Haim's Notes About

Two Dimensional Compact Simple Riemannian Manifolds are Boundary Distance Rigid by Leonid Pestov and Gunther Uhlmann

Table of Contents

Notations and Conventions	1
Commentary	2
A Boundary Value Problem on the Unit Sphere Bundle (Page 1097)	2

Notations and Conventions

Convention: All manifolds are without boundary by default (i.e. unless stated otherwise).

Convention: All appropriate structures/maps are assumed to be smooth (C^{∞}) unless stated otherwise.

Convention: In a topological space, all neighborhoods are open unless stated otherwise.

Convention: The symbol \mathbb{R}_+ denotes the set of positive real numbers: $\mathbb{R}_+ = \{x \in \mathbb{R} : x > 0\}$.

Definition: A **regular domain** is a smooth properly embedded submanifold with boundary of codimension zero.

Notation: If (M, g) is a Riemannian manifold possibly with boundary, then $\Omega(M)$ denotes its unit sphere bundle.

Notation: Suppose that (M, g) is a Riemannian manifold with boundary and let $\nu : \partial M \to TM$ denote the inward pointing unit normal vector field at the boundary. Then the following denote:

$$\begin{aligned} \partial_{+}\Omega(M) &= \{(x,w) \in \Omega(M) : \langle v,w \rangle \geq 0\}, \\ \partial_{0}\Omega(M) &= \{(x,w) \in \Omega(M) : \langle v,w \rangle = 0\}, \\ \partial_{-}\Omega(M) &= \{(x,w) \in \Omega(M) : \langle v,w \rangle \leq 0\}. \end{aligned}$$

The set $\partial_0 \Omega(M)$ is also called the **glancing region**.

Definition: If (M, g) is a compact Riemannian manifold with boundary, then $[-\tau_{-}(x, v), \tau_{+}(x, v)]$ denotes the domain of $\gamma_{x,v}$ where $(x, v) \in SM$. We also write $\tau(x, v) = \tau_{+}(x, v)$, which is called the **exit time function**.

Commentary

A Boundary Value Problem on the Unit Sphere Bundle (Page 1097)

I feel the need to write down some calculations as I read this article, so here's one:

Theorem: Suppose that (M, g) is a Riemannian manifold with boundary. Let (S, \tilde{g}) be a Riemannian manifold (without boundary) that contains M as a regular domain such that the inclusion $M \hookrightarrow N$ is an isometry. Let $\varphi_t : \Omega(S) \times \mathbb{R} \to \Omega(S)$ denote geodesic flow on $\Omega(S)$ and let $\mathcal{H} = (d/dt)\varphi_t|_{t=0}$ denote the geodesic vector field over $\Omega(S)$. Then for any $f \in C^{\infty}(\Omega(S))$, a solution to the transport equation

$$\mathcal{H}u = -f, \quad u|_{\partial_{-\Omega}(M)} = 0$$

is given by

$$u^{f}(x,\xi) = \int_{0}^{\tau(x,\xi)} f(\varphi_{t}(x,\xi)) dt, \quad (x,\xi) \in \Omega(M).$$

Proof: This is merely a computation. Pick any $(x, \xi) \in \Omega(M)$. Then for any appropriate $\Delta t \in \mathbb{R}$ we have that (in the second equality below I use the fundamental properties of flows)

$$u^{f} \circ \varphi_{\Delta t}(x,\xi) = \int_{0}^{\tau(\varphi_{\Delta t}(x,\xi))} f\left(\varphi_{t}(\varphi_{\Delta t}(x,\xi))\right) dt = \int_{0}^{\tau(x,\xi)-\Delta t} f(\varphi_{t+\Delta t}(x,\xi)) dt$$
$$= \int_{\Delta t}^{\tau(x,\xi)} f(\varphi_{s}(x,\xi)) ds.$$

Thus

$$\mathcal{H}u^{f}\big|_{(x,\xi)} = \frac{d}{dt}\Big(u^{f} \circ \varphi_{t}(x,\xi)\Big)\Big|_{t=0} = \lim_{\Delta t \to 0} \Big(\frac{1}{\Delta t} [u^{f} \circ \varphi_{\Delta t}(x,\xi) - u^{f}(x,\xi)]\Big)$$
$$= -\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{0}^{\Delta t} f\Big(\varphi_{t}(x,\xi)\Big)dt = f\Big(\varphi_{0}(x,\xi)\Big) = f(x,\xi).$$

So u^f indeed satisfies the property that $\mathcal{H}u^f = f$. The boundary condition that $u^f = 0$ over $\partial_-\Omega(M)$ holds trivially since $\tau(x,\xi) = 0$ over $(x,\xi) \in \partial_-\Omega(M)$.