(2. 19)           〈𝐴𝜙, 𝜓〉 = 〈𝐾, 𝜋𝐿
∗𝜓 ⊗ 𝜋𝑅

∗ 𝜙〉        ∀𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐸)   ∀𝜓 ∈ 𝐶𝑐

∞(𝑁; 𝐹∗ ⊗ 𝛺𝑁). 

2. for any continuous linear functional 𝐾 ∈ 𝐶𝑐
∞(𝑁 × 𝑀; 𝜋𝐿

∗(𝐹∗ ⊗ 𝛺𝑁) ⊗ 𝜋𝑅
∗ 𝐸) → ℂ, the 

linear map 𝐴 ∶ 𝐶𝑐
∞(𝑀; 𝐸) ↦ 𝒟′(𝑁; 𝐹) given by (2.19) above is sequentially continuous. 
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Proof: I will not use the Einstein summation convention in this proof. Let’s start by proving (2). 

Pick any such 𝐾. First let’s check that the associated map 𝐴 maps between the claimed spaces. 

Take any 𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐸). We need to check that 𝐴𝜙 is a continuous linear functional over 

𝐶𝑐
∞(𝑁; 𝐹∗ ⊗ Ω𝑁). Fix any coordinate chart (𝑉, (𝑦𝑖)) of 𝑁 (𝑉 denotes the domain of the chart), 

any frame (𝑓𝑗) of 𝐹∗ ⊗ Ω𝑁 over 𝑉, and any compact set 𝑄 ⊆ 𝑉. Let {(𝑈𝑟, (𝑥𝑟
𝑖 )) ∶ 𝑟 = 1, … , 𝑚} 

be a finite cover of supp 𝜙 by coordinate charts of 𝑀 and fix a frame (𝑒𝑙
𝑟) over every 𝑈𝑟. Let 

𝒰 = ⋃ 𝑈𝑟
𝑚
𝑟=1  and let {𝜌𝑟 ∈ 𝐶𝑐

∞(𝒰) ∶ 𝑟 = 1, … , 𝑚} be a partition of unity subordinate to {𝑈𝑟}. 

Then for any 𝜓 ∈ 𝐶𝑐
∞(𝑁; 𝐹∗ ⊗ Ω𝑁) such that supp 𝜓 ⊆ 𝑄, 

〈𝐴𝜙, 𝜓〉 = ∑〈𝐾, 𝜋𝐿
∗𝜓 ⊗ 𝜋𝑅

∗ (𝜌𝑟𝜙)〉

𝑚

𝑟=1

. 

By the continuity of 𝐾, there exist 𝐶, 𝑛 > 0 such that for each 𝑟, 

|〈𝐾, 𝜔〉| ≤ 𝐶 ∑ ∑ sup|𝜕𝑦
𝛼𝜕𝑥𝑟

𝛽
𝜔𝑗|

|𝛼|,|𝛽|≤𝑛𝑗

 

∀𝜔 ∈ 𝐶𝑐
∞(𝑁 × 𝑀; 𝜋𝐿

∗(𝐹∗ ⊗ Ω𝑁) ⊗ 𝜋𝑅
∗ 𝐸) ∶ supp 𝜔 ⊆ 𝜋𝐿

−1[𝑄] ∩ 𝜋𝑅
−1[supp 𝜌𝑟], 

where 𝜔𝑗 are the components of 𝜔 in the frame (𝜋𝐿
∗(𝑓𝑗), 𝜋𝑅

∗ (𝑒𝑙
𝑟)). Hence 

|〈𝐴𝜙, 𝜓〉| ≤ 𝐶 ∑ ∑ ∑ sup|𝜕𝑦
𝛼𝜓𝑗 ⋅ 𝜕𝑥𝑟

𝛽 (𝜌𝑟𝜙𝑙)|

rank 𝐸

𝑙=1

rank 𝐹

𝑗=1

𝑚

𝑟=1

 

where 𝜓𝑗 are the components of 𝜓 in the frame (𝑓𝑗) and 𝜌𝑟𝜙𝑙 are the components of 𝜌𝑟𝜙 in the 

frame (𝑒𝑙
𝑟). Using that the 𝜕𝑥𝑟

𝛽 (𝜌𝑟𝜙𝑙) are bounded, its not hard to see that this shows that 𝐴𝜙 is 

indeed continuous. We leave it to the reader to show that 𝐴 itself is sequentially continuous since 

the details involved are very similar to what we just did. 

Now let’s prove (1). Fix any such 𝐴, and let’s construct the desired 𝐾. Resetting our notation, let 

{(𝑈𝑟 , (𝑥𝑟
𝑖 )) ∶ 𝑟 = 1,2, … } be a countable cover of 𝑀 and let {𝜌𝑟 ∈ 𝐶𝑐

∞(𝑀) ∶ 𝑟 = 1,2, … } be a 

partition of unit subordinate to this cover. For each 𝑟, let (𝑒𝜇
𝑟) be a frame for 𝐸 over 𝑈𝑟. 

Similarly, let {(𝑉𝑠, (𝑦𝑠
𝑗
) ∶ 𝑠 = 1,2, … } be a countable cover of 𝑁 and let {𝜎𝑠 ∈ 𝐶𝑐

∞(𝑁) ∶ 𝑠 =

1,2, … } be a partition of unit subordinate to this cover. For each 𝑠, let (𝑓𝜈
𝑠) be a frame for 𝐹∗ ⊗

Ω𝑁 over 𝑉𝑠. We have that for any 𝜙 ∈ 𝐶𝑐
∞(𝑀; 𝐸) and any 𝜓 ∈ 𝐶𝑐

∞(𝑁; 𝐹∗ ⊗ Ω𝑁) 

〈𝐴𝜙, 𝜓〉 = ∑ 〈𝐴(𝜌𝑟𝜙), 𝜌𝑠𝜓〉

∞

𝑟,𝑠=1

. 

Now each term in this sum can be written as 

∑ ∑ 〈𝐴[(𝜌𝑟𝜙𝜇)𝑒𝜇
𝑟], (𝜎𝑠𝜓𝜈)𝑓𝜈

𝑠〉

rank 𝐹

𝜈=1

rank 𝐸

𝜇=1

. 
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where 𝜌𝑠𝜙𝜇 and 𝜎𝑠𝜓𝜈 are the components of 𝜌𝑟𝜙 and 𝜎𝑠𝜓 with respect to (𝑒𝜇
𝑟) and (𝑓𝜈

𝑠). Fix 

any 𝑟, 𝑠, 𝜇, 𝜈 and consider the linear map 𝐴𝑟,𝑠,𝜇,𝜈 ∶ 𝒟′(𝑈𝑟) → 𝒟′(𝑉𝑠), where 𝒟′(𝑈𝑟) and 𝒟′(𝑉𝑠) 

are the ordinary spaces of distributions as defined in [2], given by 

〈𝐴𝑟,𝑠,𝜇,𝜈𝑢, 𝑣〉 = 〈𝐴[𝑢𝑒𝜇
𝑟], 𝑣𝑓𝜈

𝑠〉       ∀𝑢 ∈ 𝐶𝑐
∞(𝑈𝑟)   ∀𝑣 ∈ 𝐶𝑐

∞(𝑉𝑠) 

(we leave it to the reader to show that 𝐴𝑟,𝑠,𝜇,𝜈 maps between the claimed spaces). Observe that if 

we took a sequence {𝑢𝑡} ⊆ 𝐶𝑐
∞(𝑈𝑟) that goes to zero as 𝑡 → ∞ as defined in [2], then (𝜌𝑟𝑢𝑡)𝑒𝜇

𝑟 

would also go to zero as defined in Definition 2.2 above. Hence by the continuity of 𝐴 the above 

equation tells us that 〈𝐴𝑟,𝑠,𝜇,𝜈𝑢𝑡, 𝑣〉 → 0 as 𝑡 → ∞ for any 𝑣 ∈ 𝐶𝑐
∞(𝑉𝑠). In other words, 𝐴𝑟,𝑠,𝜇,𝜈 is 

also sequentially continuous. Thus by the version of the Schwartz kernel theorem proved in [2], 

𝐴𝑟,𝑠,𝜇,𝜈 has a Schwartz kernel 𝑄𝑟,𝑠,𝜇,𝜈 ∈ 𝒟′(𝑉𝑠 × 𝑈𝑟) satisfying 

〈𝐴𝑟,𝑠,𝜇,𝜈𝑢, 𝑣〉 = 〈𝑄𝑟,𝑠,𝜇,𝜈 , 𝑣 ⊗ 𝑢〉        ∀𝑢 ∈ 𝐶𝑐
∞(𝑈𝑟)   ∀𝑣 ∈ 𝐶𝑐

∞(𝑉𝑠). 

Let 𝐾𝑟,𝑠,𝜇,𝜈 ∶ 𝐶𝑐
∞(𝑁 × 𝑀; 𝜋𝐿

∗(𝐹∗ ⊗ Ω𝑁) ⊗ 𝜋𝑅
∗ 𝐸) → ℂ be given by 

〈𝐾𝑟,𝑠,𝜇,𝜈 , 𝑤〉 = 〈𝑄𝑟,𝑠,𝜇,𝜈 , 𝜌𝑟𝜎𝑠𝑤𝜇,𝜈〉 

where 𝑤𝜇,𝜈 is the component of 𝑤 in 𝜋∗𝑓𝜈
𝑠 ⊗ 𝜋∗𝑒𝜇

𝑟 with respect to the full frame (𝜋𝐿
∗𝑓𝜈′

𝑠 ⊗

𝜋𝑅
∗ 𝑒𝜇′

𝑟 ). We leave it to the reader to show that 𝐾𝑟,𝑠,𝜇,𝜈 is continuous (hint: show sequential 

continuity). It’s not hard to see that 

〈𝐴[(𝜌𝑟𝜙𝜇)𝑒𝜇
𝑟], (𝜌𝑠𝜓𝜈)𝑓𝜈

𝑠〉 = 〈𝐾𝑟,𝑠,𝜇,𝜈 , 𝜋∗𝜓 ⊗ 𝜋∗𝜙〉. 

Hence we get that 

〈𝐴𝜙, 𝜓〉 = ∑ ∑ ∑ 〈𝐾𝑟,𝑠,𝜇,𝜈 , 𝜋𝐿
∗𝜓 ⊗ 𝜋𝑅

∗ 𝜙〉

rank 𝐹

𝜈=1

rank 𝐸

𝜇=1

∞

𝑟,𝑠=1

. 

Observe that the (distributional) support of each 𝐾𝑟,𝑠,𝜇,𝜈 is contained in supp 𝜌𝑟 × supp 𝜌𝑠. By 

construction, the latter is locally finite as 𝑟 and 𝑠 vary from 1 to ∞. It’s not hard to see that this 

implies that the sum of distributions 𝐾 = ∑ ∑ ∑ 𝐾𝑟,𝑠,𝜇,𝜈
rank 𝐹
𝜈=1

rank 𝐸
𝜇=1

∞
𝑟,𝑠=1  is well defined, 

continuous, and furthermore 

〈𝐴𝜙, 𝜓〉 = 〈𝐾, 𝜋𝐿
∗𝜓 ⊗ 𝜋𝑅

∗ 𝜙〉. 

This proves (1). 

∎ 

If one is not interested in the case when the vector bundles 𝐸, 𝐹 are present, then one has the 

following result whose proof is essentially the same as the theorem above. 

Theorem 2.20: Suppose that 𝑀 and 𝑁 are smooth manifolds without boundaries. Let 𝜋𝐿 ∶

𝑁 × 𝑀 → 𝑁 and 𝜋𝑅 ∶ 𝑁 × 𝑀 → 𝑀 denote the maps (𝑝, 𝑞) ↦ 𝑝 and (𝑝, 𝑞) ↦ 𝑞 respectively, and 

let Ω𝑀 and Ω𝑁 denote the density bundles of 𝑀 and 𝑁 respectively. Then 



Haim Grebnev Last Saved: March 27, 2023 

13 

 

1. for any sequentially continuous linear map 𝐴 ∶ 𝐶𝑐
∞(𝑀) ↦ 𝒟′(𝑁), there exists a 

continuous linear functional 𝐾 ∈ 𝐶𝑐
∞(𝑁 × 𝑀; 𝜋𝐿

∗(𝛺𝑁)) → ℂ that satisfies 

(2. 21)       〈𝐴𝜙, 𝜓〉 = 〈𝐾, 𝜋𝐿
∗𝜓 ⊗ 𝜋𝑅

∗ 𝜙〉        ∀𝜙 ∈ 𝐶𝑐
∞(𝑀)   ∀𝜓 ∈ 𝐶𝑐

∞(𝑁; 𝛺𝑁). 

2. For any continuous linear functional 𝐾 ∈ 𝐶𝑐
∞(𝑁 × 𝑀; 𝜋𝐿

∗(𝛺𝑁)) → ℂ, the linear map 𝐴 ∶

𝐶𝑐
∞(𝑀) ↦ 𝒟′(𝑁) given by (2.21) above is sequentially continuous. 

 

2.3 Smooth Schwartz Kernels 

Hintz in his notes discusses the form of Schwartz Kernels when the kernels are smooth. In these 

notes I’d like to elaborate on that with the additional relaxation of not requiring the two 

manifolds to be identical. 

Suppose that 𝑀 and 𝑁 are smooth manifolds without boundaries of dimensions 𝑚 and 𝑛 

respectively, and that 𝐸 → 𝑀 and 𝐹 → 𝑁 are smooth vector bundles. Let 𝜋𝐿 ∶ 𝑁 × 𝑀 → 𝑀 and 

𝜋𝑅 ∶ 𝑁 × 𝑀 → 𝑁 denote the maps (𝑝, 𝑞) ↦ 𝑝 and (𝑝, 𝑞) ↦ 𝑞 respectively and let Ω𝑀, Ω𝑁, and 

Ω(𝑁 × 𝑀) denote the density bundles of 𝑀, 𝑁, and 𝑁 × 𝑀 respectively. 

If the Schwartz Kernel of a continuous linear operator 𝐴 ∶ 𝐶𝑐
∞(𝑀; 𝐸) → 𝐷′(𝑁; 𝐹) is smooth, then 

mathematicians will say that it is of the form 

(2. 22)                                     𝐾 ∈ 𝐶∞(𝑁 × 𝑀; 𝜋𝐿
∗𝐹 ⊗ 𝜋𝑅

∗ (𝐸∗ ⊗ Ω𝑀)). 

In this note, I’d like to discuss how and why such 𝐾’s are canonically identified with being 

continuous linear functionals of the form 𝐶𝑐
∞(𝑁 × 𝑀; 𝜋𝐿

∗(𝐹∗ ⊗ Ω𝑁) ⊗ 𝜋𝑅
∗ 𝐸) → ℂ. To do this, 

let’s define a natural map 𝒞 that “combines” sections of 𝜋𝐿
∗(𝐹∗ ⊗ Ω𝑀) ⊗ 𝜋𝑅

∗ 𝐸 and 𝜋𝐿
∗𝐹 ⊗

𝜋𝑅
∗ (𝐸∗ ⊗ Ω𝑀) and outputs a section of Ω(𝑁 × 𝑀). 

We do this locally. Fix any point (𝑝, 𝑞) ∈ 𝑁 × 𝑀 where 𝑝 ∈ 𝑁 and 𝑞 ∈ 𝑀. Let (𝑉, (𝑦𝑗)) and 

(𝑈, (𝑥𝑖)) be coordinates of 𝑁 and 𝑀 in neighborhoods of 𝑝 and 𝑞 respectively (𝑈 and 𝑉 denote 

the coordinates’ domains), which of course generate coordinates (𝑦𝑗, 𝑥𝑖) of 𝑁 × 𝑀. Let (𝑒𝜇), 

(𝑒∗𝜇), (𝑓𝜈), (𝑓∗𝜈) be frames for 𝐸, 𝐸∗, 𝐹, 𝐹∗ over 𝑈 and 𝑉 accordingly. Then, over 𝑉 × 𝑈 we 

define 

(2. 23) 

𝒞 (𝑎𝜈
𝜇

𝜋𝐿
∗(𝑓∗𝜈 ⊗ |𝑑𝑦1 ∧ … ∧ 𝑑𝑦𝑛|) ⊗ 𝜋𝑅

∗ 𝑒𝜇, 𝑏𝜇
𝜈𝜋𝐿

∗𝑓𝜈 ⊗ 𝜋𝑅
∗ (𝑒∗𝜇 ⊗ |𝑑𝑥1 ∧ … ∧ 𝑑𝑥𝑚|)) 

= 𝑎𝜈
𝜇

𝑏𝜇
𝜈|𝑑𝑦1 ∧ … ∧ 𝑑𝑦𝑛 ∧ 𝑑𝑥1 ∧ … ∧ 𝑑𝑥𝑚|. 

Let’s check that this is well defined. Suppose that (𝑈̃, (𝑥̃𝑖)), (𝑉̃, (𝑦̃𝑗)), (𝑒̃𝜇), (𝑒̃∗𝜇), (𝑓𝜈), (𝑓∗𝜈) 

are similar quantities as above. We have to show that over (𝑉 × 𝑈) ∩ (𝑉̃ × 𝑈̃) the above 

quantity is equal to 

(2. 24)                                      𝑎̃𝜈
𝜇

𝑏̃𝜇
𝜈|𝑑𝑦̃1 ∧ … ∧ 𝑑𝑦̃𝑛 ∧ 𝑑𝑥̃1 ∧ … ∧ 𝑑𝑥̃𝑚| 
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where 𝑎̃𝜈
𝜇

 and 𝑏̃𝜇
𝜈 represent the components of the same sections involved in the previous 

equation but with respect to the frames that have “tildes” over them. Let 𝒜 and ℬ be the matrices 

in the relations 

𝑒̃𝜇 = 𝒜𝜇
𝜆𝑒𝜆          and          𝑓𝜈 = ℬ𝜈

𝜂
𝑓𝜂 , 

whose inverses recall satisfy 

𝑒̃∗𝜇 = (𝒜−1)
𝜆
𝜇

𝑒∗𝜆          and          𝑓∗𝜈 = (ℬ−1)𝜂
𝜈𝑓∗𝜂 . 

We leave it to the reader to show that (with lack of sufficient indices, I put hats over the indices 

in the second quantity below) 

𝑎𝜈
𝜇

= 𝜋𝐿
∗ [(𝐵−1)𝜈

𝜂
|det

𝜕𝑦̃

𝜕𝑦
|] 𝜋𝑅

∗ [𝐴𝜆
𝜇

]𝑎̃𝜂
𝜆          and          𝑏𝜇̂

𝜈̂ = 𝜋𝐿
∗[𝐵𝜂̂

𝜈̂]𝜋𝑅
∗ [(𝐴−1)𝜇̂

𝜆̂ |det
𝜕𝑥̃

𝜕𝑥
|] 𝑏̃

𝜆̂

𝜂̂
. 

Hence using this and the transformation law from |𝑑𝑦1 ∧ … ∧ 𝑑𝑦𝑛 ∧ 𝑑𝑥1 ∧ … ∧ 𝑑𝑥𝑚| to 

|𝑑𝑦̃1 ∧ … ∧ 𝑑𝑦̃𝑛 ∧ 𝑑𝑥̃1 ∧ … ∧ 𝑑𝑥̃𝑚|, we get that (2.23) is equal to (the following is one big 

quantity written in two lines) 

(𝜋𝐿
∗ [(𝐵−1)𝜈

𝜂
|det

𝜕𝑦̃

𝜕𝑦
|] 𝜋𝑅

∗ [𝐴𝜆
𝜇

]𝑎̃𝜂
𝜆) (𝜋𝐿

∗[𝐵𝜂̂
𝜈̂]𝜋𝑅

∗ [(𝐴−1)𝜇̂
𝜆̂ |det

𝜕𝑥̃

𝜕𝑥
|] 𝑏̃

𝜆̂

𝜂̂
) 

𝜋𝐿
∗ [|det

𝜕𝑦

𝜕𝑦̃
|] 𝜋𝑅

∗ [|det
𝜕𝑥

𝜕𝑥̃
|] |𝑑𝑦̃1 ∧ … ∧ 𝑑𝑦̃𝑛 ∧ 𝑑𝑥̃1 ∧ … ∧ 𝑑𝑥̃𝑚|. 

Because there are so many matrices and their inverses involved here, essentially everything 

cancels out to give (2.24). Hence 𝒞 is indeed well defined. 

Having established this, we are ready to discuss how (2.22) is associated to a linear functional of 

the form we were mentioning earlier. Take any 𝐾 as in (2.22). For any 𝜙 ∈ 𝐶𝑐
∞(𝑁 ×

𝑀; 𝜋𝐿
∗(𝐹∗ ⊗ Ω𝑁) ⊗ 𝜋𝑅

∗ 𝐸) we set 

〈𝐾, 𝜙〉 = ∫ 𝒞(𝐾, 𝜙)

𝑁×𝑀

. 

This obviously linear in 𝜙. Let’s see why it’s also continuous. Observe for instance that if we 

took a compact subset 𝑄 ⊆ 𝑉 × 𝑈 of the above coordinates, the above equation in local 

coordinates would look like 

∫ 𝐾𝜈
𝜇

𝜙𝜇
𝜈  𝑑𝑦1 … 𝑑𝑦𝑛𝑑𝑥1 … 𝑑𝑥𝑚

𝑉×𝑈

. 

where the 𝜙𝜇
𝜈 are supported in 𝑄. It should be clear from here that the action of 𝐾 on 𝜙 is indeed 

continuous. 
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