
Haim Grebnev Last Saved: October 17, 2023 

1 

 

Haim’s Notes About 

The X-Ray Transform for Connections in Negative Curvature 

by Colin Guillarmou, Gabriel P. Paternain, Mikko Salo, Gunther 

Uhlmann 

 

1 Table of Contents 

2 Notations and Conventions ................................................................................................................... 1 

3 Page 93 (PDF page 11) Total Covariant Derivative over Bundle 𝓔 ..................................................... 2 

4 Page 93 (PDF page 11) Alternating Tensors Tensored with 𝓔 ............................................................. 2 

5 Page 93 (PDF page 11) Wedge Product of Alternating tensor with Alternating Tensors Tensored 

with 𝓔 ............................................................................................................................................................ 3 

6 Page 94 (PDF page 12) Curvature of a Connection .............................................................................. 4 

7 Page 96 (PDF page 14) Splitting of a covariant derivative of a section of 𝓔 ........................................ 6 

8 Page 96 (PDF page 14) 𝕏 acting on smooth sections of 𝑵 ⊗ 𝓔 ........................................................... 6 

9 Page 97 (PDF page 14) The operator 𝑭𝓔 .............................................................................................. 7 

10 Page 99 (PDF page 17) Vertical and 𝓔 Laplacians over 𝑺𝑴 ................................................................ 8 

11 Page 105 (PDF page 23) Calculation in Proof of Lemma 4.2 .............................................................. 9 

12 Page 105 (PDF Page 22) 2nd Calculation in Proof of Lemma 4.2 ....................................................... 10 

13 Page 107 (PDF Page 25) Interchanging 𝕏 and Sum in Fourier Series ................................................ 11 

14 Page 109 (PDF Page 27) Remainder Estimate in Proof of Theorem 4.6 ............................................ 13 

15 Page 119 (PDF Page 37) Final Conclusion in Proof of Theorem 1.2 ................................................. 14 

16 References ........................................................................................................................................... 15 

 

2 Notations and Conventions 

Convention 2.1: For any smooth manifold 𝑀 possibly with boundary, I let 𝔛(𝑀) and 𝔛∗(𝑀) 

denote the space of all smooth vector fields and smooth covector fields over 𝑀 respectively. 

Similarly, if ℰ is any vector bundle over 𝑀, I let Γ(ℰ) and Γ(ℰ∗) denote the space of all smooth 

sections of ℰ and its dual bundle ℰ∗ respectively. 

Convention 2.2: I use the Einstein summation convention here. 

 

 



Haim Grebnev Last Saved: October 17, 2023 

2 

 

 

3 Page 93 (PDF page 11) Total Covariant Derivative over Bundle 𝓔 

 

My understanding is that for any smooth section 𝑢 ∶ 𝑀 → ℰ, ∇𝑢 denotes the tensor ∇𝑢 ∶
𝔛(𝑀) × Γ(ℰ∗) → ℂ given by 

∇𝑢(𝑋, Ω) = Ω(∇𝑋𝑢) 

Suppose that (𝑒1, … , 𝑒𝑛) is a frame of ℰ over 𝑈 as in this paragraph in the paper (I drop the 

assumption that it’s orthonormal because I don't believe it’s needed for what’s stated below). 

Suppose also that (𝑥𝑖) are local coordinates over 𝑈 and let Γ𝑖𝑗
𝑘 be the coefficients in 

∇𝜕𝑖
𝑒𝑗 = Γ𝑖𝑗

𝑘𝑒𝑘. 

Then we have that for any 𝑣 ∈ 𝑇𝑥𝑀 and any 𝜔 ∈ ℰ𝑥
∗ 

∇𝑢(𝑣, 𝜔) = 𝜔𝑟𝑒𝑟 ([𝑣𝑖
∂𝑢𝑘

∂𝑥𝑖
+ 𝑣𝑖𝑢𝑗Γ𝑖𝑗

𝑘] 𝑒𝑘) = (
∂𝑢𝑘

∂𝑥𝑖
+ 𝑢𝑗Γ𝑖𝑗

𝑘) 𝑣𝑖𝜔𝑘 

Hence over 𝑈, 

∇𝑢 = (
∂𝑢𝑘

∂𝑥𝑖
+ 𝑢𝑗Γ𝑖𝑗

𝑘) 𝑑𝑥𝑖 ⊗ 𝑒𝑘 = (𝑑(𝑢𝑘) + 𝑢𝑗Γ𝑖𝑗
𝑘𝑑𝑥𝑖) ⊗ 𝑒𝑘,

∇𝑌𝑢 = (𝑌𝑖
∂𝑢𝑘

∂𝑥𝑖
+ 𝑢𝑗𝑌𝑗Γ𝑖𝑗

𝑘) 𝑒𝑘 = (𝑑(𝑢𝑘) + 𝑢𝑗Γ𝑖𝑗
𝑘𝑑𝑥𝑖)(𝑌)𝑒𝑘.

 

This is the same as equations given in the paper where they set 𝐴𝑗
𝑘 = Γ𝑖𝑗

𝑘𝑑𝑥𝑖. 

 

4 Page 93 (PDF page 11) Alternating Tensors Tensored with 𝓔 

 

I believe that what they mean here with the notation 𝐶∞(𝑀; Λ𝑘(𝑇∗𝑀) ⊗ ℰ) doesn't align with 

standard usage since Λ𝑘(𝑇∗𝑀) is not a tensor product. Here is my interpretation of what this 

notation means is (here “𝔛(𝑀)” is being multiplied 𝑘 times): 
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𝐶∞(𝑀; Λ𝑘(𝑇∗𝑀) ⊗ ℰ)

= {multilinear and smooth 𝑢 ∶ 𝔛(𝑀) × … × 𝔛(𝑀) × ℰ∗ → ℂ

∶ 𝑢(𝑣𝜎(1), … , 𝑣𝜎(1), 𝑙) = (sgn 𝜎)𝑢(𝑣1, … , 𝑣𝑘 , 𝑙) ∀𝜎 ∈ 𝑆𝑘}.

 

In other words, 𝐶∞(𝑀; Λ𝑘(𝑇∗𝑀) ⊗ ℰ) is the subspace of tensors 𝐶∞(𝑀; 𝑇∗𝑀 ⊗ … ⊗ 𝑇∗𝑀 ⊗

ℰ) that are alternating in the first 𝑘 arguments. 

 

5 Page 93 (PDF page 11) Wedge Product of Alternating tensor with 

Alternating Tensors Tensored with 𝓔 

 

To understand this equation, we first need to define the wedge product of a ⊗𝑖=1
𝑘 𝑇∗𝑀 valued 

tensor and a [⊗𝑖=1
𝑗

𝑇∗𝑀] ⊗ ℰ valued tensor because that's not classically defined since the last 

argument of the latter type tensor does not live in the space of the arguments of the former. 

Here's the definition: if 𝜔 ∈⊗𝑖=1
𝑘 𝑇∗𝑀 and 𝜂 ∈ [⊗𝑖=1

𝑗
𝑇∗𝑀] ⊗ ℰ are tensors, then we define 

𝜔 ∧ 𝜂(𝑣1, … , 𝑣𝑘+𝑗, 𝑙) =
1

𝑘! 𝑗!
∑  

𝜎∈𝑆𝑘+𝑗

(sgn 𝜎)𝜔(𝑣𝜎(1), … , 𝑣𝜎(𝑘))𝜂(𝑣𝜎(𝑘+1), … , 𝑣𝜎(𝑘+𝑗), 𝑙) 

In other words, you perform the tensor product and “alt” operator on the first 𝑘 + 𝑗 arguments. 

It’s is easy to see that if 𝜔 ∈⊗𝑖=1
𝑘 𝑇∗𝑀, �̃� ∈⊗𝑖=1

𝑗
𝑇∗𝑀, and 𝑒 ∈ ℰ, then 

𝜔 ∧ (�̃� ⊗ 𝑒) = (𝜔 ∧ �̃�) ⊗ 𝑒. 

So for instance, this formula in the paper that defines ∇ on 𝐶∞(𝑀; Λ𝑘(𝑇∗𝑀) ⊗ ℰ) can instead be 

written as 

(5. 1)       ∇(𝜔 ⊗ 𝑢) = 𝑑𝜔 ⊗ 𝑢 + (−1)𝑘𝜔 ∧ ∇𝑢         ∀𝜔 ∈ 𝐶∞(𝑀; Λ𝑘(𝑇∗𝑀)),  ∀𝑢 ∈ 𝐶∞(𝑀; ℰ) 

One needs to check that such an operator “∇” exists and is well defined. Let’s discuss how this is 

done. It’s now hard to see that the above equation implies that the operator is unique. Next, fix a 

coordinate chart (𝑈, (𝑥𝑖)) of 𝑀 (i.e. 𝑈 ⊆ 𝑀 is the domain of the chart) and let (𝑟𝑗) be a frame of 

ℰ over 𝑈. Any element in 𝐶∞(𝑀; Λ𝑘(𝑇∗𝑀) ⊗ ℰ) can be written as 

∑ 𝜔𝐼
𝑗
𝑑𝑥𝐼 ⊗ 𝑟𝑗

          ′

𝐼

 

where 𝐼 = (𝑖1, … , 𝑖𝑘) denotes 𝑘-tuple of indices, 𝑑𝑥𝐼 = 𝑑𝑥𝑖1 ∧ … ∧ 𝑑𝑥𝑖𝑘 , the prime “ ′ ” over the 

sum means that we only sum over 𝑘-tuples 𝐼 of strictly increasing order (i.e. 𝑖1 < ⋯ < 𝑖𝑘), and 

𝜔𝐼,𝑗 are smooth functions over 𝑀. Over 𝑈 we define ∇ to be the operator (linear over ℂ) 
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∇ ( ∑ 𝜔𝐼
𝑗
𝑑𝑥𝐼 ⊗ 𝑟𝑗

          ′

𝐼

) = ∑ 𝑑(𝜔𝐼
𝑗
𝑑𝑥𝐼) ⊗ 𝑟𝑗

          ′

𝐼

+ (−1)𝑘 ∑ 𝜔𝐼
𝑗
𝑑𝑥𝐼 ∧ ∇𝑟𝑗

          ′

𝐼

. 

It’s not hard to see that if we show that this operator satisfies (5.1) above over 𝑈, then ∇ is well 

defined over all of 𝑀 and satisfies (5.1) over all of 𝑀. So let’s show that (5.1) holds over 𝑈. 

Take any smooth 𝜔 ∈ 𝐶∞(𝑀; Λ𝑘(𝑇∗𝑀)) and any 𝑢 ∈ 𝐶∞(𝑀; ℰ). Write 

𝜔 = ∑ 𝜔𝐼𝑑𝑥𝐼

          ′

𝐼

     and     𝑢 = 𝑢𝑗𝑟𝑗 . 

Over 𝑈 we have that 

∇(𝜔 ⊗ 𝑢) = ∇ ( ∑ 𝜔𝐼𝑢𝑗𝑑𝑥𝐼 ⊗ 𝑟𝑗

          ′

𝐼

) = ∑ 𝑑(𝜔𝐼𝑢𝑗𝑑𝑥𝐼) ⊗ 𝑟𝑗

          ′

𝐼

+ (−1)𝑘 ∑ 𝜔𝐼𝑢𝑗𝑑𝑥𝐼 ∧ ∇𝑟𝑗

          ′

𝐼

 

= ∑ (𝑢𝑗𝑑(𝜔𝐼𝑑𝑥𝐼) + 𝑑𝑢𝑗 ∧ (𝜔𝐼𝑑𝑥𝐼)) ⊗ 𝑟𝑗

          ′

𝐼

+ (−1)𝑘 ∑ (𝜔𝐼𝑑𝑥𝐼) ∧ (𝑢𝑗∇𝑟𝑗)

          ′

𝐼

 

∑ 𝑑(𝜔𝐼𝑑𝑥𝐼) ⊗ (𝑢𝑗𝑟𝑗)

          ′

𝐼

+ (−1)𝑘 ∑ (𝜔𝐼𝑑𝑥𝐼) ∧ (𝑑𝑢𝑗 ⊗ 𝑟𝑗 + 𝑢𝑗∇𝑟𝑗)

          ′

𝐼

. 

Since ∇(𝑢𝑗𝑟𝑗) = 𝑑𝑢𝑗 ⊗ 𝑟𝑗 + 𝑢𝑗∇𝑟𝑗, we have that this is indeed equal to 𝑑𝜔 ⊗ 𝑢 + (−1)𝑘𝜔 ∧

∇𝑢. 

For reference, I include the formula for the derivative of a 𝐶∞(𝑀; 𝑇∗𝑀 ⊗ ℰ) tensor. Suppose 

that (𝑈, (𝑥𝑖)) are local coordinates of 𝑀 and that (𝑟𝑖) are a frame of ℰ over 𝑈. Then for any 𝑢 ∈

𝐶∞(𝑀; 𝑇∗𝑀 ⊗ ℰ) we have over 𝑈 that 

∇𝑢 = ∇(𝑢𝑖
𝑗
𝑑𝑥𝑖 ⊗ 𝑟𝑗) =

∂𝑢𝑖
𝑗

∂𝑥𝜇
(𝑑𝑥𝜇 ∧ 𝑑𝑥𝑖) ⊗ 𝑟𝑗 − 𝑢𝑖

𝑗
𝑑𝑥𝑖 ∧ (Γ𝜇𝑗

𝑘 𝑑𝑥𝜇 ⊗ 𝑟𝑘), 

and so we have either the following two convenient forms for ∇𝑢: 

∇𝑢 =
∂𝑢𝑖

𝑗

∂𝑥𝜇
(𝑑𝑥𝜇 ∧ 𝑑𝑥𝑖) ⊗ 𝑟𝑗 − 𝑢𝑖

𝑗
Γ𝜇𝑗

𝑘 (𝑑𝑥𝑖 ∧ 𝑑𝑥𝜇) ⊗ 𝑟𝑘

∇𝑢 = (
∂𝑢𝑖

𝑗

∂𝑥𝜇
− 𝑢𝜇

𝑘Γ𝑖𝑘
𝑗

) (𝑑𝑥𝜇 ∧ 𝑑𝑥𝑖) ⊗ 𝑟𝑗

 

(I switched 𝜇 ↔ 𝑖 and 𝑗 ↔ 𝑘 labels in the second term in the very last equation). 

 

6 Page 94 (PDF page 12) Curvature of a Connection 
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Let me write this equation in the paper out a bit more explicitly so that it's clear what it means. 

Suppose that (𝑈, (𝑥𝑖)) are local coordinate of 𝑀 and that (𝑟𝑖) are a smooth frame of ℰ over 𝑈. 

Then for any 𝑢 ∈ 𝐶∞(𝑀; ℰ) over 𝑈 one can check that 𝑓ℰ(𝑢) can be written in any one of the 

following forms: 

𝑓ℰ(𝑢) = ∇2𝑢 = 𝑢𝜆 (
∂Γ𝑖𝜆

𝑗

∂𝑥𝜇
− Γ𝜇𝜆

𝑚Γ𝑖𝑚
𝑗

) (𝑑𝑥𝜇 ∧ 𝑑𝑥𝑖) ⊗ 𝑟𝑗

= 𝑢𝜆 (
∂Γ𝑖𝜆

𝑗

∂𝑥𝜇
− Γ𝜇𝜆

𝑚Γ𝑖𝑚
𝑗

−
∂Γ𝜇𝜆

𝑗

∂𝑥𝑖
+ Γ𝑖𝜆

𝑚Γ𝜇𝑚
𝑗 ) 𝑑𝑥𝜇 ⊗ 𝑑𝑥𝑖 ⊗ 𝑟𝑗

= 𝑢𝜆 (𝑑(Γ𝑖𝜆
𝑗

𝑑𝑥𝑖) + (Γ𝑖𝑚
𝑗

𝑑𝑥𝑖) ∧ (Γ𝜇𝜆
𝑚𝑑𝑥𝜇)) ⊗ 𝑟𝑗

= 𝑢𝜆(𝑑𝐴𝜆
𝑗

+ 𝐴𝑚
𝑗

∧ 𝐴𝜆
𝑚) ⊗ 𝑟𝑗

 

where recall the matrix of one forms [𝐴𝜆
𝑗
]

𝑗,𝜆=1

𝑛
= [Γ𝑖𝜆

𝑗
𝑑𝑥𝑖]

𝑗,𝜆=1

𝑛
. 

It’s interesting to note that from the second equation above we can see that if it so happens that 

ℰ = 𝑇𝑀, then for any 𝑉, 𝑋, 𝑌 ∈ 𝔛∗(𝑀) and any Ω ∈ 𝔛∗(𝑀), 

𝑓ℰ(𝑉)(𝑋, 𝑌, Ω) = 𝑅(𝑋, 𝑌, 𝑉, Ω) 

where 𝑅 is the ordinary (1,3)-curvature endomorphism. That’s the reason we call 𝑓ℰ the 

curvature of a general connection (ℰ, ∇). 

In the paragraph before, the authors write 

(6. 1)                                              𝑓 ∈ 𝐶∞(𝑀; Λ2(𝑇∗𝑀) ⊗ End(ℰ)) 

Here is my understanding of this notation. We have that 𝑓ℰ ∶ Γ(ℰ) × 𝔛(𝑀) × 𝔛(𝑀) × Γ(ℰ∗) →

ℂ maps 

𝑓ℰ(𝑢, 𝑋, 𝑌, 𝐿) = 𝑓ℰ(𝑢)(𝑋, 𝑌, 𝐿) 

We can naturally associate this with a map of the form 𝑓ℰ ∶ Γ(ℰ) × 𝔛(𝑀) × 𝔛(𝑀) → Γ(ℰ) that 

maps as follows: if (𝑟𝑖) is a smooth local frame for ℰ over an open set 𝑈 and (𝑙𝑖) is its dual 

coframe, then 

𝑓ℰ(𝑢, 𝑋, 𝑌) = 𝑓ℰ(𝑢)(𝑋, 𝑌, 𝑙𝑖)𝑟𝑖. 
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Considering the bundle of endomorphisms over 𝑀 ∶ End(ℰ), then 𝑓ℰ further generates a smooth 

map of the form 𝑓ℰ: 𝔛(𝑀) × 𝔛(𝑀) → End(ℰ) given by the following at any 𝑝 ∈ 𝑈: 

𝑓ℰ(𝑋, 𝑌)𝑝(𝑒) = 𝑓ℰ(𝑒) (𝑋𝑝, 𝑌𝑝, 𝑙𝑖|
𝑝

) 𝑟𝑖|
𝑝

 

This is the closest interpretation that I can get of what them mean by (6.1) above. In fact, it’s not 

hard to check that if ℰ and ∇ are unitary, then all of the “End(ℰ)” here can be changed to 

“Endsk(ℰ)” (see the end of page 93 [PDF page 11] of the paper). 

 

7 Page 96 (PDF page 14) Splitting of a covariant derivative of a section of 𝓔 

 

Here I’d like to discuss the highlighted splitting: in particular what I believe they mean by 𝕏𝑢, 

∇
h

ℰ𝑢, and ∇
v

ℰ𝑢. Let’s first discuss ∇
h

ℰ𝑢. Take any 𝑢 ∈ 𝐶∞(𝑆𝑀; ℰ). They define ∇
h

ℰ𝑢 as follows. 

First compute ∇ℰ𝑢 ∈ 𝐶∞(𝑆𝑀; 𝑇∗(𝑆𝑀) ⊗ ℰ) as defined earlier in the paper. Then, raise the index 

of ∇ℰ𝑢 in the first argument with respect to the (Sasaki) metric on 𝑆𝑀 to get (∇ℰ𝑢)♯ ∈

𝐶∞(𝑆𝑀; 𝑇(𝑆𝑀) ⊗ ℰ). Then send this resulting tensor through the unique map 

Πℋ ∶ 𝐶∞(𝑆𝑀; 𝑇(𝑆𝑀) ⊗ ℰ) → 𝐶∞(𝑆𝑀; ℋ ⊗ ℰ) 

that satisfies 

Πℋ(𝑉 ⊗ 𝑒) = (𝜋ℋ𝑉) ⊗ 𝑒 

where 𝜋ℋ𝑉 is the projection of 𝑉 onto ℋ in the orthogonal decomposition 𝑇(𝑆𝑀) = ℝ𝑋 ⊕

ℋ ⊕ 𝒱. We leave it to the reader to check that such a map Πℋ indeed exists. The result is what 

we call “∇
h

ℰ𝑢.” 

The tensor ∇
v

ℰ𝑢 is defined the same way except that you use maps Π𝒱 and 𝜋𝒱 that are defined 

analogously. For 𝕏𝑢, you almost do the same thing. Instead of using the projection maps Πℝ𝑋 

and 𝜋ℝ𝑋 at the end, you use maps comp𝑋 ∶ 𝐶∞(𝑆𝑀; 𝑇(𝑆𝑀) ⊗ ℰ) → 𝐶∞(𝑆𝑀; (ℝ𝑋) ⊗ ℰ) and 

comp𝑋 ∶ 𝑇(𝑆𝑀) → ℝ𝑋 that give the component of your object in the direction of the subspace 

ℝ𝑋. However, it’s simpler to just use the equivalent definition 

𝕏𝑢 ≔ ∇𝑋
ℰ 𝑢. 

 

8 Page 96 (PDF page 14) 𝕏 acting on smooth sections of 𝑵 ⊗ 𝓔 
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In the paper they claim that there exists a unique operator 𝕏 acting on 𝐶∞(𝑆𝑀; 𝑁 ⊗ ℰ) 

satisfying the highlighted equation. It’s not hard to see uniqueness, so let me show existence. Let 

(𝑏𝑖) and (𝑟𝑗) be frames for 𝑁 and ℰ respectively over an open set 𝑈 ⊆ 𝑆𝑀. Any smooth section 

of 𝑁 ⊗ ℰ can be written as 𝐴𝑖𝑗𝑏𝑖 ⊗ 𝑟𝑗. Over 𝑈 we define 𝕏 to be 

(8. 1)                            𝕏(𝐴𝑖𝑗𝑏𝑖 ⊗ 𝑟𝑗) = [𝑋(𝐴𝑖𝑗𝑏𝑖)] ⊗ 𝑟𝑗 + (𝐴𝑖𝑗𝑏𝑖) ⊗ (𝕏𝑟𝑗). 

It’s not hard to see that if we show that this definition of 𝕏 satisfies the above highlighted 

equation, then this 𝕏 is well defined over 𝑈 (i.e. independent of the (𝑏𝑖) and (𝑟𝑗) that we choose) 

and hence over 𝑀 as well. Thus, take any 𝑍 ∈ 𝐶∞(𝑆𝑀; 𝑁) and any 𝑒 ∈ 𝐶∞(𝑆𝑀; ℰ) which we 

write component wise as 𝑍 = 𝑍𝑖𝑏𝑖 and 𝑒 = 𝑒𝑗𝑟𝑗. Then by (8.1) 

𝕏(𝑍 ⊗ 𝑒) = [𝑋(𝑍𝑖𝑒𝑗𝑏𝑖)] ⊗ 𝑟𝑗 + (𝑍𝑗𝑒𝑗𝑏𝑖) ⊗ (𝕏𝑟𝑗) 

= [𝑋(𝑒𝑗)𝑍𝑖𝑏𝑖 + 𝑒𝑗𝑋(𝑍𝑖𝑏𝑖)] ⊗ 𝑟𝑗 + (𝑍𝑗𝑏𝑖) ⊗ (𝑒𝑗𝕏𝑟𝑗) 

= [𝑋(𝑍𝑖𝑏𝑖)] ⊗ (𝑒𝑗𝑟𝑗) + (𝑍𝑖𝑏𝑖) ⊗ [𝑋(𝑒𝑗)𝑟𝑗 + 𝑒𝑗𝕏𝑟𝑗]. 

= [𝑋(𝑍)] ⊗ 𝑒 + 𝑍 ⊗ [𝕏(𝑒)]. 

  

9 Page 97 (PDF page 14) The operator 𝑭𝓔 

 

Here I’d like to explain what this operator 𝐹ℰ is. Let 𝑁∗ and ℰ∗ denote the dual bundle to 𝑁 and 

ℰ repsectively. Then, 𝐹ℰ is the element of 𝐶∞(𝑆𝑀; 𝑁 ⊗ ℰ∗ ⊗ ℰ) given by 

𝐹ℰ(𝑥, 𝑣)(𝜔, 𝑒, 𝑙) = 𝑓𝑥
ℰ(𝑒, 𝑣, 𝜔♯, 𝑙) 

where (𝑥, 𝑣) ∈ 𝑆𝑀, 𝜔 ∈ 𝑁(𝑥,𝑣)
∗ , 𝑒 ∈ ℰ𝑥, 𝑙 ∈ ℰ𝑥

∗, and 𝜔♯ denotes the musical isomorphism of 𝑔 

applied to 𝜔 in 𝑇𝑥𝑀 that raises its indices. Let’s show that this definition of 𝐹ℰ satisfies the 

above highlighted equation. Let (𝑏𝑖) be an orthonormal basis of 𝑁𝑥 and (𝑟𝑗) be an orthonormal 

basis of ℰ𝑥. Let (𝛽𝑖) and (𝜌𝑗) be dual bases for (𝑏𝑖) and (𝑟𝑗) respectively. Now, take any 
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(𝑥, 𝑣) ∈ 𝑆𝑀 and any 𝑒 ∈ ℰ𝑥. The quantity 𝐹ℰ(𝑥, 𝑣)𝑒 simply denotes the tensor that maps 

(𝜔, 𝑙) ↦ 𝐹ℰ(𝑥, 𝑣)(𝜔, 𝑒, 𝑙). It’s not hard to see that this is explicitly given by  

𝐹ℰ(𝑥, 𝑣)𝑒 = 𝐹ℰ(𝑥, 𝑣)(𝛽𝑖, 𝑒, 𝜌𝑗)𝑏𝑖 ⊗ 𝑟𝑗 = 𝑓𝑥
ℰ (𝑒, 𝑣, (𝛽𝑖)

♯
, 𝜌𝑗) 𝑏𝑖 ⊗ 𝑟𝑗. 

Since (𝑏𝑖) is orthonormal, it’s not hard to see that (𝛽𝑖)
♯

= 𝑏𝑖. Hence we get that (for the rest of 

this section I will use the Einstein summation convention improperly by not requiring that one 

index be lower and the other higher) 

𝐹ℰ(𝑥, 𝑣)𝑒 = 𝑓𝑥
ℰ(𝑒, 𝑣, 𝑏𝑖, 𝜌𝑗)𝑏𝑖 ⊗ 𝑟𝑗 . 

Now, take any 𝑤 ∈ 𝑁𝑥 and 𝑒′ ∈ ℰ𝑥 that we write component wise as 𝑤 = 𝑤𝑖𝑏𝑖 and 𝑒 = 𝑒𝑗𝑟𝑗. 

Then we get that (here we again use that (𝑏𝑖) and (𝑟𝑗) are orthonormal) 

〈𝐹ℰ(𝑥, 𝑣)𝑒, 𝑤 ⊗ 𝑒′〉𝑁⊗ℰ = 〈𝑓𝑥
ℰ(𝑒, 𝑣, 𝑏𝑖, 𝜌𝑗)𝑏𝑖 ⊗ 𝑟𝑗 , 𝑤𝑖𝑒′𝑗𝑏𝑖 ⊗ 𝑟𝑗〉𝑁⊗ℰ = 𝑓𝑥

ℰ(𝑒, 𝑣, 𝑏𝑖, 𝜌𝑗)𝑤𝑖𝑒′𝑗 . 

= 𝑓𝑥
ℰ(𝑒, 𝑣, 𝑤, 𝜌𝑗)𝑒′𝑗 = 〈𝑓𝑥

ℰ(𝑒, 𝑣, 𝑤, 𝜌𝑗)𝑟𝑗 , 𝑒′𝑗𝑟𝑗〉ℰ = 〈𝑓𝑥
ℰ(𝑣, 𝑤)𝑒, 𝑒′〉ℰ . 

Hence the highlighted equation indeed holds. 

 

10 Page 99 (PDF page 17) Vertical and 𝓔 Laplacians over 𝑺𝑴 

 

In his note I’d like to discuss why the highlighted equation holds. In fact, I drop the assumption 

that (𝑒1, … , 𝑒𝑛) is orthonormal because as far as I understand it’s not needed. Let 𝜋 ∶ 𝑇𝑀 → 𝑀 

denote the natural projection and let ∇ℰ and 𝜋∗∇ℰ denote the Hermitian connections of interest. 

The authors omit writing 𝜋∗ in their notation, but for purposes of clarity we won’t omit it in this 

section. In this vein, notice that since the 𝑒𝑘’s are frames of ℰ over an open set in 𝑀 the 

highlighted equation should really read (I use the Einstein summation convention here so I drop 

the “Σ”) 

Δℰ(𝑢𝑘𝜋∗𝑒𝑘) = (Δ𝑢𝑘)𝜋∗𝑒𝑘. 

We’ll prove this equation by first demonstrating that 

(10. 1)                                              ∇
v

ℰ(𝑢𝑘𝜋∗𝑒𝑘) = (∇
v

𝑢𝑘) ⊗ 𝜋∗𝑒𝑘, 
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(this equation was mentioned in the paper on page 98) To see why this holds, take any 𝑊 ∈ 𝑇𝑆𝑀 

and observe that over any coordinates (𝑥𝑖) contained in the domain of the frame (𝑒𝑘), the 

definition of the pullback connection (c.f. my “Miscellaneous notes”) tells us that 

(𝜋∗∇ℰ)𝑊(𝑢𝑘𝜋∗𝑒𝑘) = 𝑊(𝑢𝑘)𝜋∗𝑒𝑘 + 𝑢𝑘𝜋∗∇𝑑𝜋(𝑊)
ℰ (𝑒𝑘) = 𝑊(𝑢𝑘)𝜋∗𝑒𝑘 + 𝑢𝑘𝜋∗(Γ𝑖𝑘

𝑗
𝑊𝑖𝑒𝑗) 

where 𝑊𝑖 denote the components of 𝑑𝜋(𝑊) with respect to (𝜕 𝜕𝑥𝑖⁄ ) and Γ𝑖𝑘
𝑗

 are the connection 

symbols in the equations ∇
𝜕 𝜕𝑥𝑖⁄
ℰ 𝑒𝑘 = Γ𝑖𝑘

𝑗
𝑒𝑗. It’s not hard to see that this implies that 

(𝜋∗∇ℰ)(𝑢𝑘𝜋∗𝑒𝑘) = 𝑑𝑢𝑘 ⊗ 𝜋∗𝑒𝑘 + 𝑢𝑘Γ𝑖𝑘
𝑗

(𝜋∗𝑑𝑥𝑖 ⊗ 𝜋∗𝑒𝑗). 

Hence, using the notation that we introduced in Section 7 above 

∇
v

ℰ(𝑢𝑘𝜋∗𝑒𝑘) = Π𝒱[(𝜋∗∇ℰ)(𝑢𝑘𝜋∗𝑒𝑘)]♯ = 𝜋𝒱(𝑑𝑢𝑘)♯ ⊗ 𝑒𝑘 + 𝑢𝑘Γ𝑖𝑘
𝑗

(𝜋𝒱(𝜋∗𝑑𝑥𝑖)
♯

⊗ 𝜋∗𝑒𝑗). 

By definition we have that 𝜋𝒱(𝑑𝑢𝑘)♯ = ∇
v

𝑢𝑘. Next let’s show that each 𝜋𝒱(𝜋∗𝑑𝑥𝑖)
♯

= 0. Take 

any 𝑊 ∈ 𝒱. Using that 𝑇𝑆𝑀 = ℝ𝑋 ⊕ ℋ ⊕ 𝒱 is an orthogonal decomposition, we have that 

〈𝜋𝒱(𝜋∗𝑑𝑥𝑖)
♯
, 𝑊〉 = 〈(𝜋∗𝑑𝑥𝑖)

♯
, 𝑊〉 = 𝜋∗𝑑𝑥𝑖(𝑊). 

It’s not hard to see that 𝑊 being vertical implies that it each 𝑑𝑥𝑖(𝑊) = 0. So indeed 

𝜋𝒱(𝜋∗𝑑𝑥𝑖)
♯

= 0. From here we finally get (10.1). 

Next, I believe that for any 𝑍 ∈ 𝒵 and any 𝑒𝑖 

(10. 2)                                                  div
v

ℰ(𝑍 ⊗ 𝑒𝑖) = div
v

(𝑍)𝑒𝑖. 

The reason I believe this to be true is that the computation for the vertical divergence in 

Appendix A of the reference “[PSU14c]” mentioned in the paper should adapt easily to prove the 

above formula. If that’s the case, then the highlighted equation simply follows by applying the 

−div
v

ℰ to both sides of (10.1) above. 

 

11 Page 105 (PDF page 23) Calculation in Proof of Lemma 4.2 

 

In this section I’d like to show why this highlighted inequality follows. Here (⋅,⋅) and ‖ ⋅ ‖ 

denote the inner product and norm respectively in the space 𝐿2(𝑆𝑀; 𝑁 ⊗ ℰ). First we observe 

that 

0 ≤ ‖
1

√𝜅
𝐹ℰ𝑢 ± √𝜅∇

v
ℰ𝑢‖

2

= ‖
1

√𝜅
𝐹ℰ𝑢‖

2

± 2 (
1

√𝜅
𝐹ℰ𝑢, √𝜅∇

v
ℰ𝑢) + ‖√𝜅∇

v
ℰ𝑢‖

2
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and so 

|(𝐹ℰ𝑢, ∇
v

ℰ𝑢)| ≤
1

2
(

1

𝜅
‖𝐹ℰ𝑢‖

2
+ 𝜅 ‖∇

v
ℰ𝑢‖

2

). 

So we need to show that 

‖𝐹ℰ𝑢‖
2

≤ ‖𝐹ℰ‖
𝐿∞

2
‖𝑢‖

𝐿2(𝑆𝑀;ℰ)
2 . 

It might be useful to review Section 9 above for the following. We will prove the above 

inequality by showing that at any point (𝑥, 𝑣) ∈ 𝑆𝑀 

(11. 1)                                               |𝐹ℰ𝑢|
𝑁⊗ℰ

2
≤ |𝐹ℰ|

𝑁⊗ℰ∗⊗ℰ

2
|𝑢|ℰ

2. 

Fix (𝑥, 𝑣) ∈ 𝑆𝑀 and let (𝑏𝑖) be an orthonormal basis of 𝑁𝑥 and (𝑟𝑗) be an orthonormal basis of 

ℰ𝑥. Let (𝛽𝑖) and (𝜌𝑗) be dual bases for (𝑏𝑖) and (𝑟𝑗) respectively. In such frames we write 

𝐹ℰ = (𝐹ℰ)𝑖 𝑟 𝑗  𝑏𝑖 ⊗ 𝜌𝑟 ⊗ 𝑟𝑗           and          𝑢 = 𝑢𝑟𝑟𝑗 , 

and so 

𝐹ℰ𝑢 = (𝐹ℰ)𝑖 𝑟 𝑗𝑢𝑟𝑏𝑖 ⊗ 𝑟𝑗 . 

Since our frames are all orthonormal, we can write the norm of this rather neatly: 

|𝐹ℰ𝑢|
𝑁⊗ℰ

2
= ∑ ∑[(𝐹ℰ)𝑖 𝑟 𝑗𝑢𝑟]

2
𝑛

𝑗=1

𝑑−1

𝑖=1

. 

Using the triangle inequality on the summand here gives us that this is bounded by 

∑ ∑ (∑[(𝐹ℰ)𝑖 𝑟 𝑗]
2

𝑛

𝑟=1

) (∑[𝑢𝑟]2

𝑛

𝑟=1

)

𝑛

𝑗=1

𝑑−1

𝑖=1

= |𝐹ℰ|
𝑁⊗ℰ∗⊗ℰ

2
|𝑢|ℰ

2, 

proving (11.1) above. 

 

12 Page 105 (PDF Page 22) 2nd Calculation in Proof of Lemma 4.2 

 

I don’t quite know how the highlighted equation follows, but let me discuss a possible 

explanation. More explicitly, let’s show that 
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‖𝑢‖
𝐿2(𝑆𝑀;ℰ)
2 ≤

1

𝜆𝑚
‖∇

v
ℰ𝑢‖

𝐿2(𝑆𝑀;𝑁⊗ℰ)
 

(recall that by assumption 𝑢𝑗  for 𝑗 < 𝑚 are zero). We have that 

(12. 1)                    ‖𝑢‖
𝐿2(𝑆𝑀;ℰ)
2 = ∑〈𝑢𝑗 , 𝑢𝑗〉𝐿2(𝑆𝑀;ℰ)

∞

𝑗=𝑚

= ∑
1

𝜆𝑗

〈Δℰ𝑢𝑗 , 𝑢𝑗〉𝐿2(𝑆𝑀;ℰ)

∞

𝑗=𝑚

 

= ∑
1

𝜆𝑗

〈∇
v

ℰ𝑢𝑗 , ∇
v

ℰ𝑢𝑗〉𝐿2(𝑆𝑀;𝑁⊗ℰ)

∞

𝑗=𝑚

≤
1

𝜆𝑚
∑ ‖∇

v
ℰ𝑢𝑗‖

𝐿2(𝑆𝑀;𝑁⊗ℰ)

2
∞

𝑗=𝑚

. 

Now, all of the ∇
v

ℰ𝑢𝑗’s are orthonormal with respect to 𝐿2(𝑆𝑀; 𝑁 ⊗ ℰ) since 

〈∇
v

ℰ𝑢𝑗 , ∇
v

ℰ𝑢𝑘〉 = 〈Δℰ𝑢𝑗 , 𝑢𝑘〉 = 𝜆𝑗〈𝑢𝑗 , 𝑢𝑘〉 = 0. 

Hence the last item in (12.1) above is equal to 

1

𝜆𝑚
‖∑ ∇

v
ℰ𝑢𝑗

∞

𝑗=𝑚

‖

𝐿2(𝑆𝑀;𝑁⊗ℰ)

. 

Now, the claim will follow if we could show that this is equal to 

1

𝜆𝑚
‖∇

v
ℰ𝑢‖

𝐿2(𝑆𝑀;𝑁⊗ℰ)
, 

but I’m not quite sure how to rigorously prove this. 

 

13 Page 107 (PDF Page 25) Interchanging 𝕏 and Sum in Fourier Series 

 

In this step, the authors are implicitly interchanging 𝕏 and the summation symbol in the Fourier 

series for 𝑢: 

𝕏 ∑ 𝑢𝑚

∞

𝑚=0

= ∑ 𝕏𝑢𝑚

∞

𝑚=0

. 

In this note I’d like to justify this step. For simplicity, we will instead prove the following fact: 
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(13. 1)                                                       𝑋 ∑ 𝑢𝑚

∞

𝑚=0

= ∑ 𝑋𝑢𝑚

∞

𝑚=0

,        ∀𝑢 ∈ 𝐶∞(𝑆𝑀). 

By looking in an orthonormal frame of ℰ, it’s shouldn’t be hard to see how the former claim will 

follow from (13.1). To prove (13.1), take any 𝑢 ∈ 𝐶∞(𝑆𝑀). Take any point 𝑥0. We will prove 

that the above equation holds at 𝑥0. Consider normal coordinates (𝑥𝑖) centered at 𝑥0 which 

naturally generate the coordinates 𝑣𝑗 𝜕 𝜕𝑥𝑗⁄ ↦ (𝑥𝑖 , 𝑣𝑗) of 𝑇𝑀. Let (𝑔𝑖𝑗) denote the metric tensor 

in these coordinates. Above the point 𝑥0 we have that 𝑋 = 𝑣𝑖 𝜕 𝜕𝑥𝑖⁄ . So the claim will follows if 

we can justify interchanging 𝜕/𝜕𝑥𝑖 with the summation sign. Unfortunately, doing this in our 

coordinates of 𝑇𝑀 is a little inconvenient, so we construct another set of coordinates. 

Let (𝑏𝑖) be the smooth orthonormal frame over the domain of (𝑥𝑖) obtained by applying the 

Gram-Schmidt orthogonalization process to the frame (𝜕 𝜕𝑥𝑖⁄ ). This frame gives us another set 

of coordinates of 𝑇𝑀 given by 𝑤𝑗𝑏𝑗 ↦ (𝑥𝑖 , 𝑤𝑗). Let (𝛼𝜇
𝜈) be the coefficients in the relation 𝑏𝜇 =

𝛼𝜇
𝜈 𝜕 𝜕𝑥𝜈⁄ . Thinking about how the Gram-Schmidt orthogonalization process works, it’s not hard 

to see that each 𝜕𝑔𝑖𝑗 𝜕𝑥𝑟⁄  being equal to zero at 𝑥 = 𝑥0 implies that all of the partials 𝜕𝛼𝜇
𝜈 𝜕𝑥𝑟⁄  

are zero at 𝑥 = 𝑥0 as well (hint: use induction). Furthermore, if we let (𝛽𝜇
𝜈) be the coefficients in 

the inverse relation 𝜕 𝜕𝑥𝜇⁄ = 𝛽𝜇
𝜈𝑏𝜈, it’s not hard to see that the 𝛽𝜇

𝜈’s share the same property of 

the 𝛼𝜇
𝜈’s mentioned in the previous sentence. From this observation we see that above 𝑥0, 𝑋 =

𝑤𝑖 𝜕 𝜕𝑥𝑖⁄ . So we simply need justify interchanging the partial 𝜕 𝜕𝑥𝑖⁄  taken with respect to 

(𝑥𝑖 , 𝑤𝑗) with the summation sign.1 

For every integer 𝑚 ≥ 0, let {𝑌𝑚,𝑟 ∶ 𝑟 = 1, … , 𝑙𝑚} be a set of real harmonic polynomials 

homogeneous of degree 𝑚 over ℝ𝑛 with respect to the (flat) Euclidean Laplacian such that they 

span the spherical harmonics of order 𝑚 over 𝑆𝑑−1. For such 𝑚 and 𝑟, consider the smooth 

functions {𝒴𝑚,𝑟} defined over 𝑇𝑀 near 𝑥0 given by 

𝒴𝑚,𝑟(𝑥, 𝑤𝑖𝑏𝑖) = 𝑌𝑚,𝑟(𝑤1, … , 𝑤𝑛). 

Now, we have that each 

𝑢𝑚(𝑥, 𝑤) = ∑ [ ∫ 𝑢(𝑥, 𝑤′)𝒴𝑚,𝑟(𝑥, 𝑤′)𝑑𝑤𝑆𝑥0𝑀
′

𝑆𝑥0𝑀

] 𝒴𝑚,𝑟(𝑥, 𝑤)

𝑙𝑚

𝑟=1

. 

From the previous equation we see that 𝒴𝑚,𝑟 has no dependence on 𝑥 and so 

𝜕𝑢𝑚

𝜕𝑥𝑖
(𝑥, 𝑤) = ∑ [ ∫

𝜕𝑢

𝜕𝑥𝑖
(𝑥, 𝑤′)𝒴𝑚,𝑟(𝑥, 𝑤′)𝑑𝑤𝑆𝑥0𝑀

′

𝑆𝑥0𝑀

] 𝒴𝑚,𝑟(𝑥, 𝑤)

𝑙𝑚

𝑟=1

. 

 
1 This is a different task from before since, except at 𝑥 = 𝑥0, the partial 𝜕𝑢𝑚 𝜕𝑥𝑖⁄  is not necessarily the same thing 

with respect to the coordinates (𝑥𝑖, 𝑣𝑗) and (𝑥𝑖 , 𝑤𝑗). 
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Now, in the integral we can write 𝒴𝑚,𝑟 as Δ𝒴𝑚,𝑟 (𝑚(𝑚 + 𝑑 − 2))⁄  and then transfer the “Δ” to 

the 𝜕𝑢 𝜕𝑥𝑖⁄  via integration by parts. We can do this several times, say 𝑘 times where 𝑘 ≥ 1 is an 

integer. After doing so, we get the following estimate where 𝜔𝑑−1 denotes the surface area of 

𝑆𝑑−1: 

|
𝜕𝑢𝑚

𝜕𝑥𝑖
(𝑥, 𝑤)| ≤ ∑

sup
𝑤∈𝑆𝑥𝑀

|Δ𝑘 𝜕𝑢
𝜕𝑥𝑖 (𝑥, 𝑤)| (sup|𝒴𝑚,𝑟|)

2
𝜔𝑛

(𝑚(𝑚 + 𝑑 − 2))
𝑘

𝑙𝑚

𝑟=1

 

=

sup
𝑤∈𝑆𝑥𝑀

|Δ𝑘 𝜕𝑢
𝜕𝑥𝑖 (𝑥, 𝑤)|

(𝑚(𝑚 + 𝑑 − 2))
𝑘 𝜔𝑛 ∑(sup|𝒴𝑚,𝑟|)

2

𝑙𝑚

𝑟=1

. 

By well-known results, the last “∑ …” sum is bounded by a polynomial in 𝑚 (for instance, this 

follows immediately from Corollary 2.55 and Theorem 2.57 parts (a) and (f) in [1] – simply set 

𝑦 = 𝑥 into 𝑍𝑘
𝑥(𝑦) in part (a) there). Furthermore, the supremum of Δ𝑘 𝜕𝑢 𝜕𝑥𝑖⁄  can be bounded 

near 𝑥0. So, by choosing 𝑘 large enough, in a neighborhood of 𝑥0 we can bound 𝜕𝑢𝑚 𝜕𝑥𝑖⁄ (𝑥, 𝑤) 

by a polynomial in 𝑚 independent of 𝑥 and 𝑤 that is finitely summable in 𝑚 as 𝑚 → ∞. This 

justifies interchanging 𝜕 𝜕𝑥𝑖⁄  and the summation symbol in (13.1), and hence we’ve proven 

what we wanted. 

 

14 Page 109 (PDF Page 27) Remainder Estimate in Proof of Theorem 4.6 

 

I’d like to give a quick note on how this inequality follows. We have that 

𝑟𝑚 + 𝑟𝑚−2 + ⋯ + 𝑟𝑁+1 = 

−𝐵‖𝑢𝑚−1‖2 + 𝑐𝑚+1‖𝑢𝑚+1‖2 + (𝑐𝑚 − 𝐶)‖𝑢𝑚‖2 

−𝐵‖𝑢𝑚−3‖2 + 𝑐𝑚−1‖𝑢𝑚−1‖2 + (𝑐𝑚−2 − 𝐶)‖𝑢𝑚−2‖2 

− ⋯ 

−𝐵‖𝑢𝑁‖2 + 𝑐𝑁+2‖𝑢𝑁+2‖2 + (𝑐𝑁+1 − 𝐶)‖𝑢𝑁+1‖2. 

Now, since the 𝑐𝑘’s are assumed to bigger than 𝐶, to bound this quantity from below we can 

simply remove the terms (𝑐𝑘 − 𝐶)‖𝑢𝑘‖2. Since the 𝑐𝑘 are assumed to be bigger than 𝐵, then we 

can similarly remove the terms −𝐵‖𝑢𝑘‖2 + 𝑐𝑘‖𝑢𝑘‖2. The only thing that will be left is 

𝑐𝑚+1‖𝑢𝑚+1‖2 − 𝐵‖𝑢𝑁‖2. For the same reason, we can remove 𝑐𝑚+1‖𝑢𝑚+1‖2 to get the desired 

inequality. 
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15 Page 119 (PDF Page 37) Final Conclusion in Proof of Theorem 1.2 

 

In this note I’d like to explain how the 𝑄 that they obtain gives the desired gauge. Take the 

second to last equation before this in the paper: 

𝕏𝑄 + Φ𝑄 − 𝑄�̃� − 𝑄Φ̃ = 0,     𝑈|𝜕(𝑆𝑀) = id, 

and multiply through by an arbitrary smooth 𝑉 ∈ ℱ on the right. Rearranging and adding 𝑄𝕏𝑉 

gives 

𝕏(𝑄)𝑉 + 𝑄𝕏𝑉 + Φ𝑄𝑉 = 𝑄𝕏𝑉 + 𝑄�̃�𝑉 + 𝑄Φ̃𝑉, 

𝑄−1𝕏(𝑄𝑉) + 𝑄−1Φ𝑄𝑉 = 𝕏𝑉 + �̃�𝑉 + Φ̃𝑉, 

𝑄−1(𝕏 + Φ)(𝑄𝑉) = 𝕏𝑉 + �̃�𝑉 + Φ̃𝑉. 

Fixing 𝑥 ∈ 𝑀int, we see that both sides of the equation are functions of the matrix 𝑉 and 𝑣 ∈

𝑆𝑥𝑀. We can extend both sides to 𝑣 ∈ 𝑇𝑥𝑀 by setting the terms that contain 𝑣 to be 

homogeneous of order one and terms that don’t contain 𝑣 to be homogeneous of order zero. 

From there we see that the two types of terms must be equal to their respective counterpart on the 

other side of the equation, giving us that 

𝑄−1𝕏(𝑄𝑉) = 𝕏𝑉 + �̃�𝑉, 

𝑄−1Φ𝑄𝑉 = Φ̃𝑉, 

Clearly the second condition tells us that 𝑄−1Φ𝑄 = Φ̃. We claim that the first equation implies 

that 𝑄−1∇𝑄 = ∇̃ as an equation of connections on 𝑀. To see why, apply both sides of that 

equation to a smooth field2 𝑓′ ∈ 𝜋∗ℰ to get 

𝑄−1[(𝜋∗∇𝑋)(𝑄𝑉𝑓) − 𝑄𝑉(𝜋∗∇𝑋)𝑓] = (𝜋∗∇̃𝑋)(𝑉𝑓) − 𝑉(𝜋∗∇𝑋)𝑓, 

Which after relabeling 𝑉𝑓 ↦ 𝑓 gives 

𝑄−1(𝜋∗∇𝑋)(𝑄𝑓) = (𝜋∗∇̃𝑋)𝑓. 

Now consider 𝑓 of the form 𝑓 = 𝜋∗𝑓′ where 𝑓′ ∶ 𝑀 → ℰ is smooth. At any point (𝑥, 𝑣) ∈ 𝑆𝑀 

the left-hand side of this equation becomes 

 
2 I will write in the (typically omitted) 𝜋∗ in the section because it will be important here to distinguish what’s 

happening on 𝑆𝑀 and down in 𝑀. 
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𝑄−1(𝜋∗∇)𝑋(𝜋∗(𝑄𝑓′)) = 𝑄−1𝜋∗(∇𝑣(𝑄𝑓′)) = 𝜋∗(𝑄−1∇𝑣(𝑄𝑓′)), 

while the right-hand is similarly equal to 𝜋∗∇̃𝑣(𝑓′). Hence we indeed get that 𝑄−1∇𝑄 = ∇̃ as an 

equation of connections on 𝑀. 
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