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Math 225 Linear Algebra 

Haim Grebnev 

1 Introduction 

• My name is Haim Grebnev, I’m a postdoctoral scholar. My job is to conduct research and to 

teach. My field of research is inverse problems with a focus on geometric analysis. Inverse 

problems is a field that studies math arising from various imaging techniques such as CT scans, 

sonar sensing, electric impedance tomography, etc. Currently I work on a generalization of the 

equations that arise in X-ray imaging that is used in polarimetric neutron tomography called the 

non-Abelian X-ray transform. 

• In this course we study linear algebra – a field no less important than calculus which embeds 

itself in nearly every area of math, physics, computer science, and more. Applications range from 

plotting the optimal route between two points on Google/Bing maps to tuning parameters in AI 

models that are learning to perform various tasks. This course also will also be an introduction 

mathematical rigor, where you will learn to justify mathematical ideas beyond doubt (also known 

as “writing proofs”). 

• Class structure. 

2 Mathematics 

• Most likely in all your previous math courses you didn’t prove any of the theorems or equations 

that you learned (if you have: I’m glad to hear it). Why prove things? The answer should be 

obvious: how do you know that the theorems or equations you learned are correct. Let me point 

out that theorems and equations didn’t fall out of the heavens, they were discovered by humans. 

And we sure hope that our predecessors discovered them correctly! That’s why with every 

theorem and equation we provide a proof for why it’s correct and hence learning them is a vital 

tradition. 

• Another important reason for learning proofs is that they give insight into the mechanisms that 

make existing theorems and equations work. This is essential for innovation because knowing 

how theorems and equations work in existing contexts gives you a good starting point for 

figuring out how they work in new contexts, or how to correctly formulate new theorems and 

equations that build off old ideas. For instance, in flat Euclidean space the angles of a triangle 

always add up to 180°. But what about on a curved space, such as the surface of a sphere? 

• The last important reason that I’ll mention for learning proofs is that many important 

mathematical techniques are embedded in them. Theorem statements and equations only 

represent a surface level quantity of useful mathematical techniques. Hence working through 

proofs is in essence a way to work through examples of successful problem solving whose goal 

is to arrive at new mathematical results. 

3 Mathematical Statements 
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• To prove things, we need statements, or else how do we know what we want to prove? A 

proposition (or statement or assertion) is a statement that can objectively either be true or false. 

Some examples are (some here are true and some are false): 

o The number 2 is smaller than the number 1. 

o The angles of a triangle in Euclidean space add up to 180°. 

o For any number 𝑥, 𝑥2 + 4 ≥ 4𝑥 

o All cats have two eyes. 

o A planet of mass 𝑚 accelerates towards a planet of mass 𝑀 with acceleration 
𝐺𝑀

𝑟2
 where 𝑟 

is the distance between them (𝐺 is a fixed constant you can look up in a textbook). 

These examples come with caveats; the first being the fourth one which delves a little bit into 

philosophy. In particular we need to consider the following question: what is a cat, how do you 

define a cat? Do you consider it a large conglomerate of molecules? But in that case it will be 

difficult to define its distinction from a great deal of things, such as my sandwich. Is it a four-

legged creature? But then my neighbor’s dog fits that description. If you think about it: it’s hard 

to rigorously define a cat. Biologists have endeavored to give a relatively quantitative way to 

think about this in terms of genera and species. 

The 5th question suffers the same phenomenon: what is a planet? Furthermore, acceleration is 

defined using the continuous axis of the real numbers. How do we know that objects in our 

universe travel in such a medium: they may be jumping on discrete distances on extremely small 

scales. 

• Hence mathematics tries to stray away from dealing with physical objects and only deal with 

abstract objects called sets (more on that later) such as numbers. Yet still, the second question 

posed above is also problematic because we have to consider the following question: how do we 

define angles? Before we can prove the second statement, we must defines angles, and even 

triangles! But that can be done very precisely. 

• What I described in the previous paragraph is a rather modern point of view of math. Back in 

Euclid’s day, they proposed to work on geometry by declaring axioms about points and lines 

without defining the latter two, and then work from there. Today we’ve shifted the undefined 

objects and axioms into deep set theory and to define things using sets. We also point out that 

modern mathematics has started to consider related, but different, objects of study called 

“categories,” but we won’t get into that. 

• There is a field of math called mathematical logic, which allows us to quantitively talk about 

statements, implications, and so on. If 𝑝 is a statement and 𝑞 is a statement, then 𝑝 ⟹ 𝑞 stands 

for “𝑝 implies 𝑞.” In this case, we always assume that the items before the “⟹” are true. For 

example 



Haim Grebnev  Last Modified: April 25, 2025 

3 

 

o 𝑝 = “𝑥 is a number,” 𝑞 = “it holds that 𝑥2 + 4 ≥ 4𝑥” then 𝑝 ⟹ 𝑞 is our third 

proposition above: 

“If 𝑥 is a number, then it holds that 𝑥2 + 4 ≥ 4𝑥” 

(alternative) “𝑥 being a number implies that 𝑥2 + 4 ≥ 4𝑥” 

Notice that I can write this using if and then/implies. This is why 𝑝 ⟹ 𝑞 is called an 

if…then…(implies) statement. 

• You can also put the logical operators “and” (a.k.a. conjunction) and “or” (a.k.a. disjunction) 

into statements, which are denoted by “∧” and “∨” respectively. For instance, (𝑝 ∧ 𝑞) ⟹ 𝑟 

means “𝑝 and 𝑞 imply 𝑟.” Examples include. 

o 𝑝 = “𝑇 is a right triangle,” “𝑞 = “𝑎, 𝑏, 𝑐 are the length of the sides of 𝑇 with 𝑐 being the 

biggest”, 𝑟 = “𝑎2 + 𝑏2 = 𝑐2.” Then (𝑝 ∧ 𝑞) ⟹ 𝑟 is the famous Pythagorean theorem: 

“If 𝑇 is a right triangle and 𝑎, 𝑏, 𝑐 are the length of the sides of 𝑇 with 𝑐 being the biggest, 

then 𝑎2 + 𝑏2 = 𝑐2.” 

You can also rewrite this using “implies.” 

o 𝑝 = “𝑥 < 0”, 𝑞 = “𝑦 < 0,” 𝑟 = “𝑥𝑦 < 0.” Then (𝑝 ∨ 𝑞) ⟹ 𝑟 is the statement 

“If 𝑥 < 0 or 𝑦 < 0, then 𝑥𝑦 < 0” 

This is an example of a false statement, because you can take the counterexample 𝑥 =

−2, 𝑦 = −3, but 𝑥𝑦 = 6 which is not less than zero. 

• If 𝑝 is a statement and 𝑞 is a statement, then 𝑝 ⟺ 𝑞 stands for “𝑝 implies 𝑞 and 𝑞 implies 𝑝.” 

This can alternatively be written as “𝑝 is true if and only if 𝑞 is true” (think about why this is 

true!). This is why “⟺” is called if and only if or iff for short. An example includes 

o 𝑝 = “𝑥 is even,” 𝑞 = “𝑥 + 2” is even. Then “𝑝 ⟺ 𝑞” is 

“𝑥 is even if and only if 𝑥 + 2 is even.” 

Although not often used, we mention that “𝑝 ⟸ 𝑞” means 𝑞 implies 𝑝. We typically write this 

however as “𝑞 ⟹ 𝑝.” 

• Definition 3.1: Suppose that 𝑝 and 𝑞 are statements and consider the statement “𝑝 ⟹ 𝑞.” The 

converse of the statement “𝑝 ⟹ 𝑞” is the statement “𝑞 ⟹ 𝑝” (or equivalently “𝑝 ⟸ 𝑞”) 

• As a remark regarding the above definition, we point out that 𝑝 ⟺ 𝑞 can then be reformulated as 

that 𝑝 ⟹ 𝑞 and its “converse” 𝑞 ⟹ 𝑝 are true. 

4 Sets 
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• Modern mathematics is the study of phenomenon surrounding sets and maps between them.1 We 

won’t define sets, because that’s a question too deep for this course and is an entire fascinating 

field in of itself. From our point of view, a set is a collection of objects such as a collection of 

points in the plane (e.g. triangle, lines), numbers, sets of functions, etc. Individual items are 

called elements in them. Examples are 

o The set of even numbers between 2 and 8: {2,4,6,8} 

o The line in two-dimensional space passing through zero with slope 2: {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 =

2𝑥}. 

o My breakfast this morning (not really a mathematical example): 

{Bread, Cheese, Milk, Tea} 

• Some famous set whose notation is standard are: 

ℕ = the set of all positive whole numbers (does not include zero). Informally ℕ = {0,1,2, … }. 

ℤ = the set of all whole numbers. Informally ℤ = {… ,−2,−1,0,1,2,… }. 

ℚ = {
𝑎

𝑏
∶ 𝑎, 𝑏 ∈ ℕ and 𝑏 ≠ 0}. This is the set of all rational numbers. 

ℝ = The set of all real numbers. 

ℂ = {𝑎 + 𝑏√−1 ∶ 𝑎, 𝑏 ∈ ℝ}. This is the set of all complex numbers. 

• Notation 4.1: If 𝑆 is a set and 𝑎 is an element in 𝑆, then we write 𝑎 ∈ 𝑆. If 𝑎 is not in 𝑆, we write 

𝑎 ∉ 𝑆. 

• Notation 4.2: We denote the empty set (i.e. the set with nothing in it) as ∅. 

• Definition 4.3: Suppose that 𝑆 and 𝑄 are sets. We say that 𝑆 is a subset of 𝑄 (denote by 𝑆 ⊆ 𝑄) 

if every element in 𝑆 is in 𝑄 (draw a picture!). Although not used as often, an equivalent way of 

saying this is that 𝑄 is a superset of 𝑆 (denoted by 𝑄 ⊇ 𝑆). It’s easy to see that two sets are equal 

𝑆 = 𝑄 if and only if both 𝑆 ⊆ 𝑄 and 𝑄 ⊆ 𝑆. 

• Definition 4.4: Suppose that 𝐴 and 𝐵 are sets. The intersection of 𝐴 and 𝐵 is the set of all 

elements that are contained both in 𝐴 and 𝐵: 

𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵} 

The union of 𝐴 and 𝐵 is the set of all elements that are either in 𝐴 or 𝐵: 

𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵} 

 

 
1 Technically maps between sets are also sets themselves. 
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5 Quantifiers 

• Mathematicians make use of the following shorthand notation due to their widespread use in 

statements 

o ∀= “For all” or equivalently “for any” 

o ∃= “there exists” 

To help you remember them, the “∀” resembles an upside down “A” (as in All/Any) and “∃” 

resembles a backwards “E” (as in Exists). 

Amusing comment: if later you’re having trouble remembering if it is supposed to be an upside 

down or backwards “A” or an upside down or backwards “E,” then note that two of these give A 

and E back again and hence can’t be the right one! 

• Example 5.1: The statement “For any real number 𝑥 that is also a rational number, there exist 

integers 𝑎 and 𝑏 ≠ 0 such that 𝑥 = 𝑎 𝑏⁄ ” can be rewritten as follows: 

∀𝑥 ∈ ℝ ∶ 𝑥 ∈ ℚ,   ∃𝑎 ∈ ℤ   ∃𝑏 ∈ ℤ ∶ 𝑏 ≠ 0  such that  𝑥 =
𝑎

𝑏
. 

6 Proofs 

6.1 Direct proofs 

• There are three ways of proving things: proving something directly, by contradiction, and by 

induction. There is another method called “proof by contrapositive.” We begin by demonstrating 

a direct proof, which proves something directly. Suppose a prior paper published and proved the 

following correct proposition: 

• Proposition 6.1: For any real number 𝑥, 𝑥2 ≥ 0. 

• Proof: (suppose the proof was provided in another paper) ∎ 

• Let us build off of this to prove the following proposition: 

• Proposition 6.2: Suppose that 𝑥 is a number. Then 𝑥2 + 4 ≥ 4𝑥. 

• Proof: Fix any number 𝑥. We have that 𝑥 − 2 is also number. By Proposition 6.1 above, we have 

that (𝑥 − 2)2 ≥ 0. Expanding the left-hand side gives 

𝑥2 − 4𝑥 + 4 ≥ 0 

Taking 4𝑥 to the other side gives 

𝑥2 + 4 ≥ 4𝑥 

∎ 

(the symbol “∎” means “end of proof.”) 
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6.2 Proof by Contradiction/Contrapositive 

• Next we discuss proof by contradiction and proof by contrapositive. We start with the former. 

Every statement 𝑝 has what’s called a negation, denote by ¬𝑝, which is the statement referring 

to the condition when 𝑝 is not true. Out loud “¬𝑝” is read as “not 𝑝.” Some examples are 

o 𝑝 = “𝑥 is divisible by 2 (i.e. 𝑥 is even)”, ¬𝑝 = “𝑥 is not divisible by 2 (i.e. 𝑥 is odd).” 

o 𝑝 = “if 𝑛 is even, then 𝑛2 is even,” ¬𝑝 = “if 𝑛 is even, then 𝑛2 is not even” 

Note that ¬(¬𝑝) = 𝑝. 

• Proofs by contradiction work as follows. Suppose we want to prove a statement 𝑝 (i.e. that 𝑝 is 

true). Proving it directly may be difficult, so we can try the following trick instead. Let’s suppose 

for the moment that 𝑝 is instead false and see what happens. In other words, we assume ¬𝑝. If by 

clever and ingenious arguments we can show that assuming that 𝑝 is false leads us to, or more 

precisely “implies,” some sort of logical contradiction, then we conclude that 𝑝 could not have 

been false in the first place and hence must be true. This is proof by contradiction! 

• Theorem 6.3: Suppose that 𝑛 ∈ ℤ is an integer. If 𝑛2 is odd, then 𝑛 is also odd. 

Proof: Suppose not: suppose there exists an 𝑛 ∈ ℤ such that 𝑛2 is odd but 𝑛 is not odd! 

Remark: This last sentence can also be written as “We will prove this by contradiction: 

suppose…” or “For the sake of contradiction, suppose…” 

Then 𝑛 is divisible by 2, or in other words 𝑚 = 𝑛 2⁄  is also an integer. Then 𝑛 = 2𝑚, and hence 

𝑛2 = (2𝑚)2 = 4𝑚2. 

Thus 𝑛2 is divisible by 2 since 

𝑛2

2
=
4𝑚2

2
= 2𝑚2 

is also an integer. But that is a contradiction since we assumed that 𝑛2 is odd and hence is not 

divisible by 2. Thus 𝑛 must indeed be odd. 

∎ 

• Often in math we want to prove that one statement implies the other (i.e. 𝑝 ⟹ 𝑞). An important 

result in logic is the following: 

• Theorem 6.4: If 𝑝 and 𝑞 are statements 

(𝑝 ⟹ 𝑞)    ⟺   (¬𝑞 ⟹ ¬𝑝). 

In words, “𝑝 implies 𝑞” is equivalent to “not 𝑞 implies not 𝑝.” 

Remark: Note that 𝑝 ⟹ 𝑞 is not equivalent to ¬𝑝 ⟹ ¬𝑞, which is a commonly made error. 

Proof: Let’s start by proving the easier direction: 
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(𝑝 ⟹ 𝑞)    ⟸   (¬𝑞 ⟹ ¬𝑝). 

In other words, we assume ¬𝑞 ⟹ ¬𝑝 and want to show that 𝑝 ⟹ 𝑞. To show that 𝑝 ⟹ 𝑞, 

suppose that 𝑝 is true. We want to show that this implies that 𝑞 is true. We do this by 

contradiction: suppose 𝑞 is not true. But then by ¬𝑞 ⟹ ¬𝑝 we get that 𝑝 is not true, which 

contradicts the fact that we assumed that 𝑝 was true. Hence 𝑞 must be true. 

To prove the other direction: 

(𝑝 ⟹ 𝑞)    ⟹   (¬𝑞 ⟹ ¬𝑝), 

observe that by what we just proved, 

(𝑝 ⟹ 𝑞) = (¬(¬𝑝) ⟹ ¬(¬𝑞))    ⟹   ((¬𝑞) ⟹ (¬𝑝)) = (¬𝑞 ⟹ ¬𝑝) 

(we just removed the unnecessary parentheses around (¬𝑞) and (¬𝑝) in the very last step). 

∎ 

• As an illustration of the above theorem and remark, try setting 𝑝 = “It is raining” and 𝑞 = “I 

bring an umbrella to school” and convincing yourself that “If it is raining then I bring an 

umbrella to school” and “If I didn’t bring an umbrella to school then it isn’t raining” are 

equivalent. However, neither statements imply or are implied by “If it isn’t raining then I don’t 

bring an umbrella to school” since if the former two hold, it may so happen that I simply bring an 

umbrella to school every day no matter what! 

• Proof by contrapositive is the method of proving 𝑝 ⟹ 𝑞 by instead proving ¬𝑞 ⟹ ¬𝑝. The 

reason this is justified is that in the previous theorem we proved that these are equivalent. For the 

statement 𝑝 ⟹ 𝑞, the equivalent statement ¬𝑞 ⟹ ¬𝑝 is called its contrapositive. This is why 

this is called proof by contrapositive! 

We point out that 

“Whenever you can perform a proof by contrapositive, you can also do a proof by 

contradiction.” 

This is done as follows. Assume that 𝑝 is true, show that ¬𝑞 ⟹ ¬𝑝 (which you would do for a 

proof by contrapositive), and then arrive at the contradiction that you have ¬𝑝 but you assumed 

𝑝 (i.e. that 𝑝 is true). Hence 𝑞 must be true (i.e. you’ve showed that 𝑝 ⟹ 𝑞). 

It so happens that the proof of Theorem 6.3 can also be written as a proof by contrapositive. 

There 𝑝 = “𝑛2 is odd” and 𝑞 = “𝑛 is odd,” and we want to show 𝑝 ⟹ 𝑞. The sentence “Suppose 

that 𝑛 ∈ ℤ is an integer” is simply a supporting statement that provides context. 

Contrapositive proof of Theorem 6.3: We prove this by contrapositive. Suppose that 𝑛 is even 

(i.e. ¬𝑞). Then 𝑛 is divisible by 2, or in other words 𝑚 = 𝑛 2⁄  is also an integer. Then 𝑛 = 2𝑚, 

and hence 

𝑛2 = (2𝑚)2 = 4𝑚2. 
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Thus 𝑛2 is divisible by 2 since 

𝑛2

2
=
4𝑚2

2
= 2𝑚2 

(i.e. we showed ¬𝑝). 

∎ 

• We end with subsection with a few notes on negations: 

• Note 6.5: If you have statements 𝑝 and 𝑞, then the negation of “𝑝 is true and 𝑞 is true” is that 

“either 𝑝 is false or 𝑞 is false.” Mathematically this is written as 

(6. 6)                                                ¬(𝑝 ∧ 𝑞)      ⟺     (¬𝑝) ∨ (¬𝑞). 

The negation of “𝑝 is true or 𝑞 is true” is “𝑝 is false and 𝑞 is false.” Mathematically, 

(6. 7)                                                ¬(𝑝 ∨ 𝑞)      ⟺     (¬𝑝) ∧ (¬𝑞). 

We note that something like “𝑝 is false” can be treated as a statement itself and so by (6.6) the 

negation of “𝑝 is false and 𝑞 is true” is “𝑝 is true or 𝑞 is false,” or mathematically 

¬((¬𝑝) ∧ 𝑞)      ⟺      (¬(¬𝑝)) ∨ (¬𝑞)      =      𝑝 ∨ (¬𝑞). 

• Note 6.8: If you have a sequence of statements using quantifiers and a final conclusion, it’s 

actually easy to negate it. Consider the following statement 

(6. 9)                  ∀𝑚 ∈ ℤ ∶ 𝑚 is odd⏟    
condition

   ∀𝑛 ∈ ℤ ∶ 𝑛 is odd⏟    
condition

   ∃𝑘 ∈ ℤ,   (𝑚 + 𝑛) = 2𝑘⏟        
conclusion

. 

This turns out to be a true statement (it’s a good exercise to prove this). Its negation is obtained 

by turning all “∀” to “∃” and “∃” into “∀” without changing the conditions, and change the 

conclusion to the opposite: 

(6. 10)            ∃𝑚 ∈ ℤ ∶ 𝑚 is odd⏟    
condition same

   ∃𝑛 ∈ ℤ ∶ 𝑛 is odd⏟    
condition same

   ∀𝑘 ∈ ℤ,   (𝑚 + 𝑛) ≠ 2𝑘⏟        
opposite conclusion

. 

This turns out to be a false statement (it has to be since the previous statement was correct). You 

might wonder why we would want to form false statements. Well the answer is simple: suppose 

you want to prove (6.9) by contradiction. Then you have to assume that it’s false, or in other 

words assume its negation which is (6.10). Then go from there and show that this leads to a 

contradiction. This will then imply that (6.9) had to be correct in the first place. 

Important: Since we didn’t state this is a formal theorem, please be careful when applying this 

rule of thumb since sometimes statement using “∀” and “∃” are written in nonstandard ways. In 

particular, it may be hard to figure out what exactly the conclusion is. For instance, some authors 

may place them in front of the sentence! 

6.3 Proof by Induction 
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• The third way of proving something is by (mathematical) induction and its variant “strong 

induction.” We begin with (mathematical) induction. It’s a very simple idea: suppose you have 

a sequence of statements 𝑝0, 𝑝1, 𝑝2, … (it doesn’t have to start at zero: it could be labeled for 

instance 𝑝2, 𝑝3, 𝑝4, …) and you want to show that they are all correct. Then you do the following: 

1. Prove that the first statement 𝑝0 is correct. 

2. Prove that for arbitrary 𝑛, 𝑝𝑛⟹ 𝑝𝑛+1. 

Then you get that all statements 𝑝0, 𝑝1, 𝑝2, … are correct because of the chain reaction 𝑝0⟹

𝑝1⟹ 𝑝2⟹⋯. 

Strong induction is similar: 

3. Prove that the first statement 𝑝0 is correct. 

4. Prove that for arbitrary 𝑛, 𝑝0, … , 𝑝𝑛⟹ 𝑝𝑛+1. 

Let’s try an example of ordinary induction:2 

• Theorem 6.11: For any integer 𝑛 ≥ 0, 𝑛3 + 2𝑛 is divisible by 3. 

Proof: We prove this by induction on 𝑛. 

Remark: In other words, the statements we want to prove are 𝑝0, 𝑝1, 𝑝2, … where each 

𝑝𝑛 = “𝑛3 + 2𝑛 is divisible by 3.” 

The base case is 𝑛 = 0 (i.e. 𝑝0). If we plug in 𝑛 = 0 we get that 𝑛3 + 2𝑛 = 0 which is indeed 

divisible by 3. Next suppose that 𝑛3 + 2𝑛 is divisible by 3 (i.e. assume 𝑝𝑛 is true), we will show 

that (𝑛 + 1)3 + 2(𝑛 + 1) is also divisible by 3 (i.e. we will show that 𝑝𝑛+1 is also true and hence 

𝑝𝑛⟹ 𝑝𝑛+1). We have that expanding and distributing (𝑛 + 1)3 + 2(𝑛 + 1) gives 

(𝑛 + 1)3 + 2(𝑛 + 1) = 𝑛3 + 3𝑛2⏟+3𝑛⏟ + 1⏟ + 2𝑛 + 2⏟ = (𝑛2 + 2𝑛) + 3 (𝑛2 + 𝑛 + 1⏟      ). 

By the inductive hypothesis (i.e. that 𝑝𝑛 is true) we know that 𝑛2 + 2𝑛 is divisible by 3 and 

hence can be written in the form 𝑛2 + 2𝑛 = 3𝑚 for some integer 𝑚. Thus the above number can 

be written as 

= 3(𝑚 + 𝑛2 + 𝑛 + 1). 

Thus (𝑛 + 1)3 + 2(𝑛 + 1) is indeed divisible by 3, which completes the induction. 

∎ 

• Note 6.12: A disadvantage of proof by induction is that it often doesn’t tell you how someone 

came up with the theorem. The latter could come from a good guess, numerical trials, genius, etc. 

 
2 Example taken from https://tutors.com/lesson/mathematical-induction-proof-examples  

https://tutors.com/lesson/mathematical-induction-proof-examples
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Sometimes, but not often, a formula that is proven by induction can be derived in the first place 

by mimicking a proof by induction that would be used to prove it. 

 

7 Functions/Maps 

• Definition 7.1: Given two sets 𝐴 and 𝐵, a function (or map) 𝑓 ∶ 𝐴 → 𝐵 from 𝐴 to 𝐵 is a rule 

that takes an element 𝑎 ∈ 𝐴 and ouputs an element 𝑓(𝑏) in 𝐵.3 The set 𝐴 is called the domain of 

𝑓, which is denote by dom𝑓. The range (or image) of 𝑓, denote by range 𝑓, ran 𝑓, or Im𝑓 is 

the set of all elements “hit” by 𝑓: 

range 𝑓 = {𝑏 ∈ 𝐵 ∶ ∃𝑎 ∈ 𝐴 such that 𝑏 = 𝑓(𝑎)}. 

Remark: Some people assign terminology for the set 𝐵 in the above definition and some don’t. 

Hence we refrain from calling it anything special. 

• Example 7.2: The exponential function is a map of the form exp ∶ ℝ → ℝ. In particular, for 

every 𝑥 ∈ ℝ this function outputs exp 𝑥 = lim
𝑛→∞

(1 +
𝑥

𝑛
)
𝑛
. The domain of this function is ℝ and 

the range is {𝑦 ∈ ℝ ∶ 𝑦 > 0}. 

• Example 7.3: Consider the sets 𝑆 = {1,2,3, … ,10} and 𝑄 = {1,2,3,4,5} and the map 𝑓 ∶ 𝑆 → 𝑄 

𝑓(𝑛) = {
(𝑛 + 1) 2⁄    if 𝑛 is odd
𝑛 2⁄              if 𝑛 is even

 

(draw it out!). In this case the domain of 𝑓 is 𝑆 and the range is all of 𝑄. 

• Example 7.4: Consider the function 𝑓 ∶ ℤ → ℤ given by 𝑓(𝑛) = 𝑛 + 1 (draw it out!). Both the 

domain of 𝑓 is ℤ and the range of 𝑓 is ℤ. 

• Definition 7.5: Suppose that 𝑓 ∶ 𝐴 → 𝐵 is a function. 

1. We say that 𝑓 is injective (or one-to-one) if 𝑎1 ≠ 𝑎2 implies that 𝑓(𝑎1) ≠ 𝑓(𝑎2). By 

Theorem 6.4 this is equivalent to its contrapositive: 

𝑓(𝑎1) = 𝑓(𝑎2)      ⟹      𝑎1 = 𝑎2. 

Loosely, this is described as no two distinct elements get mapped to the same thing. 

o We say that the function 𝑓 is surjective (or onto) if range 𝑓 = 𝐵. Since range 𝑓 ⊆ 𝐵 is 

automatic, this is equivalent to 𝐵 ⊆ range 𝑓 or in other words 

∀𝑏 ∈ 𝐵,   𝑏 ∈ range 𝑓      ⟺      ∀𝑏 ∈ 𝐵    ∃𝑎 ∈ 𝐴,   𝑏 = 𝑓(𝑎)⏟                  
most useful formulation

. 

 
3 Strictly speaking, functions can be defined on a more fundamental level as subsets of the Cartesian product 𝐴 × 𝐵, 

but we won’t take this approach in our course. 
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Loosely, this is described as “𝑓 hits everything.” 

• We say that 𝑓 is bijective if it is both injective and surjective. 

• The function in Example 7.2 is injective but not surjective. The function in Example 7.3 is not 

injective but is surjective (why?). Thus neither are bijective. However the function in Example 

7.4 is both injective and surjective and thus bijective. 

As an illustration, we prove the last sentence. First we prove that the 𝑓 in Example 7.4 is 

injective. Take 𝑛1, 𝑛2 ∈ ℤ such that 𝑛1 ≠ 𝑛2. Then 𝑛1 + 1 ≠ 𝑛2 + 1. Since 𝑓(𝑛1) = 𝑛1 + 1 and 

𝑓(𝑛2) = 𝑛2 + 1, we have that 𝑓(𝑛1) ≠ 𝑓(𝑛2) and so 𝑓 is indeed injective. Next let’s prove that 

𝑓 is surjective. Take any 𝑚 ∈ ℤ. We need to show that there exists an 𝑛 such that 𝑚 = 𝑓(𝑛). Let 

𝑛 = 𝑚 − 1. Then 𝑓(𝑛) = (𝑚 − 1) + 1 = 𝑚 and so 𝑓 is indeed surjective. Hence 𝑓 is both 

injective and surjective, and thus bijective. 

• The importance of the question of whether a function is injective, surjective, and/or bijective 

arises for instance when one wishes to know if it’s possible to construct an inverse for the 

function, and if so what type? Before we can talk about inverses, we need to discuss 

composition: 

• Definition 7.6: If one has functions 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, then the composition 𝑔 ∘ 𝑓 ∶ 𝐴 →

𝐶 is defined as the map 

𝑔 ∘ 𝑓(𝑎) = 𝑔(𝑓(𝑎)). 

• Definition 7.7: Suppose we have a function 𝑓 ∶ 𝐴 → 𝐵. 

1. A map 𝑔 ∶ 𝐵 → 𝐴 is called a left inverse of 𝑓 if 

𝑔 ∘ 𝑓(𝑥) = 𝑥. 

2. A map 𝑔 ∶ 𝐵 → 𝐴 is called a right inverse of 𝑓 if 

𝑓 ∘ 𝑔(𝑥) = 𝑥. 

3. A map 𝑔 ∶ 𝐵 → 𝐴 is called an inverse of 𝑓 if it is both a left inverse and a right inverse: 

𝑔 ∘ 𝑓(𝑥) = 𝑥     and     𝑓 ∘ 𝑔(𝑥) = 𝑥. 

If such an inverse 𝑔 exists for 𝑓, then we write 𝑔 = 𝑓−1 and say that 𝑓 is invertible (note 

that 𝑓 is automatically the inverse of 𝑔 as well). We emphasize that an inverse is 

automatically both a left inverse and a right inverse. 

Remark: A function may not have any of the inverses listed above, or only a left inverse or only a 

right inverse. The following theorem gives a convenient way to check when and which inverses 

exist: 

• Theorem 7.8: Suppose we have a function 𝑓 ∶ 𝐴 → 𝐵. 

a) 𝑓 has a left inverse if and only if 𝑓 is injective. 
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b) 𝑓 has a right inverse if and only if 𝑓 is surjective 

c) 𝑓 has an inverse if and only if 𝑓 is bijective. 

Proof: Let’s start with a). First suppose that 𝑓 has a left inverse 𝑔 ∶ 𝐵 → 𝐴. Then 

𝑓(𝑎1) = 𝑓(𝑎2)      ⟹      𝑔(𝑓(𝑎1)) = 𝑔(𝑓(𝑎2))      ⟹     𝑎1 = 𝑎2 

and hence 𝑓 is injective. Now assume that 𝑓 is injective. We will construct a left inverse 𝑔 ∶ 𝐵 →

𝐴 as follows. Take any 𝑏 ∈ range 𝑓 and let 𝑎 ∈ 𝐴 be such that 𝑏 = 𝑓(𝑎). Note that such an 𝑎 is 

unique since 𝑓 is injective. Set 𝑔(𝑏) = 𝑎. For all other 𝑏 ∉ range 𝑓, set 𝑔(𝑏) to be anything. 

Then by definition, for any 𝑎 ∈ 𝐴 

𝑔(𝑓(𝑎)) = (unique element in 𝐴 that 𝑓 maps to 𝑓(𝑎)) = 𝑎. 

Next let’s prove b). First suppose that 𝑓 has a right inverse 𝑔 ∶ 𝐵 → 𝐴. Take any 𝑏 ∈ 𝐵. We need 

to show that there exists an 𝑎 ∈ 𝐴 such that 𝑏 = 𝑓(𝑎). Note that 𝑎 = 𝑔(𝑏) works since 

𝑓(𝑎) = 𝑓(𝑔(𝑏)) = 𝑏. 

Now suppose that 𝑓 is surjective. We will construct a right inverse 𝑔 ∶ 𝐵 → 𝐴 as follows. For any 

𝑏 ∈ 𝐵, let 𝑎 ∈ 𝐴 be any element such that 𝑓(𝑎) = 𝑏, which is possible since 𝑓 is surjective. Set 

𝑔(𝑏) = 𝑎. Then by definition for any 𝑏 ∈ 𝐵 

𝑓(𝑔(𝑏)) = 𝑓(element that gets mapped to 𝑏 by 𝑓) = 𝑏. 

Finally let’s prove c). If 𝑓 has an inverse 𝑔 ∶ 𝐵 → 𝐴, then as noted in Definition 7.7 𝑔 is both a 

left inverse and a right inverse and hence by parts a) and b) 𝑓 is both injective and surjective and 

hence bijective. Now suppose that 𝑓 is bijective. Hence it is injective and so we can construct the 

map 𝑔 ∶ 𝐵 → 𝐴 as we did in the proof of a) to get a left inverse. It is also a right-inverse in this 

case since for any 𝑏 ∈ 𝐵 

𝑓(𝑔(𝑏)) = 𝑓(unique element in 𝐴 that 𝑓 maps to 𝑏) = 𝑏. 

∎ 

• Note 7.9: We remark that if a function 𝑓 ∶ 𝐴 → 𝐵 is not surjective, then we can easily modify it 

to become surjective by considering the function 𝑓 ∶ 𝐴 → range 𝑓. Note that we use the same 

letter “𝑓” for both despite the fact that they’re technically different functions: we use context to 

differentiate between the two (typically this is not an issue). 

We remark that this is done all the time. For instance, we cannot construct an inverse to the 

exponential function exp ∶ ℝ → ℝ because it is not surjective. But if we consider exp ∶ ℝ →
{𝑦 ∈ ℝ ∶ 𝑦 > 0}, then this function becomes bijective and so we can construct an inverse for it. 

In this, case that inverse is called the “natural logarithm:” ln ∶ {𝑦 ∈ ℝ ∶ 𝑦 > 0} → ℝ. 
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8 Fields 

• We now discuss fields, which are generalizations of usual arithmetic that you know with real 

numbers.  

• Definition 8.1: A field is a set 𝐹 paired with two operations “+” and “⋅”, called addition and 

multiplication respectively, that satisfy the following properties: for any elements 𝑎, 𝑏, 𝑐 ∈ 𝐹 

1. (Commutativity) 𝑎 + 𝑏 = 𝑏 + 𝑐 and 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎. 

2. (Associativity) (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) and (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐). 

3. (Identities) There exists distinct (i.e. different) elements denoted 0 and 1 (called zero and 

one respectively) in 𝐹 satisfying that 

0 + 𝑎 = 𝑎     and     1 ⋅ 𝑎 = 𝑎. 

Both 0 and 1 are called identity elements. 

4. (Inverses) For any 𝑎 ∈ 𝐹 and any nonzero 𝑏 ∈ 𝐹 (i.e. 𝑏 ≠ 0) there exists an 𝑎̃ ∈ 𝐹 and a 

𝑏̃ ∈ 𝐹 such that 

𝑎 + 𝑎̃ = 0     and     𝑏 ⋅ 𝑏̃ = 1. 

Here 𝑎̃ is called an additive inverse of 𝑎 and 𝑏̃ is called a multiplicative inverse of 𝑏.  

5. (Distributivity) 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 

• Remark 8.2: A few things to keep in mind: 

• A technical point: both “+” and “⋅” are what’s called operations, which are maps of the 

form 𝑓 ∶ 𝐹 × 𝐹 → 𝐹 (don’t worry about the notation for now: it means that it takes two 

elements in 𝐹 and outputs an element in 𝐹). When constructing examples of fields, you 

need to make sure that your output is an element in 𝐹: this phenomenon is called the 

“operations ‘+’ and ‘⋅’ are closed.” 

An illustrative example of when this fails is the set {irrational numbers} with the usual 

“+” and “⋅” because for instance √2 is irrational but √2 ⋅ √2 = 2 which is not irrational! 

• We often just write 𝑎𝑏 instead of 𝑎 ⋅ 𝑏. 

• The reason for studying fields is that a wide variety of sets with operations that appear in math 

happen to be fields and so we study their properties together by simply studying fields 

themselves. Fields also happen to be the natural multipliers in linear algebra, as we’ll see later. 

• Example 8.3: The sets ℝ, ℚ, and ℂ with the usual operations “+” and “⋅” are fields. 

• Example 8.4: The set ℤ5 = {0,1,2,3,4} where the operations “+” and “⋅” work as follows 

𝑎 + 𝑏 = remainder((𝑎 + 𝑏) ÷ 5)     (e.g. 3 + 4 = remainder(7 ÷ 5) = 2) 
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𝑎𝑏 = remainder((𝑎𝑏) ÷ 5)     (e.g. 2 ⋅ 4 = remainder(8 ÷ 5) = 3) 

With some effort, one can show that ℤ5 is a field. This example can be generalized to ℤ𝑘 =
{0,1,2, … , 𝑘 − 1} and a theorem from number theory says that ℤ𝑘 is a field if and only if 𝑘 is 

prime. 

• Fields satisfy many of the natural arithmetic properties that you already know from the real 

numbers. For instance, the following theorem says that you can cancel things from both sides of 

an equation. 

• Theorem 8.5 (Cancelation Laws): Suppose that 𝐹 is a field. For any elements 𝑎, 𝑏, 𝑐 ∈ 𝐹, 

1. If 𝑎 + 𝑏 = 𝑎 + 𝑐 then 𝑏 = 𝑐. 

2. If 𝑎 ⋅ 𝑏 = 𝑎 ⋅ 𝑐 and 𝑎 ≠ 0, then 𝑏 = 𝑐. 

Proof: We only prove 1) since 2) is proved very similarly and thus is left as an exercise. Suppose 

𝑎 + 𝑏 = 𝑎 + 𝑐. Let 𝑎̃ be an additive inverse for 𝑎. Then adding 𝑎̃ to both sides on the left gives 

𝑎̃ + (𝑎 + 𝑏) = 𝑎̃ + (𝑎 + 𝑐) 

(𝑎̃ + 𝑎) + 𝑏 = (𝑎̃ + 𝑎) + 𝑐 

0 + 𝑏 = 0 + 𝑐 

𝑏 = 𝑐. 

∎ 

• Theorem 8.6: For a field 𝐹, the elements 0 and 1 are unique. The inverse 𝑎̃ and 𝑏̃ in Definition 

8.1 Part 4) are also unique. 

Proof: This quickly follows from the cancelation law: you can read the proof in Appendix C in 

the book. ∎ 

• Notation 8.7: Due to the uniqueness of 𝑎̃ and 𝑏̃ in Definition 8.1 Part 4) proved in Theorem 8.6, 

people write −𝑎 and 𝑏−1 for them instead respectively. Thus the equations in Definition 8.1 Part 

4) become 

𝑎 + (−𝑎) = 0     and     𝑏 ⋅ 𝑏−1. 

• Definition 8.8: For a field 𝐹, we define the operations subtraction “−” and division “/” as 

𝑎 − 𝑏 = 𝑎 + (−𝑏)     and     
𝑎

𝑏
= 𝑎 ⋅ 𝑏−1. 

• Theorem 8.9: Suppose that 𝐹 is a field. For any elements 𝑎, 𝑏 ∈ 𝐹, 

a. 𝑎 ⋅ 0 = 0 

b. −1 ⋅ 𝑎 = −𝑎 
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c. 0 does not have a multiplicative inverse (i.e. 0−1 does not exist). 

Proof: The proof of a) can be found in Appendix C in the book and c) follows immediately from 

a) (hint: try contradiction). So we will simply prove b). We have that 

−1 + 1 = 0   ⟹   (−1 + 1) ⋅ 𝑎 = 0 ⋅ 𝑎 = 0   ⟹   (−1) ⋅ 𝑎 + 1 ⋅ 𝑎 = 0 

⟹   (−1) ⋅ 𝑎 + 𝑎 = 0. 

Hence (−1) ⋅ 𝑎 is an additive inverse of 𝑎. Since by Theorem 8.6 the additive inverse is unique, 

(−1) ⋅ 𝑎 = −𝑎. 

∎ 

 

9 Vector Spaces 

9.1 Definition 

• Next we discuss “vector spaces” which generalize the concept of vectors in Euclidean space that 

you worked with in calculus. This is analogous to how “fields” generalized the arithmetic of real 

numbers ℝ. 

• Definition 9.1: A vector space 𝑉 over a field 𝐹 is a set that comes with an addition operation: 

𝑥 + 𝑦     where   𝑥, 𝑦 ∈ 𝑉 

(𝑥 and 𝑦 are called vectors) and a scalar multiplication operation: 

𝑎𝑥     where   𝑎 ∈ 𝐹   𝑥 ∈ 𝑉 

(the 𝑎 is called a scalar) that satisfies the following properties: for any 𝑎, 𝑏 ∈ 𝐹 and any 𝑥, 𝑦, 𝑧 ∈

𝑉 

1. (Commutativity) 𝑥 + 𝑦 = 𝑦 + 𝑥 for any 𝑥, 𝑦 ∈ 𝑉, 

2. (Associativity) (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) for any 𝑥, 𝑦, 𝑧 ∈ 𝑉, 

3. There exists an element denoted 0 ∈ 𝑉 such that 𝑥 + 0 = 𝑥 (for all 𝑥 ∈ 𝑉), 

4. For any 𝑥 ∈ 𝑉 there is an 𝑥̃ ∈ 𝑉 such that 𝑥 + 𝑥̃ = 0, 

5. 1𝑥 = 𝑥, 

6. (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥), 

7. 𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦, 

8. (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥. 
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• Remark 9.2: In the above definition, the “+” operation for 𝑉 is different from the “+” operation 

for 𝐹, though we use the same symbol. Similarly, the 0 ∈ 𝑉 and 0 ∈ 𝐹 are also different though 

we use the same symbol (the former is a vector and the latter is a scalar). 

• Example 9.3: The set of three-dimensional vectors ℝ3 that you know from calculus is a vector 

space over ℝ. In this case 𝑉 = ℝ3 and 𝐹 = ℝ where addition and scalar multiplication is defined 

component wise as 

(

𝑥1
𝑥2
𝑥3

) + (

𝑦1
𝑦2
𝑦
3

) = (

𝑥1 + 𝑦1
𝑥2 + 𝑦2
𝑥3 + 𝑦3

)      and     𝑎 (

𝑥1
𝑥2
𝑥3

) = (

𝑎𝑥1
𝑎𝑥2
𝑎𝑥3

). 

The rigorous definition of ℝ3 is the set of 3-tuples of real numbers: 

ℝ3 = {(𝑥1, 𝑥2, 𝑥3) ∶ 𝑥1, 𝑥2, 𝑥3 ∈ ℝ}. 

This example can of course be generalized to 𝑉 = ℝ𝑛 and 𝐹 = ℝ where ℝ𝑛 is the set of 𝑛-tuples 

of real numbers: 

ℝ𝑛 = {(𝑥1, … , 𝑥𝑛) ∶ 𝑥1, … , 𝑥𝑛 ∈ ℝ}. 

• Example 9.4: More examples include the following where addition and scalar multiplication is 

defined in the classic way from calculus: 

o 𝑉 = ℂ𝑛 = {(𝑧1, … , 𝑧𝑛) ∶ 𝑧1, … , 𝑧𝑛 ∈ ℂ} and 𝐹 = ℂ. 

o 𝑉 = ℂ𝑛 and 𝐹 = ℝ. 

o Take any field 𝐹. Then 𝐹𝑛 is a vector space over 𝐹. 

o 𝑉 = {functions 𝑓 ∶ ℝ → ℝ} and 𝐹 = ℝ. 

o 𝑉 = 𝑃𝑛(𝐹) = {𝑎𝑛𝑥
𝑛 +⋯+ 𝑎1𝑥 + 𝑎0 ∶ each 𝑎𝑖 ∈ 𝐹} where each 𝑥𝑘 is defined as a 

separate object and we add these and perform scalar multiplication coefficient wise. 

o 𝑉 = 𝑃(𝐹) = {𝑎𝑛𝑥
𝑛 +⋯+ 𝑎1𝑥 + 𝑎0 ∶ 𝑛 ≥ 0 is an integer and each 𝑎𝑖 ∈ 𝐹} (i.e. no 

restriction on the size of 𝑛). 

• Example 9.5: The set of all 2 × 3 (read “2 by 3”) real matrices over ℝ: 

𝑉 = {[
𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3

] ∶ 𝑎1,1, … , 𝑎2,3 ∈ ℝ}      and     𝐹 = ℝ. 

In this case addition and scalar multiplication is defined component wise as in Example 9.3. This 

can of course be generalized to 𝑚 × 𝑛 matrices over any field 𝐹: 

𝑉 =

{
 
 

 
 

𝑚 {[

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛
]

⏞            
𝑛

∶ 𝑎1,1, … , 𝑎𝑚,𝑛 ∈ 𝐹

}
 
 

 
 

. 
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• Remark 9.6: Since the examples in Example 9.3, Example 9.4, and Example 9.5 are so famous, 

we often don’t write the 𝐹 involved in each. But you should on the homework! 

• Nonexample 9.7: Some items that are not vector spaces include 

o Setting 𝑉 = ℝ𝑛 and 𝐹 = ℂ is not a vector space. 

o Setting 𝑉 = {𝑥 ∈ ℝ3 ∶ Length of 𝑥 ≤ 1} and 𝐹 = ℝ is not a vector space. 

• Many, but not all, of the properties of fields that we discussed earlier have analogs for vector 

spaces with similar proofs. We list them here: 

• Theorem 9.8: Suppose we have a vector space 𝑉 over a field 𝐹. For any 𝑥, 𝑦, 𝑧 ∈ 𝑉 

a) (Cancellation Law) If 𝑥 + 𝑦 = 𝑥 + 𝑧 then 𝑦 = 𝑧, 

b) The vector 0 is unique, 

c) For any 𝑥 ∈ 𝑉 its additive inverse 𝑥̃ is unique. For this reason, we write “−𝑥” for the 

additive inverse rather than “𝑥̃,” 

d) 0𝑥 = 0, 

e) (−1)𝑥 = −𝑥. 

Proof: Left as an exercise. ∎ 

9.2 Subspaces 

• Subspaces are subsets of vector spaces that are also vector spaces themselves. As we’ll prove 

later, for intuition you may use the fact that in Euclidean space ℝ𝑛 subspaces are planes and lines 

that pass through zero. Here is the rigorous definition: 

• Definition 9.9: Suppose that 𝑉 is a vector space over a field 𝐹. A subset 𝑊 of 𝑉 (i.e. 𝑊 ⊆ 𝑉) is 

called a subspace of 𝑉 if it is a vector space over 𝐹 with respect to the addition and scalar 

multiplication operations of 𝑉. 

• As the definition states, to prove that something is a subspace you need to show that it is also a 

vector space, or in other words that it satisfies properties 1) - 8) of the definition of a vector 

space (Definition 9.1). That may seem discouraging since it sounds like a lot of work. However, 

fortunately that is not the case since the following theorem guarantees that you only have to 

check three properties: 

• Theorem 9.10: Suppose that 𝑉 is a vector space over a field 𝐹. A subset 𝑊 ⊆ 𝑉 is a subspace if 

and only if 

1. 0 ∈ 𝑊, 

2. (Closed under addition) If 𝑥, 𝑦 ∈ 𝑊 then (𝑥 + 𝑦) ∈ 𝑊, 

3. (Closed under scalar multiplication) If 𝑎 ∈ 𝐹 and 𝑥 ∈ 𝑊, then 𝑎𝑥 ∈ 𝑊. 
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If you prefer, the last two can be written as one condition: 

“If 𝑎, 𝑏 ∈ 𝐹 and 𝑥, 𝑦 ∈ 𝑤, then (𝑎𝑥 + 𝑏𝑦) ∈ 𝑊.” 

Proof: First suppose that 𝑊 is a subspace. Then conditions 2) and 3) above obviously need to 

hold. Condition 1) holds since if you take the zero vector of 𝑊 and multiply it by (scalar) zero on 

the left you will get the zero vector of 𝑉 which must be in 𝑊 by condition 3) (i.e. the zero of 

vector of 𝑊 and 𝑉 are the same!) 

Now suppose that conditions 2) and 3) above hold. Parts 1), 2), 3), 5), 6), 7), 8) of Definition 9.1 

(i.e. definition of vector spaces) are automatically satisfied by 𝑊 because these are properties 

inherited from 𝑉. So the only thing we need to check is that for every 𝑥 ∈ 𝑊 there exists an 𝑥̃ ∈

𝑊 such that 𝑥 + 𝑥̃ = 0 (i.e. Part 4 of Definition 9.1). Fix any 𝑥 ∈ 𝑊. By condition 3) above, 

(−1)𝑥 = −𝑥 is in 𝑊 and 𝑥 + (−𝑥) = 0. Hence 𝑥̃ = −𝑥 is what we wanted (i.e. the additive 

inverse of 𝑥 ∈ 𝑊 in 𝑊 and 𝑉 are the same!). 

∎ 

• Example 9.11: Consider the vector space ℝ3 (over the field ℝ). The subset 𝑊 ⊆ ℝ3 given by 

𝑊 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 𝑥 + 2𝑦 − 3𝑧 = 0} 

is a subspace of ℝ3. To prove this, we check the three conditions in Theorem 9.10: 

1. 0 = (0,0,0) is indeed in 𝑊 since 0 + 2(0) − 3(0) = 0. 

2. If (𝑥, 𝑦, 𝑧), (𝑥̃, 𝑦̃, 𝑧̃) ∈ 𝑊, then their sum (𝑥 + 𝑥̃, 𝑦 + 𝑦̃, 𝑧 + 𝑧̃) ∈ 𝑊 since 

(𝑥 + 𝑥̃) + 2(𝑦 + 𝑦̃) − 3(𝑧 + 𝑧̃) = (𝑥 + 2𝑦 − 3𝑧) + (𝑥̃ + 2𝑦̃ − 3𝑧̃) = 0 + 0 = 0. 

3. If 𝑎 ∈ ℝ and (𝑥, 𝑦, 𝑧) ∈ 𝑊, then their scalar multiplication 𝑎(𝑥, 𝑦, 𝑧) = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) ∈ 𝑊 

since 

(𝑎𝑥) + 2(𝑎𝑦) − 3(𝑎𝑧) = 𝑎(𝑥 + 2𝑦 − 3𝑧) = 𝑎 ⋅ 0 = 0. 

You may recall from calculus that in fact 𝑥 + 2𝑦 − 3𝑧 = 0 is an equation for the plane passing 

through zero with normal vector (1,2, −3), so this seems to confirm the intuition that planes are 

subspaces! 

• Considering subspaces is very useful since by passing to a subspace you study a vector space that 

preserves the old properties and introduces additional structure. The next example illustrates this: 

• Example 9.12: Let 𝑉 = {functions 𝑓 ∶ ℝ → ℝ} (with 𝐹 = ℝ). We can think of 𝑃2(ℝ) of all real 

polynomials of degree less than or equal to 2: 

𝑃2(ℝ) = {𝑎𝑥
2 + 𝑏𝑥 + 𝑐 ∶ 𝑎, 𝑏, 𝑐 ∈ ℝ} 

as a subspace of 𝑉. To prove this, we check the three conditions in Theorem 9.10: 

1. The constantly zero function 0 is in 𝑃2(ℝ) since it is equal to the polynomial 0𝑥2 + 0𝑥 +

0. 
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2. If 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and 𝑎̃𝑥2 + 𝑏̃𝑥 + 𝑐̃ are in 𝑃2(ℝ), then so is their sum: 

(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + (𝑎̃𝑥2 + 𝑏̃𝑥 + 𝑐̃) = (𝑎 + 𝑎̃)𝑥2 + (𝑏 + 𝑏̃)𝑥 + (𝑐 + 𝑐̃) ∈ 𝑃2(𝑥). 

3. We leave it to the reader to check that 𝑃2(ℝ) is closed under scalar multiplication. 

• Note 9.13: In this course we will only consider the alternative formulation of 𝑃𝑛(ℚ or ℝ or ℂ) or 

𝑃(ℚ or ℝ or ℂ) as subsets of {functions 𝑓 ∶ ℝ or ℚ or ℂ → ℝ or ℚ or ℂ} (when the ℝ, ℚ, and ℂ 

all match) and not for general feilds 𝐹. The reason for doing so is the following result and 

observation right after: 

• Theorem 9.14: Suppose that 𝑝, 𝑞 ∈ 𝑃𝑛(ℚ or ℝ or ℂ) are polynomials that are also equal: 

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 +⋯+ 𝑎1𝑥 + 𝑎0 = 𝑏𝑛𝑥

𝑛 +⋯+ 𝑏1𝑥 + 𝑏0. 

Then each 𝑎𝑖 = 𝑏𝑖. 

Proof: We omit the proof since it lies in analysis. ∎ 

• Note 9.15: The reason for Note 9.13 is that the above theorem doesn’t work for all fields. For 

instance, the following polynomials are equal in ℤ3 (check this!) but notice that the coefficients 

are not equal: 

𝑥3 + 0𝑥2 + 2𝑥 + 0 = 0𝑥3 + 0𝑥2 + 0𝑥 + 0     in   ℤ3. 

• Theorem 9.16: Suppose that 𝑉 is a vector space over a field 𝐹 and that 𝑊1,𝑊2 ⊆ 𝑉 are 

subspaces of 𝑉. Then their intersection 𝑊1 ∩𝑊2 is also a subspace of 𝑉. 

Proof: This is a simple exercise in checking that the three conditions in Theorem 9.10 hold for 

𝑊1 ∩𝑊2. 

∎ 

9.3 Linear Combinations 

• One way to form or study subspace is using the notion of linear combinations. We start by 

defining the latter: 

• Definition 9.17: Suppose that 𝑉 is a vector space (over a field 𝐹) and that 𝑣1, … , 𝑣𝑚 ∈ 𝑉 is a list 

of vectors in 𝑉. A linear combination of 𝑣1, … , 𝑣𝑚 is a finite sum of the form 

(9. 18)                                                          𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 

where 𝑎1, … , 𝑎𝑚 ∈ 𝐹. The 𝑎𝑖’s here are called coefficients of the linear combination. 

• Example 9.19: Consider the vector space ℝ3 (over the field ℝ). We claim that the vector 

𝑤 = (
3
6
4

) 

is a linear combination of the vectors 
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𝑣1 = (
1
0
0

),   𝑣2 = (
3
2
0

),   𝑣3 = (
0
1
2

). 

To prove this, we need to show that there exists 𝑎, 𝑏, 𝑐 ∈ ℝ such that 

(
3
6
4

) = 𝑎 (
1
0
0

) + 𝑏 (
3
2
0

) + 𝑐 (
0
1
2

). 

Combining the right-hand side gives 

(
3
6
4

) = (
𝑎 + 3𝑏
2𝑏 + 𝑐
2𝑐

). 

Equating the components gives 

𝑎  + 3𝑏 = 3
 2𝑏 +   𝑐 = 6
      2𝑐 = 4

 

The third equation gives that 𝑐 = 2. Plugging this into the second equation and solving for 𝑏 

gives 𝑏 = 2. Plugging this into the first equation and solving for 𝑎 gives 𝑎 = −3. Hence 

(
3
6
4

) = (−3)(
1
0
0

) + 2(
3
2
0

) + 2(
0
1
2

). 

Example 9.20: Consider the vector space 𝑃4(ℝ) (over the field ℝ). Is the polynomial 2𝑥4 +

9𝑥3 + 5𝑥2 + 11𝑥 in the span of 𝑥4 + 3𝑥3, 𝑥3 + 2𝑥, and 𝑥2 + 𝑥? Not obvious, right? Well, let us 

leverage the power of linear algebra! The answer will be yes if we can find coefficients 𝑎, 𝑏, 𝑐 
such that 

2𝑥4 + 9𝑥3 + 5𝑥2 + 11𝑥 = 𝑎(𝑥4 + 3𝑥3) + 𝑏(𝑥3 + 2𝑥) + 𝑐(𝑥2 + 𝑥) 

Distributing on the right-hand side gives 

2𝑥4 + 9𝑥3 + 5𝑥2 + 11𝑥 = 𝑎𝑥4 + (3𝑎 + 𝑏)𝑥3 + 𝑐𝑥2 + (2𝑏 + 𝑐)𝑥 

This equality will be true if the coefficients of the 𝑥𝑘’s on both sides are the same. Equating the 

coefficients of the 𝑥𝑘’s gives the system of equations 

𝑎   =   2
3𝑎 +𝑏  =    9

     𝑐 =   5
 2𝑏 +𝑐 = 11

 

The first and third equation give 𝑎 = 2 and 𝑐 = 5. Solving for 𝑏 in the second equation gives 

𝑏 = 3. We check that the fourth equation makes sense (important!): indeed 2(3) + 5 = 11. 

Hence indeed 
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2𝑥4 + 9𝑥3 + 5𝑥2 + 11𝑥 = 2(𝑥4 + 3𝑥3) + 3(𝑥3 + 2𝑥) + 5(𝑥2 + 𝑥). 

• Definition 9.21: Suppose 𝑆 is a nonempty subset of a vector space 𝑉 (over a field 𝐹): 𝑆 ⊆ 𝑉. 

The span of 𝑆 is the set of all (finite) linear combinations of vectors in 𝑆: 

span 𝑆 = {𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 ∶ 𝑚 ∈ ℤ+, each 𝑎𝑘 ∈ 𝐹, each 𝑣𝑘 ∈ 𝑆}. 

By convention we define span{∅} = {0}.  

• Example 9.22: We proved in Example 9.19 that 

(
3
6
4

) ∈ span {(
1
0
0

) , (
3
2
0

) , (
0
1
2

)}. 

• Example 9.23: Consider the vector space of functions 𝑉 = {𝑓 ∶ ℝ → ℝ} (over ℝ). Then setting 

𝑆 = {1, 𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5} 

𝑃5(ℝ) = span 𝑆 = span{1, 𝑥, 𝑥
2, 𝑥3, 𝑥4, 𝑥5}. 

• Example 9.24: At the moment we can only discuss the following intuitively: consider the vector 

space ℝ3 and fix any two vectors 𝑣1 and 𝑣2 pointing in two different directions. Let 𝑆 = {𝑣1, 𝑣2}. 

Recall from calculus that vector addition of the form 𝑣1 + 𝑣2 in ℝ3 can be visualized as putting 

the base of 𝑣2 at the arrow tip of 𝑣1 and see where the arrow tip of 𝑣2 lands. The same can be 

done for rescaled versions of 𝑣1 and 𝑣2: 𝑎1𝑣1 + 𝑎2𝑣2, or in other words for linear combinations 

of 𝑣1 and 𝑣2. With this visualization, you should convince yourself that the set of all points that 

you can obtain by considering 𝑎1𝑣1 + 𝑎2𝑣2 is the plane passing through 0 = (0,0,0), 𝑣1, and 𝑣2. 
In other words: 

span 𝑆 = span{𝑣1, 𝑣2} = The plane passing through 0, 𝑣1, and 𝑣2. 

This is not a rigorous proof (so you can’t use it on the homework yet); we will prove this 

rigorously later! 

• The last two examples seem to indicate that the span of any set is a subspace since recall that 

𝑃5(ℝ) is a subspace of 𝑉 = {𝑓 ∶ ℝ → ℝ} and planes passing through zero are subspaces of ℝ3 
(we didn’t prove the latter rigorously yet). This turns out to be true in general: 

• Theorem 9.25: Suppose 𝑆 is a subset of a vector space 𝑉 (over a field 𝐹): 𝑆 ⊆ 𝑉. 

a) Then span 𝑆 is a subspace of 𝑉. 

b) Any subspace 𝑊 ⊆ 𝑉 of 𝑉 that contains 𝑆 will also contain (the subspace) span 𝑆 (i.e. 

span 𝑆 is the smallest subspace of 𝑉 that contains 𝑆). 

Proof: If 𝑆 = ∅, then span 𝑆 = {0} which is a vector space and so both a) and b) are 

immediately true. So suppose that 𝑆 ≠ ∅. First we prove a). To show that span 𝑆 is a subspace of 

𝑉, we just need to check the three conditions in Theorem 9.10: 
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1. First we check that 0 ∈ span 𝑆. Take any 𝑣1 ∈ 𝑆. Note that 0𝑣1 is technically a linear 

combination of 𝑣1 (i.e. set 𝑎1 = 0 in (9.18)) and so 0 = 0𝑣1 ∈ span 𝑆. 

2. Take any two 𝑤1, 𝑤2 ∈ span 𝑆. Both of them are linear combinations by definition: 

𝑤1 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚,     each 𝑎𝑘 ∈ 𝐹, 𝑣𝑘 ∈ 𝑆, 

𝑤2 = 𝑎̃1𝑣̃1 +⋯+ 𝑎̃𝑛𝑣̃𝑛,       each 𝑎̃𝑘 ∈ 𝐹, 𝑣̃𝑘 ∈ 𝑆. 

Thus their sum 𝑤1 + 𝑤2 is also a linear combination: 

𝑤1 + 𝑤2 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 + 𝑎̃1𝑣̃1 +⋯+ 𝑎̃𝑛𝑣̃𝑛. 

So indeed (𝑤1 + 𝑤2) ∈ span 𝑆. 

3. We leave it as an exercise to check that if 𝑎 ∈ 𝐹 and 𝑤 ∈ span 𝑆, then 𝑎𝑤 ∈ span 𝑆: this 

is done very similarly to the previous step (i.e. step 2). 

Next let’s prove b). Suppose 𝑊 ⊆ 𝑉 is a subspace that contains 𝑆. We want to show that 𝑊 

contains span 𝑆. Since span 𝑆 is the set of all linear combinations of vectors in 𝑆, we have to 

show that any linear combination of the form 

𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚,     each 𝑎𝑘 ∈ 𝐹, 𝑣𝑘 ∈ 𝑆. 

is in 𝑊. By assumption each 𝑣𝑘 ∈ 𝑊, hence each term 𝑎𝑘𝑣𝑘 ∈ 𝑊 by Part 3) of Theorem 9.10, 

and hence their sum (𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚) ∈ 𝑊 by Part 2) of Theorem 9.10. So indeed 𝑊 

contains span 𝑆. 

∎ 

• Definition 9.26: A subset 𝑆 of a vector space 𝑉 (over a field 𝐹) is said to span (or generate) 𝑉 if 

span 𝑆 = 𝑉. 

• Example 9.27: We have that 

o 𝑆 = {(
1
0
) , (
0
1
)} spans/generates ℝ2 

o 𝑆 = {(
1
0
0
) , (

0
1
0

)} spans/generates the 𝑥, 𝑦 plane in ℝ3. 

o 𝑆 = {1, 𝑥, 𝑥2} spans/generates 𝑃2(ℝ) 

o (Exercise) {1 + 𝑥, 𝑥 + 5𝑥3, 𝑥2 + 3𝑥, 𝑥4 + 2𝑥} spans/generates 𝑃4(ℝ). 

9.4 Linear Dependence/Independence 

• Vector spaces can be very abstract and hence typically don’t lend themselves nicely to 

computation in their originally given form. So we need a way to represent them in a convenient 

fashion. In this section we build towards this idea, starting with the following fundamental 

concept: 
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• Definition 9.28: Suppose that 𝑉 is a vector space (over a field 𝐹). A set of vectors 𝑆 ⊆ 𝑉 is 

called linearly dependent if one can find a finite number of distinct vectors 𝑣1, … , 𝑣𝑚 ∈ 𝑆 and 

scalars 𝑎1, … , 𝑎𝑚 ∈ 𝐹 such that at least one 𝑎𝑖 is nonzero and 

(9. 29)                                                      𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 = 0. 

• The idea behind the above definition is the following: suppose that (9.29) holds and suppose for 

example that 𝑎𝑚 ≠ 0. Then one could solve for 𝑣𝑚 in terms of the other vectors to get 

(9. 30)                                         𝑣𝑚 = 𝑎𝑚
−1𝑎1𝑣1 +⋯+ 𝑎𝑚

−1𝑎𝑚−1𝑣𝑚−1. 

In other words, 𝑣𝑚 depends on the other vectors 𝑣1, … , 𝑣𝑚−1 via the linear combination (9.30). 

• Example 9.31: Consider the vector space 𝑉 = ℝ3 (over the field ℝ) and consider the set of 

vectors 

𝑆 = {(
1
2
0

) , (
2
0
3

) , (
4
4
3

)}. 

Is this set 𝑆 linearly dependent? Since 𝑆 is finite, we can consider the question of if (9.29) is 

possible to arrange using all vectors of 𝑆 with at least one 𝑎𝑖 not zero. In other words, 𝑆 will be 

linearly dependent if and only if there exist scalars 𝑎, 𝑏, 𝑐 ∈ ℝ at least one of which is nonzero 

such that 

𝑎 (
1
2
0
) + 𝑏 (

2
0
3
) + 𝑐 (

4
4
3
) = (

0
0
0
) 

Combing the left-hand side into one vector and then equating the components of both sides of 

this equation gives 

𝑎 +2𝑏 +4𝑐 = 0
2𝑎  +4𝑐 = 0
 3𝑏 +3𝑐 = 0

 

Notice that the second and third equations are equivalent to 𝑎 = −2𝑐 and 𝑏 = −𝑐. Plugging 

these into the first equation gives (−2𝑐) + 2(−𝑐) + 4𝑐 = 0, which is true regardless of the value 

of 𝑐! So we can choose any value of 𝑐, say 𝑐 = 1, and get that 𝑎 = −2 (i.e. the second equation 

is satisfied) and 𝑏 = −1 (i.e. the third equation is satisfied) and have that the first equation is 

satisfied automatically. Hence this is a solution: 

−2(
1
2
0
) − 1(

2
0
3
) + 1(

4
4
3
) = (

0
0
0
) 

and so 𝑆 is indeed linearly dependent. Notice, for instance, that this means that the third vector 

can be written as a linear combination of the first two: 
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(
4
4
3
) = 2(

1
2
0
) + (

2
0
3
). 

• Definition 9.32: Suppose that 𝑉 is a vector space (over a field 𝐹). A set of vectors 𝑆 ⊆ 𝑉 is 

called linearly independent if it is not linearly dependent. A little bit of thought should convince 

you that this is equivalent to saying that if you take a linear combination 

𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 = 0 

of distinct vectors 𝑣1, … , 𝑣𝑚 ∈ 𝑆, the coefficients 𝑎1, … , 𝑎𝑚 must all be zero. By convention we 

declare the empty set ∅ to be linearly independent. 

• Example 9.33: A set of one nonzero vector: 𝑆 = {𝑣}, is always linearly independent. Indeed if 

𝑎1𝑣1 = 0 then 𝑎1 = 0. 

• Example 9.34: Consider the vector space 𝑉 = 𝑃5(ℚ) (over the field ℚ) and consider the 

following set of polynomials 

𝑆 = {3𝑥2 + 2,   𝑥2 + 𝑥,   10𝑥2 + 2𝑥 + 6}. 

Is this set linearly independent? Suppose that 

𝑎(3𝑥2 + 2) + 𝑏(𝑥2 + 𝑥) + 𝑐(10𝑥2 + 2𝑥 + 6) = 0. 

If we can show that this implies that 𝑎, 𝑏, 𝑐 are all zero, then 𝑆 is indeed linearly independent. 

Combining terms on the left-hand side and writing 0 = 0𝑥2 + 0𝑥 + 0 gives 

(3𝑎 + 𝑏 + 10𝑐)𝑥2 + (𝑏 + 2𝑐)𝑥 + (2𝑎 + 6𝑐) = 0𝑥2 + 0𝑥 + 0. 

By Theorem 9.14 this is true of and only if the coefficients of the powers of 𝑥’s are the same on 

both sides, and so equating coefficients this way gives 

3𝑎 +𝑏 +10𝑐 = 0
 𝑏 +2𝑐 = 0
2𝑎  +6𝑐 = 0

 

This second and third equations are equivalent to 𝑏 = −2𝑐 and 𝑎 = −3𝑐. Plugging this into the 

first equation gives 3(−3𝑐) + (−2𝑐) + 10𝑐 = 0 which is equivalent to −𝑐 = 0, or in other 

words 𝑐 = 0. Hence 𝑎 and 𝑏 must also be zero. Thus all 𝑎, 𝑏, 𝑐 are zero and so 𝑆 is indeed 

linearly independent. 

• We illustrate the relation between span and linear (in)dependence with a few results. 

• Theorem 9.35: Suppose that 𝑆 is a linearly dependent subset of a vector space 𝑉 (over a field 𝐹). 

Then we can always remove a vector 𝑣 from 𝑆 to get a new set 𝑆̃ such that span 𝑆̃ = span 𝑆. 

Remark: In other words, linear dependent lists always have vectors that don’t contribute any 

information to the span. 
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Proof: Since 𝑆 is linearly dependent, 𝑆 ≠ ∅ (or else it would be linearly independent). The fact 

that 𝑆 is linearly dependent means that there exist distinct vectors 𝑣1, … , 𝑣𝑚 ∈ 𝑆 and 𝑎1, … , 𝑎𝑚 ∈

𝐹 such that at least one 𝑎𝑖 is not zero and 

𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 = 0. 

Rearranging the 𝑣𝑖’s if necessary, we can assume without loss of generality that 𝑎𝑚 ≠ 0. Let’s 

call 𝑣 = 𝑣𝑚 and solve for 𝑣: 

(9. 36)                                        𝑣 = −𝑎𝑚
−1𝑎1𝑣1 −⋯− 𝑎𝑚

−1𝑎𝑚−1𝑣𝑚−1. 

Let 𝑆̃ be the subset obtained by taking 𝑆 and removing 𝑣 from it (set theoretically this is written 

as 𝑆̃ = 𝑆 ∖ {𝑣}). We want to show that span 𝑆̃ = span 𝑆. The inclusion span 𝑆̃ ⊆ span 𝑆 holds 

because anything that can be written as a linear combination of vectors in 𝑆̃ is automatically a 

linear combination of vectors in 𝑆 simply because 𝑆̃ ⊆ 𝑆. So let us show that span 𝑆̃ ⊇ span 𝑆. 

Take any vector 𝑤 ∈ span 𝑆, which means that 

(9. 37)                                           𝑤 = 𝑏1𝑤1 +⋯+ 𝑏𝑛𝑤𝑛     for some 𝑤1, … , 𝑤𝑛 ∈ 𝑆,   𝑎1, … , 𝑎𝑛 ∈ 𝐹 

By combining like terms, we can assume that the 𝑤𝑖’s are distinct. If none of the 𝑤𝑖’s are equal 

to 𝑣, then they are all in 𝑆̃ and so this is a linear combination of vectors only in 𝑆̃ and so 𝑤 ∈

span 𝑆̃. Now suppose that one of the 𝑤𝑖’s is equal to 𝑣. Without loss of generality, suppose that 

𝑤𝑛 = 𝑣. Then plugging (9.36) into (9.37) gives 

𝑤 = 𝑏1𝑤1 +⋯𝑏𝑚−1𝑤𝑚−1 + 𝑏𝑛(−𝑎𝑚
−1𝑎1𝑣1 −⋯− 𝑎𝑚

−1𝑎𝑚−1𝑣𝑚−1) 

which if you distribute the last term shows that this is a linear combination of vectors only in 𝑆̃ 

and so 𝑤 ∈ span 𝑆̃ in this case as well. Thus span 𝑆̃ ⊇ span 𝑆 and so indeed span 𝑆̃ = span 𝑆. 

∎ 

• Corollary 9.38: Suppose that 𝑉 is a vector space (over a field 𝐹) and that 𝑆 = {𝑣1, … , 𝑣𝑛} is a 

finite linearly dependent subset. Then there exists a linearly independent subset 𝑆̃ ⊆ 𝑆 with the 

same span: span 𝑆̃ = span 𝑆. 

Proof: Since 𝑆 is linearly dependent, 𝑆 ≠ ∅. Now use the previous theorem to remove vectors 

one by one until you arrive at a linearly independent subset 𝑆̃. You know that this process will 

end eventually because you can’t do this process more than 𝑛 times since if you did it 𝑛 times 

you’ll arrive at 𝑆̃ = ∅, which we declared to be linearly independent. ∎ 

• Theorem 9.39: Suppose that 𝑉 is a vector space (over a field 𝐹) and that 𝑆 ⊆ 𝑉 is a linearly 

independent set. Let 𝑣 ∈ 𝑉 be a nonzero vector not in 𝑆. Then 𝑆 ∪ {𝑣} is linearly dependent if 

and only if 𝑣 ∈ span 𝑆. 

Proof: First suppose that 𝑆 ∪ {𝑣} is linearly dependent. Then one can find distinct vectors 

𝑣1, … , 𝑣𝑚 ∈ 𝑆 ∪ {𝑣} and scalars 𝑎1, … , 𝑎𝑚 such that at least one 𝑎𝑖 is nonzero so that 

𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 = 0. 
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We note that one of the 𝑣𝑖’s here is equal to 𝑣 and furthermore that the corresponding coefficient 

𝑎𝑖 ≠ 0 or else the above would be a linear combination of vectors only in 𝑆 with at least one 

coefficient not zero, which would imply that 𝑆 is linearly dependent while we said that 𝑆 is 

linearly independent. By rearranging if the 𝑣𝑖’s if necessary, we can assume that 𝑣𝑚 = 𝑣 and so 

𝑎1𝑣1 +⋯+ 𝑎𝑚−1𝑣𝑚−1 + 𝑎𝑚𝑣𝑚 = 0     with   𝑎𝑚 ≠ 0 

⟹     𝑣𝑚 = 𝑎𝑚
−1𝑎1𝑣1 +⋯+ 𝑎𝑚

−1𝑎𝑚−1𝑣𝑚−1. 

In other words, 𝑣 is a linear combination of vectors in 𝑆 and so 𝑣 ∈ span 𝑆. 

Now suppose that 𝑣 ∈ span 𝑆. That means we can write 

𝑣 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 

for some vectors 𝑣1, … , 𝑣𝑚 ∈ 𝑆 and scalars 𝑎1, … , 𝑎𝑚 ∈ 𝐹. Thus 

𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 + (−1)𝑣 = 0. 

This shows that 𝑆 ∪ {𝑣} is linearly dependent. 

∎ 

9.5 Bases and Dimension 

• Definition 9.40: Suppose that 𝑉 is a vector space (over a field 𝐹). A subset 𝛽 ⊆ 𝑉 is called a 

basis if it is linearly independent and generates 𝑉 (i.e. 𝑉 = span𝛽). 

Remark: Bases don’t have to be unique: a vector space 𝑉 typically has many bases. 

• Example 9.41: Since ∅ is linearly independent and span∅ = {0}, 𝛽 = ∅ is a basis for {0}. 

• Example 9.42: The set 

𝛽 = {(
1
0
0
) , (

0
1
0
) , (

0
0
1
)} 

is a basis for ℝ3. We’ll let you check that it is linearly independent. It spans all of ℝ3 because 

any vector in ℝ3 can be written as a linearly combination of the above three vectors as so: 

(
𝑎
𝑏
𝑐
) = 𝑎 (

1
0
0
) + 𝑏 (

0
1
0
) + 𝑐 (

0
0
1
). 

More generally, 
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𝛽 =

{
  
 

  
 

(

 
 

1
0
0
⋮
0)

 
 
,

(

 
 

0
1
0
⋮
0)

 
 
,

(

 
 

0
0
1
⋮
0)

 
 
,… ,

(

 
 

0
0
0
⋮
1)

 
 

⏟                
𝑛 vectors }

  
 

  
 

 

is a basis for ℝ𝑛 (and even 𝐹𝑛 where 𝐹 is a field). These bases are so famous that they are 

referred to as the standard basis for ℝ𝑛 (and even 𝐹𝑛). 

• Example 9.43: The set 𝛽 = {1, 𝑥, 𝑥2, … , 𝑥𝑛} is a basis for 𝑃𝑛(ℝ). We’ll let you check the details. 

This particular basis is in fact called the standard basis of 𝑃𝑛(ℝ). 

• Example 9.44: The set 𝛽 = {𝑥𝑘 ∶ 𝑘 ≥ is an integer} = {1, 𝑥, 𝑥2, 𝑥3, … } is a basis for 𝑃(ℝ) (the 

set of all polynomials: no restriction on the degree). 

• Finite bases are nice because they allow us to nicely write down every vector in a vector space in 

a unique fashion. This will be critical for when we start doing computations over vector spaces 

later on. 

• Theorem 9.45: Suppose that 𝑉 is a vector space (over a field 𝐹). Then a finite subset 𝛽 =
{𝑢1, … , 𝑢𝑚} of 𝑉 is a basis of 𝑉 if and only if every vector 𝑣 ∈ 𝑉 can be written uniquely as a 

linear combination of 𝑢1, … , 𝑢𝑚: 

𝑣 = 𝑎1𝑢1 +⋯+ 𝑎𝑚𝑢𝑚 

(i.e. for every 𝑣 only one set of 𝑎1, … , 𝑎𝑚 ∈ 𝐹 will work here). 

Proof: First suppose that 𝛽 is a basis. Take any 𝑣 ∈ 𝑉. Since by assumption span 𝛽 = 𝑉, we 

trivially have that 𝑣 ∈ span𝛽. Thus 𝛽 can be written as a linear combination of the 𝑢𝑖’s: 

(9. 46)                                                     𝑣 = 𝑎1𝑢1 +⋯+ 𝑎𝑚𝑢𝑚. 

We need to prove that this set of coefficients 𝑎1, … , 𝑎𝑚 ∈ 𝐹 is the only set of coefficients that 

makes this equation hold. We do this by supposing that 𝑎̃1, … , 𝑎̃𝑚 ∈ 𝐹 is another set of 

coefficients such that 

(9. 47)                                                      𝑣 = 𝑎̃1𝑢1 +⋯+ 𝑎̃𝑚𝑢𝑚 

and showing that 𝑎𝑖 = 𝑎̃𝑖. If we subtract (9.47) from (9.46) we get that 

(9. 48)                               0 = 𝑣 − 𝑣 = (𝑎1 − 𝑎̃1)𝑢1 +⋯+ (𝑎𝑚 − 𝑎̃𝑚)𝑢𝑚. 

Since 𝛽 = {𝑢1, … , 𝑢𝑚} is linearly independent, we have that each coefficient in (9.48) must be 

zero, or in other words each 𝑎𝑖 − 𝑎̃𝑖 = 0 and so indeed 𝑎𝑖 = 𝑎̃𝑖. 

We leave the other direction of the theorem as an exercise: it should be very quick, 

approximately a two-line argument. 

∎ 
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• Theorem 9.49: Suppose a vector space 𝑉 (over a field 𝐹) is generated by a finite set 𝑆 (i.e. 

span 𝑆 = 𝑉). Then 𝑉 has a finite basis. 

Proof: If 𝑆 is linearly independent, then we’re done since in this case 𝑆 is a basis for 𝑉. Now 

suppose that 𝑆 is linearly dependent. Then by Corollary 9.38 we can find a (finite) subset 𝛽 ⊆ 𝑆 

that is linearly independent and span𝛽 = span 𝑆 = 𝑉. In this case, 𝛽 is the finite basis of 𝑉 

we’re looking for. 

∎ 

• You may have heard that ℝ𝑛 is an 𝑛-dimensional space and in Example 9.42 we say that ℝ𝑛 has 

a basis with 𝑛 vectors. Coincidence? No! Let’s build towards this idea: 

• Definition 9.50: We say that a vector space 𝑉 is finite dimensional if it has a finite basis. If 𝑉 

does not have a finite basis, we call it infinite dimensional. 

• Definition 9.51: Suppose that 𝑉 is a finite dimensional vector space and let 𝛽 = {𝑢1, … , 𝑢𝑚} be 

any finite basis for 𝑉. We define the dimension of 𝑉 as the number of vectors in 𝛽: 

dim𝑉 = 𝑚. 

Warning: we have to prove that this is a well-defined definition. In other words, how do we know 

that there doesn’t exist another finite basis 𝛽 = {𝑢̃1, … , 𝑢̃𝑚̃} for some different 𝑚̃, in which case 

we won’t know if to set dim𝑉 = 𝑚 or dim𝑉 = 𝑚̃. We will prove soon that this cannot happen 

and so dimension of 𝑉 is indeed well-defined. 

• Example 9.52: Since ∅ is a basis for {0}, dim{0} = 0. 

• Example 9.53: In Example 9.42 we saw that ℝ𝑛 has a basis with 𝑛 vectors and so dimℝ𝑛 = 𝑛 

(or more generally dim𝐹𝑛 = 𝑛). Similarly, from Example 9.43 we see that dim𝑃𝑛(ℝ) = 𝑛 + 1. 

The latter statement is also true for 𝑃𝑛(ℂ) and 𝑃𝑛(ℚ). 

• Example 9.54: We may ask you to prove in the homework that 𝑃(ℝ) and 𝑉 = {𝑓 ∶ ℝ → ℝ} are 

both infinite dimensional. 

• To prove that our definition of dimension in Definition 9.51 is well defined, we make use of the 

following powerful theorem: 

• Theorem 9.55: (Replacement Theorem) Suppose that 𝑉 is a vector space (over a field 𝐹). 

Suppose that 𝐺 = {𝑤1, … , 𝑤𝑛} is a subset of 𝑉 with 𝑛 vectors that generates 𝑉 (i.e. 𝑉 = span𝐺). 

Suppose that 𝐻 = {𝑣1, … , 𝑣𝑚} is a linearly independent subset of 𝑉 with 𝑚 vectors. Then 𝑚 ≤ 𝑛 

and there exists a subset 𝐿 of 𝐺 with 𝑛 −𝑚 vectors so that 𝐻 ∪ 𝐿 also generates 𝑉 (i.e. 𝑉 =

span(𝐻 ∪ 𝐿)). 

Proof: We fix 𝑉, 𝐹, and 𝐺 and prove the theorem by induction on the size of 𝑚 (i.e. the number 

of vectors in 𝐻). The base case is 𝑚 = 0. In this case there are no vectors in 𝐻 and so 𝐻 = ∅. 

Hence indeed 𝑚 ≤ 𝑛 and we can set 𝐿 = 𝐺 since then 𝐿 has 𝑛 −𝑚 vectors and 𝐻 ∪ 𝐿 = ∅ ∪

𝐺 = 𝐺 generates 𝑉. 



Haim Grebnev  Last Modified: April 25, 2025 

29 

 

Now suppose that the theorem is true for 𝑚. We will show that it holds for 𝑚 + 1. Suppose that 

𝐻 = {𝑣1, … , 𝑣𝑚+1} is linearly independent. We need to prove that 𝑚+ 1 ≤ 𝑛 and that there 

exists a subset 𝐿 of 𝐺 with 𝑛 − (𝑚 + 1) = 𝑛 −𝑚 − 1 vectors so that 𝐻 ∪ 𝐿 generates 𝑉. To get 

started, let’s remove one vector from 𝐻, say the last vector and call it 𝐻̃: 

𝐻̃ = {𝑣1, … , 𝑣𝑚}. 

Note that 𝐻̃ is a subset of the linearly independent set 𝐻 and hence 𝐻̃ is also linearly 

independent. Thus by the inductive hypothesis there exists 𝐿̃ = {𝑢1, … , 𝑢𝑛−𝑚} ⊆ 𝐺 so that 

(9. 56)                               𝐻̃ ∪ 𝐿̃ = {𝑣1, … , 𝑣𝑚, 𝑢1, … , 𝑢𝑛−𝑚}   generates   𝑉. 

Now we aim to put 𝑣𝑚+1 back into this list. Since this list generates all of 𝑉, 

(9. 57)                          𝑣𝑚+1 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 + 𝑏1𝑢1 +⋯+ 𝑏𝑛−𝑚𝑢𝑛−𝑚 

for some 𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛−𝑚 ∈ 𝐹. We cannot have all of the 𝑏𝑖’s here be equal to zero or else 

this would imply that 𝑣𝑚+1 could be written as a linear combination of the 𝑣𝑖’s and hence imply 

that 𝐻 = {𝑣1, … , 𝑣𝑚+1} is linearly dependent while we assumed that it was linearly independent. 

Hence one of the 𝑏𝑖’s is nonzero. Since 𝐻̃ ∪ 𝐿̃ has 𝑛 vectors (c.f. (9.56)), this already shows us 

that 𝑚+ 1 ≤ 𝑛. 

By rearranging the 𝑢𝑖’s if necessary, we can assume without loss of generality that 𝑏1 ≠ 0 and 

hence we can solve for 𝑢1 in (9.57) to get 

(9. 58)   𝑢1 = 𝑏1
−1𝑣𝑚+1 − 𝑏1

−1𝑎1𝑣1 −⋯− 𝑏1
−1𝑎𝑚𝑣𝑚 − 𝑏1

−1𝑏2𝑢2 −⋯− 𝑏1
−1𝑏𝑛−𝑚𝑢𝑛−𝑚. 

This means that any linear combination of elements in 𝐻̃ ∪ 𝐿̃: 

(9. 59)                                  𝑐1𝑣1 +⋯+ 𝑐𝑚𝑣𝑚 + 𝑑1𝑢1 +⋯+ 𝑑𝑛−𝑚𝑢𝑛−𝑚 

can be rewritten as a linear combination of 𝑣1, … , 𝑣𝑚+1, 𝑢2, … , 𝑢𝑛−𝑚 by plugging (9.58) into 𝑢1 

in (9.59). Thus 

𝑉 = span(𝐻̃ ∪ 𝐿̃) ⊆ span{𝑣1, … , 𝑣𝑚+1, 𝑢2, … , 𝑢𝑛−𝑚⏟        
Call this 𝐿

} = 𝑉 

(the last equality follows since you can’t span anything bigger than 𝑉). Hence the above 

indicated 𝐿 is the 𝐿 we wanted. 

∎ 

• Corollary 9.60: Suppose that 𝑉 is a vector space (over a field 𝐹) and that 𝛽 = {𝑢1, … , 𝑢𝑛} is a 

basis for 𝑉 that has 𝑛 vectors. Then all bases for 𝑉 have exactly 𝑛 vectors. Hence dimension in 

Definition 9.51 (for finite dimensional vector spaces) is indeed well defined. 

Proof: Take another basis 𝛽̃. First suppose that 𝛽̃ = {𝑣1, … , 𝑣𝑚} has a finite number of vectors. 

We want to show that 𝑚 = 𝑛. Since 𝛽̃ is linearly independent and 𝛽 generates 𝑉, the previous 
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theorem (with 𝐻 = 𝛽̃ and 𝐺 = 𝛽) says that 𝑚 ≤ 𝑛. Similarly, since 𝛽 is linearly independent and 

𝛽̃ generates 𝑉 we have that 𝑛 ≤ 𝑚. So indeed 𝑚 = 𝑛. 

Now suppose that 𝛽̃ has an infinite number of vectors, we will show that this actually can’t 

happen. Pick out any 𝑛 + 1 vectors {𝑣1, … , 𝑣𝑛+1} ⊆ 𝛽̃. Since 𝛽̃ is linearly independent, its subset 

{𝑣1, … , 𝑣𝑛+1} is also linearly independent. Since 𝛽 generates 𝑉, the previous theorem implies 

that 𝑛 + 1 ≤ 𝑛, a contradiction! 

∎ 

• Corollary 9.61: Suppose that 𝑉 is a vector space of dimension 𝑛 (which implies that it’s finite 

dimensional) 

a. Suppose that 𝑆 ⊆ 𝑉 generates 𝑉. Then 𝑆 contains at least 𝑛 vectors. If furthermore 𝑆 has 

exactly 𝑛 vectors, then 𝑆 is a basis for 𝑉. 

b. Suppose that 𝑆 ⊆ 𝑉 is linearly independent and has 𝑛 vectors. Then it is a basis. 

c. Suppose that 𝑆 ⊆ 𝑉 is linearly independent. Then you can add vectors to 𝑆 to turn it into 

a basis for 𝑉. 

Proof: We will prove parts a) and c) and leave part b) as an exercise (the proof is also written out 

on pages 48 - 49 of the book). 

We start with part a). Suppose that 𝑆 ⊆ 𝑉 generates 𝑉 (i.e. 𝑉 = span 𝑆). First we show that 𝑆 has 

at least 𝑛 vectors. Suppose not! Then 𝑆 has less than 𝑛 vectors. By Corollary 9.38 there exists a 

linearly independent subset 𝑆̃ ⊆ 𝑆 such that span 𝑆̃ = span 𝑆 = 𝑉 and thus 𝑆̃ is a basis for 𝑉. But 

then 𝑆̃ is a basis with number of vectors less than 𝑛 (i.e. the dimension of 𝑉) and hence we have 

contradiction! Next let’s prove that if 𝑆 has exactly 𝑛 vectors, then it is a basis. Suppose not! 

Since 𝑆 spans 𝑉, this means that 𝑆 is not linearly dependent. Again by Corollary 9.38 there exists 

a linearly independent subset 𝑆̃ ⊆ 𝑆 such that span 𝑆̃ = span 𝑆 = 𝑉 and thus 𝑆̃ is a basis for 𝑉 

with less vectors than 𝑛, a contradiction! 

Now let’s prove c). Suppose that 𝑆 ⊆ 𝑉 is linearly independent. Let 𝛽 = {𝑤1, … , 𝑤𝑛} be a basis 

for 𝑉. By the replacement theorem (with 𝐺 = 𝛽 and 𝐻 = 𝑆 in the statement) the number of 

vectors in 𝑆 is smaller than 𝛽, in particular finite, and so we can write it as 

𝑆 = {𝑣1, … , 𝑣𝑚} 

with 𝑚 ≤ 𝑛. The replacement theorem further tells us that we can add a set of (𝑛 − 𝑚) vectors 

𝐿 = {𝑢1, … , 𝑢𝑛−𝑚} ⊆ 𝛽 to 𝑆 to get a new set: 

𝑆 ∪ 𝐿 = {𝑣1, … , 𝑣𝑚, 𝑢1, … , 𝑢𝑛−𝑚} 

that generates 𝑉. Notice that 𝑆 ∪ 𝐿 has no more than 𝑛 vectors (it could potentially have less if it 

has repeats). On the other hand, since 𝑆 ∪ 𝐿 generates 𝑉 part a) says that 𝑆 ∪ 𝐿 must have at least 

𝑛 vectors. Hence 𝑆 ∪ 𝐿 has exactly 𝑛 vectors, which by part a) means that it is a basis. 

∎ 
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• Proposition 9.62: Suppose that 𝑊 is a subspace of a finite-dimensional vector space 𝑉. Then 𝑊 

is also finite dimensional and dim𝑊 ≤ dim𝑉. Furthermore, if dim𝑊 = dim𝑉, then 𝑉 = 𝑊. 

Proof: Let 𝑛 = dim𝑉. If 𝑊 = ∅, then dim𝑊 = 0 ≤ 𝑛 and if dim𝑊 = dim𝑉 then both 𝑊 =

𝑉 = ∅. Now suppose that 𝑊 ≠ ∅. Take any vector 𝑣1 ∈ 𝑊 can consider the linearly independent 

list {𝑣1}. Now keep adding vectors in 𝑊 to this list while still maintaining its linear 

independence until you get 

𝑆 = {𝑣1, … , 𝑣𝑘} ⊆ 𝑊 

after which you can’t add more vectors to it while maintaining its linear independence. This has 

to happen eventually since if you hit 𝑘 = 𝑛, then by Corollary 9.61 b) the above list will be a 

basis of 𝑉 and hence any vector 𝑣 ∈ 𝑊 (and hence 𝑣 ∈ 𝑉) is in the span of the above list and 

hence adding it to the above list will make it linearly dependent by Theorem 9.39. So 𝑘 ≤ 𝑛. 

Next Theorem 9.39 implies that the fact that we can’t add any more vectors to the above list 

while maintaining its linear independence means that every vector in 𝑊 is in the span of the 

above list. Thus 𝑆 is a basis for 𝑊 and so dim𝑊 = 𝑘 ≤ 𝑛. If 𝑘 = 𝑛, then the reasoning at the 

end of the previous paragraph says that 𝑆 is also a basis for 𝑉 and hence span 𝑆 = 𝑉. So 𝑊 = 𝑉. 

∎ 

• Proposition 9.63: Suppose that 𝑊 is a subspace of a finite-dimensional vector space 𝑉. Any 

basis for 𝑊 can be extended to a basis for 𝑉. 

Proof: By Proposition 9.62, 𝑘 = dim𝑊 ≤ dim𝑉 = 𝑛. Hence by Corollary 9.61 c) any basis 

𝛽 = {𝑢1, … , 𝑢𝑘} for 𝑊 can be extended to a basis 𝛽̃ = {𝑢1, … , 𝑢𝑘, 𝑢̃𝑘+1, … , 𝑢̃𝑛} for 𝑉. 

∎ 

10 Linear Maps 

10.1 Definition 

• With this chapter, we finally get to linear algebra: the algebra of linear maps! 

• Definition 10.1: Suppose that 𝑉 and 𝑊 are vector spaces over the same field 𝐹. A function 𝑇 ∶

𝑉 → 𝑊 is called a linear transformation (or linear map) from 𝑉 to 𝑊 if 

1. For any 𝑥, 𝑦 ∈ 𝑉, 𝑇(𝑥 + 𝑦) = 𝑇(𝑥) + 𝑇(𝑦). 

2. For any 𝑥 ∈ 𝑉 and any 𝑐 ∈ 𝑉, 𝑇(𝑐𝑥) = 𝑐𝑇(𝑥). 

Note that 1) and 2) together can be equivalently formulated as saying that for any 𝑥, 𝑦 ∈ 𝑉 and 

any 𝑎, 𝑏 ∈ 𝐹, 

𝑇(𝑎𝑥 + 𝑏𝑦) = 𝑎𝑇(𝑥) + 𝑏𝑇(𝑦). 

• Note 10.2: A few important properties of linear maps that immediately follow from the definition 

are 
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o 𝑇(0) = 0. 

▪ Proof: if you take any vector 𝑥 ∈ 𝑉, 𝑇(0) = 𝑇(0𝑥) = 0𝑇(𝑥) = 0. 

o 𝑇(𝑥 − 𝑦) = 𝑇(𝑥) − 𝑇(𝑦) 

▪ Proof: 𝑇(𝑥 − 𝑦) = 𝑇(𝑥 + (−1)𝑦) = 𝑇(𝑥) + (−1)𝑇(𝑦) = 𝑇(𝑥) − 𝑇(𝑦). 

• Linear maps have had a profound influence on mathematics, both pure and applied. They are 

powerful because they satisfy strong structure. For instance, as we will soon prove, knowing 

their values at just a few points in a finite dimensional vector space can determine them 

completely. This is why we can derive an enormous amount of phenomenon about them, even 

though their definition looks very innocent at first. Hence it is extremely lucky that they appear 

in many applications including computer vision, (partial) differential equations, X-ray 

transforms, smooth maps on differential scales (Math 302), optimization in machine learning, 

etc. Often phenomenon in the real world aren’t linear, but linearity is so desired that people will 

often perform approximations to their models to reduce them to linear ones. You see, linear 

algebra is useful: it’s good that we’re learning it! 

• Example 10.3: The map 𝑇 ∶ ℝ2 → 𝑀2×2(ℝ) given by 

𝑇 (
𝑎1
𝑎2
) = (

𝑎1 2𝑎2
𝑎1 + 𝑎2 0

). 

is linear. To prove this, we check the two properties of linear maps. Checking the first property: 

𝑇 ((
𝑎1
𝑎2
) + (

𝑏1
𝑏2
)) = 𝑇 (

𝑎1 + 𝑎1
𝑎2 + 𝑏2

) = (
𝑎1 + 𝑏1 2(𝑎2 + 𝑏2)

(𝑎1 + 𝑏1) + (𝑎2 + 𝑏2) 0
) 

= (
𝑎1 2𝑎2

𝑎1 + 𝑎2 0
) + (

𝑏1 2𝑏2
𝑏1 + 𝑏2 0

) = 𝑇 (
𝑎1
𝑎2
) + 𝑇 (

𝑏1
𝑏2
). 

We leave checking the second property as an exercise. 

• Example 10.4: The map 
𝑑

𝑑𝑥
∶ {differentiable 𝑓 ∶ ℝ → ℝ} → {𝑓 ∶ ℝ → ℝ} is a linear map since 

𝑑

𝑑𝑥
(ℎ + 𝑔) =

𝑑

𝑑𝑥
(ℎ) +

𝑑

𝑑𝑥
(𝑔), 

𝑑

𝑑𝑥
(𝑐ℎ) = 𝑐

𝑑

𝑑𝑥
(ℎ), 

where ℎ, 𝑔 ∈ {differentiable 𝑓 ∶ ℝ → ℝ} and 𝑐 ∈ ℝ is a constant. 

• Example 10.5: Integration over any interval ∫  
𝑏

𝑎
∶ {continuous 𝑓 ∶ ℝ → ℝ} → ℝ1 is a linear map 

since 

∫(ℎ(𝑥) + 𝑔(𝑥))𝑑𝑥

𝑏

𝑎

= ∫ℎ(𝑥)𝑑𝑥

𝑏

𝑎

+∫𝑔(𝑥)𝑑𝑥

𝑏

𝑎

, 
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∫𝑐ℎ(𝑥)𝑑𝑥

𝑏

𝑎

= 𝑐∫ℎ(𝑥)𝑑𝑥

𝑏

𝑎

 

where ℎ, 𝑔 ∈ {continuous 𝑓 ∶ ℝ → ℝ} and 𝑐 ∈ ℝ is a constant. 

• Example 10.6: A linear function 𝑓 ∶ ℝ1 → ℝ1 given by 𝑓(𝑥) = 𝑚𝑥 + 𝑏 is only linear if and only 

if 𝑏 = 0 (Exercise). 

• Two famous linear transformations that you should know: 

• Definition 10.7: Suppose that 𝑉 and 𝑊 are vector spaces over the same field 𝐹. The identity 

transformation 𝐼𝑉 ∶ 𝑉 → 𝑉 is the linear map given by 

𝐼𝑉(𝑥) = 𝑥. 

The zero transformation 𝑇0 ∶ 𝑉 → 𝑊 is the linear map given by 

𝑇0(𝑥) = 0. 

It’s a very quick exercise to check that these two are indeed linear maps. 

• Definition 10.8: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear transformation. The null space (or kernel) 

of 𝑇 is the set of all vectors that 𝑇 sends to zero: 

𝑁(𝑇) = {𝑥 ∈ 𝑉 ∶ 𝑇(𝑥) = 0} ⊆ 𝑉. 

The range (or image) of 𝑇 is the set of all vectors that 𝑇 can map to: 

𝑅(𝑇) = {𝑇(𝑥) ∶ 𝑥 ∈ 𝑉} = {𝑦 ∈ 𝑊 ∶ ∃𝑥 ∈ 𝑉 such that 𝑦 = 𝑇(𝑥)} ⊆ 𝑊. 

• One of the purposes of the null space and range is to determine if 𝑓 has an inverse and if so what 

type (c.f. Theorem 7.8). The role of range for this purpose is clear. The role of null space is not 

so clear at the moment, but will follow once we prove the amazing fact that a linear map is 

injective if and only if its kernel consists of just the zero vector. 

• Example 10.9: Consider the projection map 𝑃 ∶ ℝ3 → ℝ3 given by 

𝑃 (

𝑎1
𝑎2
𝑎3

) = (
𝑎1
𝑎2
0
). 

Visually, this map projects all points in ℝ3 perpendicularly onto the 𝑥, 𝑦 plane. Here the null 

space of 𝑃 is the 𝑧 axis and the range is the 𝑥, 𝑦 plane: 

𝑁(𝑃) = {(
0
0
𝑎3

) ∶ 𝑎3 ∈ ℝ}           𝑅(𝑃) = {(
𝑎1
𝑎2
0
) ∶ 𝑎1, 𝑎2 ∈ ℝ}. 

Notice that both 𝑁(𝑃) and 𝑅(𝑃) are subspaces. Furthermore, dim𝑁(𝑃) + dim𝑅(𝑃) = dimℝ3. 
We will prove that this holds more generally! We start with the first of these: 
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• Theorem 10.10: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear transformation. Then 𝑁(𝑇) is a subspace of 

𝑉 and 𝑅(𝑇) is a subspace of 𝑊. 

Proof: We first show that 𝑅(𝑇) is a subspace of 𝑊. Checking the three properties: 

1. As we observed in Note 10.2, 𝑇(0) = 0 and so 0 ∈ 𝑅(𝑇). 

2. Suppose 𝑥, 𝑦 ∈ 𝑅(𝑇). Then there exist 𝑣,𝑤 ∈ 𝑉 such that 𝑥 = 𝑇(𝑣) and 𝑦 = 𝑇(𝑤). Thus 

𝑥 + 𝑦 = 𝑇(𝑣) + 𝑇(𝑤) = 𝑇(𝑣 + 𝑤) 

and so (𝑥 + 𝑦) ∈ 𝑅(𝑇). 

3. Suppose that 𝑥 ∈ 𝑅(𝑇) and 𝑐 ∈ 𝐹. Then there exists 𝑣 ∈ 𝑉 such that 𝑥 = 𝑇(𝑣). Thus 

𝑐𝑥 = 𝑐𝑇(𝑣) = 𝑇(𝑐𝑣) 

and so 𝑐𝑥 ∈ 𝑅(𝑇). 

The claim regarding 𝑁(𝑇) is left as an exercise (it’s easier than 𝑅(𝑇)). 

∎ 

• Proposition 10.11: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear map and that 𝛽 = {𝑣1, … , 𝑣𝑚} is a basis 

for 𝑉. Then 

𝑅(𝑇) = span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)} = span{𝑇(𝛽)}⏟      
new notation

. 

Proof: First let’s show that 𝑅(𝑇) ⊆ span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)}. Take any 𝑥 ∈ 𝑅(𝑇). Then there 

exists 𝑣 ∈ 𝑉 such that 𝑥 = 𝑇(𝑣). Since 𝛽 = {𝑣1, … , 𝑣𝑚} is a basis for 𝑉, we can write 

𝑣 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 

for some 𝑎1, … , 𝑎𝑚 ∈ 𝐹. Applying 𝑇 to both sides of this equation gives 

𝑥 = 𝑇(𝑣) = 𝑇(𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚) = 𝑎1𝑇(𝑣1) + ⋯+ 𝑎𝑚𝑇(𝑣𝑚) 

and so 𝑥 ∈ span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)}. Thus indeed 𝑅(𝑇) ⊆ span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)}. 

Now let’s show that span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)} ⊆ 𝑅(𝑇). Take any 𝑥 ∈ span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)}. By 

definition of span, 

𝑥 = 𝑎1𝑇(𝑣1) + ⋯+ 𝑎𝑚𝑇(𝑣𝑚) 

for some 𝑎1, … , 𝑎𝑚 ∈ 𝐹. Notice that by the linearity of 𝑇, the above equation can be rewritten as 

𝑥 = 𝑇(𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚) 

and so 𝑥 ∈ 𝑅(𝑇). Thus indeed span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)} ⊆ 𝑅(𝑇). This proves the theorem. 

∎ 
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• Definition 10.12: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear map. If 𝑁(𝑇) is finite dimensional, we 

define the nullity of 𝑇 to be the dimension of 𝑁(𝑇): 

nullity(𝑇) = dim𝑁(𝑇). 

If 𝑅(𝑇) is finite dimensional, we define the rank of 𝑇 to be the dimension of 𝑅(𝑇): 

rank𝑇 = dim𝑅(𝑇). 

• Theorem 10.13: (Dimension Theorem) Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear map and that 𝑉 is 

finite dimensional. Then both 𝑁(𝑇) and 𝑅(𝑇) are finite dimensional and 

(10. 14)                                            nullity(𝑇) + rank(𝑇) = dim𝑉. 

Proof: By Theorem 10.10 we have that 𝑁(𝑇) is a subspace of 𝑉. Since 𝑉 is finite dimensional, 

by Proposition 9.62 we get that 𝑁(𝑇) is indeed finite dimensional. Next let’s prove that 𝑅(𝑇) is 

finite dimensional. We will do this by constructing a finite basis for it. 

Let {𝑢1, … , 𝑢𝑚} be a basis for 𝑁(𝑇), which observe implies that dim𝑁(𝑇) = 𝑚. By Proposition 

9.63 we can add vectors {𝑣1, … , 𝑣𝑘} to this to get a basis {𝑢1, … , 𝑢𝑚, 𝑣1, … , 𝑣𝑘} for all of 𝑉, 

which note implies that dim𝑉 = 𝑚 + 𝑘. We claim that 

(10. 15)                                                        {𝑇(𝑣1), … , 𝑇(𝑣𝑘)} 

is a basis for 𝑅(𝑇), which observe implies that dim𝑅(𝑇) = 𝑘. Not only will this prove that 𝑅(𝑇) 

is indeed finite dimensional, but this will also automatically prove (10.14) since then 

nullity(𝑇) + rank(𝑇) = dim𝑁(𝑇) + dim𝑅(𝑇) = 𝑚 + 𝑘 = dim𝑉. 

So let us prove that (10.15) is a basis for 𝑅(𝑇). First let’s show that (10.15) spans 𝑅(𝑇). Take 

any vector 𝑤 ∈ 𝑅(𝑇), we will show that 𝑤 is in the span of (10.15). Since 𝑤 ∈ 𝑅(𝑇), there 

exists 𝑥 ∈ 𝑉 such that 𝑤 = 𝑇(𝑥). Since {𝑢1, … , 𝑢𝑚, 𝑣1, … , 𝑣𝑘} is a basis for 𝑉, 

𝑥 = 𝑎1𝑢1 +⋯+ 𝑎𝑚𝑢𝑚 + 𝑏1𝑣1 +⋯+ 𝑏𝑘𝑣𝑘 

for some 𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑘 ∈ 𝐹. Applying 𝑇 to both sides gives 

𝑤 = 𝑇(𝑥) = 𝑏1𝑇(𝑣1) + ⋯+ 𝑏𝑘𝑇(𝑣𝑘) 

where we’ve used that each 𝑇(𝑢𝑖) = 0 since each 𝑢𝑖 ∈ 𝑁(𝑇). This shows that indeed 𝑤 is in the 

span of (10.15). 

Next let’s show that (10.15) is linearly independent and hence a basis for 𝑅(𝑇). Suppose 

𝑐1𝑇(𝑣1) + ⋯+ 𝑐𝑘𝑇(𝑣𝑘) = 0. 

We need to show that each 𝑐𝑘 = 0. Using the linearity of 𝑇 on the left-hand side gives 

𝑇(𝑐1𝑣1 +⋯+ 𝑐𝑘𝑣𝑘) = 0. 

Hence 𝑐1𝑣1 +⋯+ 𝑐𝑘𝑣𝑘 is in the null space of 𝑇 (i.e. in 𝑁(𝑇)). Since {𝑢1, … , 𝑢𝑚} is a basis for 

𝑁(𝑇), 
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𝑐1𝑣1 +⋯+ 𝑐𝑘𝑣𝑘 = 𝑎1𝑢1 +⋯+ 𝑎𝑚𝑢𝑚 

for some 𝑎1, … , 𝑎𝑚 ∈ 𝐹. Taking the right-hand side to the left-hand side gives 

𝑐1𝑣1 +⋯+ 𝑐𝑘𝑣𝑘 − 𝑎1𝑢1 −⋯− 𝑎𝑚𝑢𝑚 = 0. 

Recall that {𝑢1, … , 𝑢𝑚, 𝑣1, … , 𝑣𝑘} is a basis for 𝑉 and hence is linearly independent, and the 

above is a linear combination of these vectors equal to zero. Hence every coefficient above must 

be zero, and in particular each 𝑐𝑖 = 0. As discussed above, this proves the theorem. 

∎ 

• Now we are ready to discuss the relationship between the null space and range of a linear map 

and its injectivity and surjectivity, which will play a central role in the study of the existence of 

inverses later. 

• Theorem 10.16: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear map. Then 𝑇 is injective if and only if 

𝑁(𝑇) = {0}. 

Proof: First suppose that 𝑇 is injective. Since 𝑇 is linear, we know that 𝑇(0) = 0. Since 𝑇 is 

injective 0 can be the only vector that gets sent to 0 by T. Hence 𝑁(𝑇) = {0}. 

Now suppose that 𝑁(𝑇) = {0}. Then 

𝑇(𝑥) = 𝑇(𝑦)      ⟺      𝑇(𝑥) − 𝑇(𝑦) = 0     ⟺      𝑇(𝑥 − 𝑦) = 0     ⟺ 

(𝑥 − 𝑦) ∈ 𝑁(𝑇) = {0}      ⟺      𝑥 − 𝑦 = 0     ⟺      𝑥 = 𝑦. 

and hence 𝑇 is injective. Don’t write proofs like this on the homework, write them out using 

words! 

∎ 

• As the following theorem illustrates, the magic power of the dimension theorem is that 

injectivity of a linear map can give you information about its range and vice versa. This is due to 

the strong structure requirements that linear maps satisfy, and is not at all true for general maps. 

• Theorem 10.17: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear map where 𝑉 and 𝑊 are finite dimensional 

vector spaces with the same dimension: 

dim𝑉 = dim𝑊. 

Then the following are equivalent: 

1. 𝑇 is injective. 

2. 𝑇 is surjective. 

3. rank 𝑇 = dim𝑉. 

Proof: 
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𝑇 is injective    
𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟎.𝟏𝟔
⇔               𝑁(𝑇) = {0}      ⟺     nullity(𝑇) = 0 

Dimension theorem

⇔               dim𝑉 − rank𝑇 = 0     ⟺      rank 𝑇 = dim𝑉 = dim𝑊 

⟺     dim𝑅(𝑇) = dim𝑊     
𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟗.𝟔𝟐
⇔                𝑅(𝑇) = 𝑊     ⟺      𝑇 is surjective. 

Again, don’t write proofs like this on the homework: use words! 

 ∎ 

• Example 10.18: Consider the linear map 𝑇 ∶ ℝ3 → ℝ3 given by 

𝑇 (
𝑎
𝑏

𝑐
) = (

𝑎 + 𝑏 + 𝑐
2𝑏 + 4𝑐

𝑏 + 2𝑐
). 

What is rank𝑇 (i.e. dim𝑅(𝑇))? Computing range is typically not easy (we’ll learn how to do it), 

so what we can instead do is compute 𝑁(𝑇) and apply the dimension theorem. Let’s solve for all 

vectors (𝑎, 𝑏, 𝑐) that get sent to 0 by 𝑇 (i.e. compute all vectors in 𝑁(𝑇)). Setting the above 

equation to zero to gives the three following systems of three equations: 

𝑎 + 𝑏 + 𝑐 = 0, 

2𝑏 + 4𝑐 = 0, 

𝑏 + 2𝑐 = 0. 

The last equation tells us that 𝑏 = −2𝑐. Plugging this into the second equation gives 2(−2𝑐) +

4𝑐 = 0𝑐 = 0, an equation that is satisfied automatically! Plugging 𝑏 = −2𝑐 into the first 

equation gives 𝑎 + (−2𝑐) + 𝑐 = 0 and so 𝑎 = 𝑐. In other words, for any choice of 𝑐, the above 

system will be satisfied if 𝑎 = 𝑐 and 𝑏 = −2𝑐 and on the other hand every solution to the above 

system will be of this form. Hence 

𝑁(𝑇) = {(
𝑐
−2𝑐

𝑐
) ∶ 𝑐 ∈ ℝ} = {𝑐 (

1
−2

1
) ∶ 𝑐 ∈ ℝ}. 

In other words, (1, −2,1) is a basis for 𝑁(𝑇) and so dim𝑁(𝑇) = nullity(𝑇) = 1. Thus by the 

dimension theorem, rank𝑇 = dimℝ3 − nullity(𝑇) = 3 − 1 = 2. 

• Theorem 10.19: Suppose that 𝑉 and 𝑊 are vector spaces and that {𝑣1, … , 𝑣𝑚} is a basis for 𝑉 (in 

particular 𝑉 is finite dimensional). For any vectors 𝑤1, … , 𝑤𝑛 ∈ 𝑊 there exists a unique linear 

map 𝑇 ∶ 𝑉 → 𝑊 such that each 

(10. 20)                                                              𝑤𝑖 = 𝑇(𝑣𝑖). 

Proof: First let’s show that such a map 𝑇 exists. Take any vector 𝑥 ∈ 𝑉, write it as 

𝑥 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 
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for some unique 𝑎1, … , 𝑎𝑚 ∈ 𝐹 (possible since {𝑣1, … , 𝑣𝑚} is a basis for 𝑉, c.f. Theorem 9.45), 

and define 

(10. 21)                                               𝑇(𝑥) = 𝑎1𝑤1 +⋯+ 𝑎𝑚𝑤𝑚. 

This is a good guess for how to define 𝑇 considering that we want it to be linear and we know 

that (10.20) holds by assumption. First let’s check that 𝑇 is linear. Take any 𝑎, 𝑏 ∈ 𝐹 and any 

𝑥 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 and 𝑦 = 𝑏1𝑣1 +⋯+ 𝑏𝑚𝑣𝑚 written in the above form and observe that 

𝑇(𝑎𝑥 + 𝑏𝑦) = 𝑇(𝑎(𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚) + 𝑏(𝑏1𝑣1 +⋯+ 𝑏𝑚𝑣𝑚)) 

= 𝑇((𝑎𝑎1 + 𝑏𝑏1)𝑣1 +⋯+ (𝑎𝑎𝑚 + 𝑏𝑏𝑚)𝑣𝑚) = (𝑎𝑎1 + 𝑏𝑏1)𝑤1 +⋯+ (𝑎𝑎𝑚 + 𝑏𝑏𝑚)𝑤𝑚 

= 𝑎(𝑎1𝑤1 +⋯+ 𝑎𝑚𝑤𝑚) + 𝑏(𝑏1𝑤1 +⋯+ 𝑏𝑚𝑤𝑚) = 𝑎𝑇(𝑥) + 𝑏𝑇(𝑦). 

Next, observe that if we set 𝑥 = 𝑣𝑖 then by (10.21) we get the desired property 𝑇(𝑣𝑖) = 𝑤𝑖. So 

this 𝑇 satisfies the conclusions of the theorem. We just have to show that it is unique! 

Suppose that 𝑇̂ ∶ 𝑉 → 𝑊 was another linear map that also satisfies (10.20). We need to show 

that 𝑇 = 𝑇̂. Take any 𝑥 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚 written in the above form and observe that since 

both 𝑇 and 𝑇̃ satisfy (10.20), 

𝑇(𝑥) = 𝑇(𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚) = 𝑎1𝑇(𝑣1) + ⋯+ 𝑎𝑚𝑇(𝑣𝑚) = 𝑎1𝑤1 +⋯+ 𝑎𝑚𝑤𝑚, 

𝑇̂(𝑥) = 𝑇̂(𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚) = 𝑎1𝑇̂(𝑣1) + ⋯+ 𝑎𝑚𝑇̂(𝑣𝑚) = 𝑎1𝑤1 +⋯+ 𝑎𝑚𝑤𝑚. 

So 𝑇(𝑥) = 𝑇̂(𝑥) for any 𝑥 ∈ 𝑉. Hence indeed 𝑇 = 𝑇̂. 

∎ 

• The above theorem conveys the important principle that knowing the values of a linear map over 

a finite dimensional vector space at just a few points, in particular on a basis, is enough to 

determine its value everywhere. This is due to the stringent structure that linear maps satisfy. The 

following corollary is another way to state this precisely: 

• Corollary 10.22: Suppose that 𝑉 and 𝑊 are vector space and that 𝛽 = {𝑣1, … , 𝑣𝑚} is a basis for 

𝑉 (in particular 𝑉 is finite dimensional). If two linear maps 𝑇, 𝐿 ∶ 𝑉 → 𝑊 agree on 𝛽 (i.e. each 

𝑇(𝑣𝑖) = 𝐿(𝑣𝑖)) then 𝑇 and 𝐿 agree everywhere (i.e. 𝑇(𝑥) = 𝐿(𝑥) for all 𝑥 ∈ 𝑉). 

Proof: By the previous theorem, there is a unique linear map 𝑇̂ that has values 𝑇(𝑣𝑖) = 𝐿(𝑣𝑖) at 

each 𝑣𝑖, in particular that linear map is 𝑇 and 𝐿 (i.e. 𝑇̂ = 𝑇 = 𝐿). 

∎ 

10.2 Matrix Representations 

• We’ve developed a substantial theory of linear maps. However the abstract form that we have at 

the moment doesn’t lend itself naturally to computation. Matrices were invented for this exact 

purpose, which we now study. First we need a preliminary definition. 
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• Definition 10.23: Suppose that 𝑉 is a finite dimensional vector space. An ordered basis 𝛽 =
{𝑣1, 𝑣2, … , 𝑣𝑚} for 𝑉 is a basis where we declare that 𝑣1 is the first vector, 𝑣2 is the second 

vector, 𝑣3 is the third vector, and so on. In other words, 𝛽 isn’t just a set of vectors, but we also 

assign an order to the list of vectors. There’s a subtle difference! 

• Example 10.24: The list 

{
  
 

  
 

(

 
 

1
0
0
⋮
0)

 
 

⏟
𝑒1

,

(

 
 

0
1
0
⋮
0)

 
 

⏟
𝑒2

,

(

 
 

0
0
1
⋮
0)

 
 

⏟
𝑒3

, … ,

(

 
 

0
0
0
⋮
1)

 
 

⏟
𝑒𝑚 }
  
 

  
 

 

is called the standard ordered basis for ℝ𝑚. Note that if we consider the ordered bases 𝛽 =
{𝑒1, 𝑒2, 𝑒3} and 𝛾 = {𝑒2, 𝑒1, 𝑒3} of ℝ3, 𝛽 ≠ 𝛾. 

• Example 10.25: The list {1, 𝑥, 𝑥2, … , 𝑥𝑛} is the standard ordered basis for 𝑃𝑛(𝐹). 

• Note 10.26: Suppose that we have a linear map 𝑇 ∶ 𝑉 → 𝑊 between two finite dimensional 

vector spaces. Let 𝛽 = {𝑣1, … , 𝑣𝑚} and 𝛾 = {𝑤1, … , 𝑤𝑛} be ordered basis for 𝑉 and 𝑊 

respectively. Take any vector 𝑥 ∈ 𝑉 which we can write uniquely as 

(10. 27)                                                   𝑥 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚. 

Instead of doing algebra on the clunky notation on the right-hand side, we can neatly and 

uniquely represent the right-hand side in matrix notation: 

[𝑥]𝛽 = (

𝑎1
𝑎2
⋮

𝑎𝑚

). 

For this reason 𝑚 × 1 matrices are also often referred to as a “column vectors.” The brackets 

“[   ]𝛽” around 𝑥 remind us that this is only a representation of 𝑥 and that it highly depends on 

which ordered basis 𝛽 we choose (i.e. if you change the 𝛽, the representation on the right-hand 

side changes). 

Now let’s look into representing 𝑇. Applying 𝑇 to both sides of (10.27) gives 

(10. 28)                                         𝑇(𝑥) = 𝑎1𝑇(𝑣1) + ⋯+ 𝑎𝑚𝑇(𝑣𝑚). 

We can write each 𝑇(𝑣𝑗) uniquely as 

𝑇(𝑣𝑗) = 𝑏1,𝑗𝑤1 +⋯+ 𝑏𝑛,𝑗𝑤𝑛. 

Plugging this into (10.28) gives 

𝑇(𝑥) = 𝑎1(𝑏1,1𝑤1 +⋯+ 𝑏𝑛,1𝑤𝑛) + ⋯+ 𝑎𝑚(𝑏1,𝑚𝑤1 +⋯+ 𝑏𝑛,𝑚𝑤𝑛) 
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= (𝑏1,1𝑎1 +⋯+ 𝑏1,𝑚𝑎𝑚)𝑤1 

+(𝑏2,1𝑎1 +⋯+ 𝑏2,𝑚𝑎𝑚)𝑤2 

⋮ 

+(𝑏𝑛,1𝑎1 +⋯+ 𝑏𝑛,𝑚𝑎𝑚)𝑤𝑛 

and so 

(10. 29)                                        [𝑇(𝑥)]𝛾 = (

𝑏1,1𝑎1 +⋯+ 𝑏1,𝑚𝑎𝑚
𝑏2,1𝑎1 +⋯+ 𝑏2,𝑚𝑎𝑚

⋮
𝑏𝑛,1𝑎1 +⋯+ 𝑏𝑛,𝑚𝑎𝑚

) 

From here we see that knowledge of the 𝑏𝑖,𝑗’s completely determine 𝑇(𝑥) for any 𝑥 ∈ 𝑉, and the 

other way around as well. This is a special case of Theorem 10.19. So we can neatly and 

uniquely represent 𝑇 in the ordered bases 𝛽 and 𝛾 as the 𝑛 ×𝑚 matrix 

[𝑇]𝛽
𝛾
= (

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋱ ⋮

𝑏𝑛,1 ⋯ 𝑏𝑛,𝑚

). 

If 𝑉 = 𝑊 and 𝛽 = 𝛾, we simply write [𝑇]𝛽. 

In fact, by (10.29) we see that we can easily compute [𝑇(𝑥)]𝛾 from [𝑇]𝛽
𝛾

 and [𝑥]𝛽 by 

multiplying entries of the rows of [𝑇]𝛽
𝛾

 by the entries of [𝑥]𝛽, adding the results and placing this 

into each row. This defines matrix-vector multiplication: 

 

This may look like a neat notational trick, but this is the power of matrices: they allow us to 

efficiently compute operations with linear maps! They will play an even more essential role 

when we consider compositions. 

We also make the remark that if you fix a matrix 𝐴, then multiplying it by a column vector as 

above is a linear map on column vectors (i.e. taking 𝑣 and outputting 𝐴𝑣 is a linear map). You 

will prove this on the homework. 

• Example 10.30: Consider the linear map 𝑇 ∶ 𝑃2(ℝ) → 𝑃3(ℝ) given by 

𝑇(𝑎𝑥2 + 𝑏𝑥 + 𝑐) = ∫(𝑎𝑠2 + 𝑏𝑠 + 𝑐)𝑑𝑠

𝑥

0

=
𝑎

3
𝑠3 +

𝑏

2
𝑠2 + 𝑐𝑠 + 0. 
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Using the standard ordered basis 𝛽1 = {1, 𝑥, 𝑥
2} and 𝛽2 = {1, 𝑥, 𝑥

2, 𝑥3} for 𝑃2(ℝ) and 𝑃3(ℝ) 
respectively, we have the representations 

[𝑎𝑥2 + 𝑏𝑥 + 𝑐]𝛽1 = (
𝑐
𝑏

𝑎
), 

[𝑎̃𝑥3 + 𝑏̃𝑥2 + 𝑐̃𝑥 + 𝑑̃]
𝛽2
= (

𝑑̃
𝑐̃

𝑏̃
𝑎̃

), 

[𝑇]𝛽1
𝛽2 = (

0 0 0

1 0 0

0 1 2⁄ 0

0 0 1 3⁄

), 

since observe that 

[𝑇(𝑎𝑥2 + 𝑏𝑥 + 𝑐)]𝛽2 = (

0 0 0

1 0 0

0 1 2⁄ 0

0 0 1 3⁄

)(
𝑐
𝑏

𝑎
) = (

0𝑐 + 0𝑏 + 0𝑎
1𝑐 + 0𝑏 + 0𝑎

0𝑐 + (1 2⁄ )𝑏 + 0𝑎
0𝑐 + 0𝑏 + (1 3⁄ )𝑎

) = (

0
𝑐

𝑏 2⁄

𝑎 3⁄

). 

• Note 10.31: There are two special matrix representations that you should be aware of. Suppose 

that 𝑉 and 𝑊 are vector spaces over the same field and that 𝛽 and 𝛾 are ordered bases for them 

respectively. Then the matrix representation of the zero map 𝑇0 ∶ 𝑉 → 𝑊 and the identity map 

𝐼𝑉 ∶ 𝑉 → 𝑉 are given by 

[𝑇0]𝛽
𝛾
= (

0 0 ⋯ 0
0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

)      and     [𝐼𝑉]𝛽 = (

1 0 ⋯ 0
0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

). 

The second matrix is called the 𝑛 × 𝑛 identity matrix. 

10.3 Vector Space of Linear Maps 

• Linear maps themselves in fact form vector spaces, a fact that finds many important applications. 

Let’s build towards this concept. 

• Definition 10.32: Suppose that 𝑇, 𝐿 ∶ 𝑉 → 𝑊 are linear maps and that 𝑐 ∈ 𝐹. Then we define the 

sum 𝑇 + 𝐿 ∶ 𝑉 → 𝑊 and the scalar multiplication 𝑐𝑇 ∶ 𝑉 → 𝑊 as the linear maps given by 

(𝑇 + 𝐿)(𝑥) = 𝑇(𝑥) + 𝐿(𝑥)     and     (𝑐𝑇)(𝑥) = 𝑐[𝑇(𝑥)],          ∀𝑥 ∈ 𝑉.             

• The above definition shouldn’t seem strange: it’s just addition and scaling of functions. You most 

likely saw similar things in calculus, though you may not have written it down rigorously as 

above. 

• Theorem 10.33: Suppose that 𝑇, 𝐿 ∶ 𝑉 → 𝑊 are linear maps and that 𝑐 ∈ 𝐹. Then both 
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𝑇 + 𝐿 ∶ 𝑉 → 𝑊     and     𝑐𝑇 ∶ 𝑉 → 𝑉 

are linear. 

Proof: Let’s show that 𝑇 + 𝐿 is linear, 𝑎𝑇 is left as an exercise (it’s easier). For any 𝑥, 𝑦 ∈ 𝑉 and 

𝑎, 𝑏 ∈ 𝐹 we have that 

(𝑇 + 𝐿)(𝑎𝑥 + 𝑏𝑦) = 𝑇(𝑎𝑥 + 𝑏𝑦) + 𝐿(𝑎𝑥 + 𝑏𝑦) = 𝑎𝑇(𝑥) + 𝑏𝑇(𝑦) + 𝑎𝐿(𝑥) + 𝑏𝐿(𝑦) 

= 𝑎[𝑇(𝑥) + 𝐿(𝑥)] + 𝑏[𝑇(𝑦) + 𝐿(𝑦)] = 𝑎(𝑇 + 𝐿)(𝑥) + 𝑏(𝑇 + 𝐿)(𝑦). 

Hence indeed 𝑇 + 𝐿 is linear. 

∎ 

• Definition 10.34: Suppose that 𝑉 and 𝑊 are vector spaces over the same field. We denote the set 

of all linear maps from 𝑉 to 𝑊 by ℒ(𝑉,𝑊). The set ℒ(𝑉,𝑊) is a vector space with the addition 

and scalar multiplication as defined in Definition 10.32 where the zero “vector” is the zero map 

𝑇0 ∶ 𝑉 → 𝑊. If 𝑉 = 𝑊, then we simply write ℒ(𝑉). 

• Fortunately, matrix representations behave very naturally under addition and scalar 

multiplication of both vectors and linear maps. This is the content of the following theorem: 

• Theorem 10.35: Suppose that 𝑉 and 𝑊 are vector spaces over the same field 𝐹 and that 𝛽 and 𝛾 

are ordered bases for 𝑉 and 𝑊 respectively. Then 

a) If 𝑥, 𝑦 ∈ 𝑉 and 𝑎 ∈ 𝐹, then 

[𝑥 + 𝑦]𝛽 = [𝑥]𝛽 + [𝑦]𝛽     and     [𝑎𝑥]𝛽 = 𝑎[𝑥]𝛽 . 

b) If 𝑇, 𝐿 ∶ 𝑉 → 𝑊 are linear maps and 𝑎 ∈ 𝐹, then 

[𝑇 + 𝐿]𝛽
𝛾
= [𝑇]𝛽

𝛾
+ [𝐿]𝛽

𝛾
     and     [𝑎𝑇]𝛽

𝛾
= 𝑎[𝑇]𝛽

𝛾
. 

Proof: Let 𝛽 = {𝑣1, … , 𝑣𝑚} and 𝛾 = {𝑤1, … , 𝑤𝑛}. First let’s prove a). Take any 𝑥, 𝑦 ∈ 𝑉. As in 

Note 10.26, we can write 

𝑥 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚     and     𝑦 = 𝑎̂1𝑣1 +⋯+ 𝑎̂𝑚𝑣𝑚 

                                 ⟹      𝑥 + 𝑦 = (𝑎1 + 𝑎̂1)𝑣1 +⋯+ (𝑎𝑚 + 𝑎̂𝑚)𝑣𝑚 

                                     ⟹     [𝑥 + 𝑦]𝛽 = (
𝑎1 + 𝑎̂1
⋮

𝑎𝑚 + 𝑎̂𝑚

) = [𝑥]𝛽 + [𝑦]𝛽. 

The second equation in a) is left as an exercise. Now let’s prove b). Take any linear maps 𝑇, 𝐿 ∶

𝑉 → 𝑊. We have that 

𝑇(𝑥) = (𝑏1,1𝑎1 +⋯+ 𝑏1,𝑚𝑎𝑚)𝑤1
 ⋮
 +(𝑏𝑛,1𝑎1 +⋯+ 𝑏𝑛,𝑚𝑎𝑚)𝑤𝑛

     and     
𝐿(𝑥) = (𝑏̂1,1𝑎1 +⋯+ 𝑏̂1,𝑚𝑎𝑚)𝑤1
 ⋮
 +(𝑏̂𝑛,1𝑎1 +⋯+ 𝑏̂𝑛,𝑚𝑎𝑚)𝑤𝑛
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                   ⟹     
𝑇(𝑥) + 𝐿(𝑥) = [(𝑏1,1 + 𝑏̂1,1)𝑎1 +⋯+ (𝑏1,𝑚 + 𝑏̂1,𝑚)𝑎𝑚]𝑤1

 ⋮
 +[(𝑏𝑛,1 + 𝑏̂𝑛,1)𝑎1 +⋯+ (𝑏𝑛,𝑚 + 𝑏̂𝑛,𝑚)𝑎𝑚]𝑤𝑛

 

                     ⟹      [𝑇 + 𝐿]𝛽
𝛾
= (

𝑏1,1 + 𝑏̂1,1 ⋯ 𝑏1,𝑚 + 𝑏̂1,𝑚
⋮ ⋱ ⋮

𝑏𝑛,1 + 𝑏̂𝑛,1 ⋯ 𝑏𝑛,𝑚 + 𝑏̂𝑛,𝑚

) = [𝑇]𝛽
𝛾
+ [𝐿]𝛽

𝛾
. 

The second equation in b) is left as an exercise. 

10.4 Composition of Linear Maps 

• An important operation of linear maps it to compose them. This for instance appears when you 

want to perform one rotation, and then another! 

• Note 10.36: For linear maps 𝑇 and 𝐿, we will typically write 𝐿𝑇 for their composition instead of 

the clunkier 𝐿 ∘ 𝑇. As we’ll soon see, this is more than just another shorthand. This notation is 

introduced because this notation aligns nicely with the fact that in the matrix representation 

world, composition of linear maps will be associated to matrix multiplication. 

• Theorem 10.37: Suppose that 𝑇 ∶ 𝑉 → 𝑊 and 𝐿 ∶ 𝑊 → 𝑍 are linear maps. The composition 𝐿𝑇 ∶

𝑉 → 𝑍 is also linear. 

Proof: Take any vectors 𝑥, 𝑦 ∈ 𝑉 and any 𝑎, 𝑏 ∈ 𝐹. Then 

𝐿𝑇(𝑎𝑥 + 𝑏𝑦) =  𝐿(𝑇(𝑎𝑥 + 𝑏𝑦)) = 𝐿(𝑎𝑇(𝑥) + 𝑎𝑇(𝑦)) = 𝑎𝐿(𝑇(𝑥)) + 𝑏𝐿(𝑇(𝑦)) 

= 𝑎(𝐿𝑇)(𝑥) + 𝑏(𝐿𝑇)(𝑦). 

Hence 𝐿𝑇 is indeed linear. 

∎ 

• Some trivial but important properties to be aware of: 

• Theorem 10.38: The following are true: 

a) If 𝐿, 𝑈 ∈ ℒ(𝑉,𝑊) and 𝑇 ∈ ℒ(𝑊, 𝑍) then  

𝑇(𝐿 + 𝑈) = 𝑇𝐿 + 𝑇𝑈. 

If 𝑇 ∈ ℒ(𝑉,𝑊) and 𝐿, 𝑈 ∈ ℒ(𝑊, 𝑍) then 

(𝐿 + 𝑈)𝑇 = 𝐿𝑇 + 𝑈𝑇. 

b) If 𝑈 ∈ ℒ(𝑉,𝑊), 𝐿 ∈ ℒ(𝑊, 𝑍), and 𝑇 ∈ ℒ(𝑍, 𝑌), then 

(𝑇𝐿)𝑈 = 𝑇(𝐿𝑈). 

c) If 𝑇 ∈ ℒ(𝑉,𝑊), then 

𝑇𝐼𝑉 = 𝐼𝑊𝑇 = 𝑇, 
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d) If 𝐿 ∈ ℒ(𝑉,𝑊) and 𝑇 ∈ ℒ(𝑊, 𝑍), then 

𝑎(𝑇𝐿) = (𝑎𝑇)𝐿 = 𝑇(𝑎𝐿). 

Proof: Left as an exercise. Parts a) and d) are a quick calculation, and the rest are just arguments 

about where points get mapped to (draw diagrams for b) and c) to help visualize them). ∎ 

• Note 10.39: Let’s now compute the matrix representation of compositions of linear maps. 

Suppose that 𝑇 ∶ 𝑉 → 𝑊 and 𝐿 ∶ 𝑊 → 𝑍 are linear maps and that 

𝛽 = {𝑣1, … , 𝑣𝑚}     and     𝛾 = {𝑤1, … , 𝑤𝑛}     and     𝛿 = {𝑧1, … , 𝑧𝑘} 

are ordered bases of 𝑉,𝑊, 𝑍 respectively. Take any vector 𝑥 = 𝑎1𝑣1 +⋯+ 𝑎𝑚𝑣𝑚. Recall from 

Note 10.26 that representing 𝑇 as 

[𝑇]𝛽
𝛾
= (

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋱ ⋮

𝑏𝑛,1 ⋯ 𝑏𝑛,𝑚

) 

             ⟹      𝑇(𝑥) = (𝑏1,1𝑎1 +⋯+ 𝑏1,𝑚𝑎𝑚)𝑤1 +⋯+ (𝑏𝑛,1𝑎1 +⋯+ 𝑏𝑛,𝑚𝑎𝑚)𝑤𝑛. 

Similarly, taking any vector 𝑦 = 𝑐1𝑤1 +⋯+ 𝑐𝑛𝑤𝑛 and representing 𝐿 as 

[𝐿]𝛾
𝛿 = (

𝑏̂1,1 ⋯ 𝑏̂1,𝑛
⋮ ⋱ ⋮

𝑏̂𝑘,1 ⋯ 𝑏𝑘,𝑛

) 

                                            ⟹      [𝐿(𝑦)]𝛿 = (
𝑏̂1,1𝑐1 +⋯+ 𝑏̂1,𝑛𝑐𝑛

⋮

𝑏̂𝑘,1𝑐1 +⋯+ 𝑏̂𝑘,𝑛𝑐𝑛

). 

Plugging in 𝑦 = 𝑇(𝑥) here gives that 

[𝐿(𝑇(𝑥))]
𝛿
= (

𝑏̂1,1(𝑏1,1𝑎1 +⋯+ 𝑏1,𝑚𝑎𝑚) + ⋯+ 𝑏̂1,𝑛(𝑏𝑛,1𝑎1 +⋯+ 𝑏𝑛,𝑚𝑎𝑚)
⋮

𝑏̂𝑘,1(𝑏1,1𝑎1 +⋯+ 𝑏1,𝑚𝑎𝑚) + ⋯+ 𝑏̂𝑘,𝑛(𝑏𝑛,1𝑎1 +⋯+ 𝑏𝑛,𝑚𝑎𝑚)
). 

Distributing and rearranging gives that this is equal to 

(
(𝑏̂1,1𝑏1,1 +⋯+ 𝑏̂1,𝑛𝑏𝑛,1)𝑎1 +⋯+ (𝑏̂1,1𝑏1,𝑚 +⋯+ 𝑏̂1,𝑛𝑏𝑛,𝑚)𝑎𝑚

⋮

(𝑏̂𝑘,1𝑏1,1 +⋯+ 𝑏̂𝑘,𝑛𝑏𝑛,1)𝑎1 +⋯+ (𝑏̂𝑘,1𝑏1,𝑚 +⋯+ 𝑏̂𝑘,𝑛𝑏𝑛,𝑚)𝑎𝑚

). 

So the matrix representation of the composition 𝐿𝑇 is given by 

[𝐿𝑇]𝛽
𝛿 = (

𝑏̂1,1𝑏1,1 +⋯+ 𝑏̂1,𝑛𝑏𝑛,1 ⋯ 𝑏̂1,1𝑏1,𝑚 +⋯+ 𝑏̂1,𝑛𝑏𝑛,𝑚
⋮ ⋱ ⋮

𝑏̂𝑘,1𝑏1,1 +⋯+ 𝑏̂𝑘,𝑛𝑏𝑛,1 ⋯ 𝑏̂𝑘,1𝑏1,𝑚 +⋯+ 𝑏̂𝑘,𝑛𝑏𝑛,𝑚

). 
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This may look messy, however the sums and products in the entries of this matrix have a very 

good pattern. In particular, we can define the product of the matrices [𝑇]𝛽
𝛾

 and [𝐿]𝛾
𝛿 as such: 

 

to get the matrix of the composition 𝐿𝑇. In other words, 

[𝐿𝑇]𝛽
𝛿 = [𝐿]𝛾

𝛿[𝑇]𝛽
𝛾
. 

Hence matrices give a quick and convenient way to compute compositions of linear maps! 

• Notation 10.40: If 𝑎𝑘 , … , 𝑎𝑛 are objects that we can sum, a notation for their sum is: 

∑𝑎𝑖

𝑛

𝑖=𝑘

= 𝑎𝑘 +⋯+ 𝑎𝑛. 

• Example 10.41: Examples of usage of the above sum notation include 

∑𝑎𝑖𝑣𝑖

𝑚

𝑖=1

= 𝑎1𝑣1 +⋯𝑎𝑚𝑣𝑚     and     ∑ (2𝑘)2
3

𝑘=−1

= (−2)2 + 02 + 22 + 42 + 62 = 60. 

If we consider matrix multiplication defined in Note 10.39: 

(

𝑐1,1 ⋯ 𝑐1,𝑚
⋮ ⋱ ⋮

𝑏𝑛,1 ⋯ 𝑐𝑛,𝑚
) = (

𝑎1,1 ⋯ 𝑎1,𝑘
⋮ ⋱ ⋮

𝑎𝑛,1 ⋯ 𝑎𝑛,𝑘
)

⏟          
𝐴

(

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋱ ⋮

𝑏𝑘,1 ⋯ 𝑏𝑛,𝑚

)

⏟            
𝐵

, 

then we have that each 

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 +⋯+ 𝑎𝑖𝑘𝑏𝑘𝑗 =∑𝑎𝑖𝑟𝑏𝑟𝑗

𝑘

𝑟=1

. 

Note that for the matrix multiplication to make sense we need the width of 𝐴 be equal to the 

height of 𝐵 (both equal to 𝑘 in this example). 

• Example 10.42: Consider the linear projection maps 𝑃 ∶ ℝ3 → ℝ3 and 𝑃̂ ∶ ℝ3 → ℝ3 onto the 

𝑥𝑦-plane and 𝑥𝑧-plane respectively: 

𝑃(𝑎, 𝑏, 𝑐) = (𝑎, 𝑏, 0)     and     𝑃̂(𝑎, 𝑏, 𝑐) = (𝑎, 0, 𝑐). 

With respect to the standard ordered basis 𝛽 = {𝑒1, 𝑒2, 𝑒3} of ℝ3, their matrices are given by 
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[𝑃]𝛽 = (
1 0 0
0 1 0
0 0 0

)      and     [𝑃̂]
𝛽
= (

1 0 0
0 0 0
0 0 1

) 

(check this!). Thus the matrix of the composition 𝑃̂ ∘ 𝑃 is given by 

[𝑃̂ ∘ 𝑃]
𝛽
= [𝑃̂]

𝛽
[𝑃]𝛽 = (

1 0 0
0 0 0
0 0 1

)(
1 0 0
0 1 0
0 0 0

) = (
1 0 0
0 0 0
0 0 0

). 

It may not be clear what this composition does at first, so let us apply it to a vector (𝑎, 𝑏, 𝑐) ∈

ℝ3. We have that 

[(𝑃̂ ∘ 𝑃)(𝑎, 𝑏, 𝑐)]
𝛽
= (

1 0 0

0 0 0
0 0 0

)(
𝑎
𝑏

𝑐
) = (

𝑎
0

0
) = [(𝑎, 0,0)]𝛽 . 

In other words, this shows that the composition 𝑃̂ ∘ 𝑃 projects vectors onto the 𝑥-axis. If you 

think about it geometrically, that makes sense since if you first project onto the 𝑥𝑦-plane and 

then onto the 𝑥𝑧-plane, then that’s equivalent to projecting onto the 𝑥-axis from the start! 

• Note 10.43: A warning about matrix multiplication: it is not commutative! In other words, if 𝐴 

and 𝐵 are square matrices then 𝐴𝐵 is not necessarily equal to 𝐵𝐴 (i.e. it may or may not be). In 

the above example we do have that [𝑃]𝛽[𝑃̂]𝛽 = [𝑃̂]𝛽
[𝑃]𝛽. However, an example of where 

commutativity breaks is 

(
1 1
0 0

) (
0 0
1 1

) ≠ (
0 0
1 1

) (
1 1
0 0

) 

since the left-hand side is equal to (
1 1
0 0

) while the right-hand side is equal to (
0 0
1 1

). 

If 𝐴 and 𝐵 are not both square, then it can be the case that 𝐴𝐵 makes sense but 𝐵𝐴 does not 

make sense (i.e. the sizes of the matrices are not correct for the product to be defined). 

• Note 10.44: In the homework you will learn about the transpose of a matrix 𝐴, which is denoted 

by 𝐴⊤ and is obtained by flipping the matrix across its diagonal running from the upper left 

corner. Transposes are important in the theory of inner products and dual spaces. A fact you 

should be aware of is that 

(𝐴𝐵)⊤ = 𝐵⊤𝐴⊤. 

This is easy to prove and is left as an exercise: simply see what happens when you perform a 

matrix multiplication and then flip it across a diagonal. Alternatively, the proof is written out on 

page 89 of the book. 

• Theorem 10.45: Fix a field 𝐹. In the following capital letters denote matrices with entries in 𝐹 

and lower-case letters denote scalars in 𝐹. All matrix multiplications are assumed to make sense 

(i.e. the sizes of the matrices are correct) 
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a) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 and (𝐷 + 𝐸)𝐴 = 𝐷𝐴 + 𝐸𝐴, 

b) (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) 

c) 𝐼𝑚𝐴 = 𝐴 = 𝐴𝐼𝑛 

d) 𝑎(𝐴𝐵) = (𝑎𝐴)𝐵 = 𝐴(𝑎𝐵) 

e) 𝐴(𝑏1𝐵1 +⋯+ 𝑏𝑘𝐵𝑘) = 𝑏1𝐴𝐵1 +⋯+ 𝑏𝑘𝐴𝐵𝑘 and (𝑐1𝐶1 +⋯+ 𝑐𝑘𝐶𝑘)𝐴 = 𝑐1𝐶1𝐴 +⋯+

𝑐𝑘𝐶𝑘𝐴. 

Proof: We note that e) follows immediately from a) and d). For parts a) – d), you could prove 

them by direct calculation or alternatively you can note that they follow immediately by 

observing that they are simply representations of the analogous parts in Theorem 10.38 applied 

to linear maps over Euclidean spaces. To illustrate this last remark, let’s prove b). Let 𝑈 ∶ 𝐹𝑚 →

𝐹𝑛, 𝐿 ∶ 𝐹𝑛 → 𝐹𝑘, and 𝑇 ∶ 𝐹𝑘 → 𝐹𝑗 be linear maps whose matrices with respect to the standard 

bases are 𝐶, 𝐵, and 𝐴 respectively. Then by Theorem 10.38 (here we omit writing the bases) 

𝑇(𝐿𝑈) = (𝑇𝐿)𝑈     ⟹      𝐴(𝐵𝐶) = [𝑇(𝐿𝑈)] = [(𝑇𝐿)𝑈] = (𝐴𝐵)𝐶. 

∎ 

10.5 Invertibility and Isomorphism 

• We will now study the following question: when do linear maps have inverses. One application 

of this, as we’ll see later, is obtaining solutions to systems of equations. 

• Definition 10.46: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear map. A function 𝑈 ∶ 𝑊 → 𝑉 is called an 

inverse of 𝑇 if both 𝑇𝑈 = 𝐼𝑉 and 𝑈𝑇 = 𝐼𝑊. If such a map 𝑈 exists, then it is unique, we call 𝑇 

invertible, and we write 𝑇−1 = 𝑈. 

• We remark that the above definition is nothing new: it exactly matches our definition of inverse 

in Definition 7.7 but just stated for the special case of when the map 𝑇 (which was 𝑓 in 

Definition 7.7) is linear. Recall from Theorem 7.8 that a map is invertible if and only if it is 

injective and surjective (i.e. is bijective). 

• Note 10.47: If 𝑈 ∶ 𝑉 → 𝑊 aand 𝑇 ∶ 𝑊 → 𝑍 are invertible linear map, then 

(𝑇𝑈)−1 = 𝑈−1𝑇−1, 

(𝑇−1)−1 = 𝑇. 

This is true simply for set theoretical reasons and hence holds not only for linear maps. To see 

why, draw a diagram about where points get mapped to on both sides of the above equations. 

• Example 10.48: As we’ll learn later, a rotation in space by an angle 𝜃 is a linear transformation. 

The inverse of a rotation will be a rotation in the reverse direction by the same angle (or 

equivalently by the angle −𝜃). Note that the inverse is linear, coincidence? No: 

• Theorem 10.49: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is an invertible linear map. Then the inverse 𝑇−1 ∶

𝑊 → 𝑉 is also linear. 
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Proof: Take any 𝑥, 𝑦 ∈ 𝑊 and any 𝑎, 𝑏 ∈ 𝐹. We have that 𝑇−1(𝑎𝑥 + 𝑏𝑦) is the unique element 

of 𝑉 that gets mapped to 𝑎𝑥 + 𝑏𝑦 by 𝑇. We claim that that unique element is 𝑎𝑇−1(𝑥) +

𝑏𝑇−1(𝑦). To prove this, observe that 

𝑇(𝑎𝑇−1(𝑥) + 𝑏𝑇−1(𝑦)) = 𝑎𝑇𝑇−1(𝑥) + 𝑏𝑇𝑇−1(𝑦) = 𝑎𝑥 + 𝑏𝑦. 

Thus indeed 

𝑇−1(𝑎𝑥 + 𝑏𝑦) = 𝑎𝑇−1(𝑥) + 𝑏𝑇−1(𝑦) 

and hence 𝑇−1 is linear. 

• The existence of an invertible linear map between two vector spaces in fact says that the two 

vector spaces have very similar structure. We will explore this in the next few theorems, starting 

with the following: 

• Theorem 10.50: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is an invertible linear map. Then 𝑉 is finite 

dimensional if and only if 𝑊 is finite dimensional. If they are finite dimensional, then dim𝑉 =

dim𝑊. 

• Proof: First suppose that 𝑉 is finite dimensional. Then by the dimension theorem (Theorem 

10.13) 

dim𝑁(𝑇) + dim𝑅(𝑇) = dim𝑉. 

Since 𝑇 is injective, by Theorem 10.16, dim𝑁(𝑇) = 0. Since 𝑇 is surjective, 𝑅(𝑇) = 𝑊. Thus 

the above equation gives that dim𝑊 = dim𝑉. So both 𝑉 and 𝑊 are finite dimensional and their 

dimensions are equal. The reverse direction (i.e. assuming that 𝑊 is finite dimensional) is proved 

similarly but instead using 𝑇−1 ∶ 𝑊 → 𝑉. 

∎ 

• Definition 10.51: We say that two vector spaces 𝑉 and 𝑊 are isomorphic if there exists an 

invertible linear map 𝑇 ∶ 𝑉 → 𝑊 (which implies that they are defined over the same field). Any 

such invertible linear map 𝑇 ∶ 𝑉 → 𝑊 is called an isomorphism. 

• Theorem 10.52: Suppose that 𝑉 and 𝑊 are finite-dimensional vector spaces over the same field. 

Then 𝑉 is isomorphic to 𝑊 if and only if dim𝑉 = dim𝑊. 

Proof: If 𝑉 and 𝑊 are isomorphic, then Theorem 10.50 says that dim𝑉 = dim𝑊. Now suppose 

that dim𝑉 = dim𝑊. Let 𝛽 = {𝑣1, … , 𝑣𝑚} and 𝛾 = {𝑤1, … , 𝑤𝑛} be bases for 𝑉 and 𝑊 

respectively. By Theorem 10.19 there exists a unique linear map 𝑇 such that each 

𝑇(𝑣𝑖) = 𝑤𝑖 . 

By Proposition 10.11, 

𝑅(𝑇) = span{𝑇(𝑣1), … , 𝑇(𝑣𝑚)} = span{𝑤1, … , 𝑤𝑛} = 𝑊 



Haim Grebnev  Last Modified: April 25, 2025 

49 

 

and hence 𝑇 is surjective. Since dim𝑉 = dim𝑊, by Theorem 10.17 𝑇 is injective, and hence 

bijective, and thus an isomorphism. So 𝑉 and 𝑊 are indeed isomorphic. 

∎ 

• Corollary 10.53: Suppose that 𝑉 is a vector space over a field 𝐹. Then 𝑉 is isomorphic to 𝐹𝑛 if 

and only if dim𝑉 = 𝑛 (here 𝑛 ≥ 0 is an integer). 

Proof: This immediately follows from the previous theorem since dim𝐹𝑛 = 𝑛. ∎ 

• The above corollary is profound: it says that structure wise finite dimensional vector spaces 

aren’t so varied after all, they all look like 𝐹𝑛. We’ve actually seen this many times already when 

we represented vectors in finite dimensional vector spaces as column vectors. 

• We’ve discussed invertibility of linear maps, but what does this look like on the matrix 

representation side? We endeavor to find this out, starting with the following definition: 

• Definition 10.54: Suppose that 𝐴 is an 𝑛 × 𝑛 matrix. We say that 𝐴 is invertible if there exists 

an 𝑛 × 𝑛 matrix 𝐵 such that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛. We will prove below that such a matrix 𝐵 is unique 

and hence we call 𝐵 the inverse of 𝐴 and write 𝐴−1 = 𝐵. 

• Lemma 10.55: Suppose that 𝐴 is an invertible 𝑛 × 𝑛 matrix. Then there exists only one matrix 𝐵 

such that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛. 

Proof: Just like in the proof of Theorem 10.45, we use the power of representation! Let 𝐵̂ be 

another such matrix. Let 𝑇, 𝑈, 𝑈̂ ∶ 𝐹𝑛 → 𝐹𝑛 be linear maps whose matrices with respect to the 

standard ordered basis 𝛽 of 𝐹𝑛 are 𝐴, 𝐵, 𝐵̂ respectively. Then 

𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛 = 𝐴𝐵̂ = 𝐵̂𝐴     ⟺     [𝑇𝑈]𝛽 = [𝑈𝑇]𝛽 = 𝐼𝑛 = [𝑇𝑈̂]𝛽 = [𝑈̂𝑇]𝛽 

                                                  ⟺      𝑇𝑈 = 𝑈𝑇 = 𝐼𝐹𝑛 = 𝑇𝑈̂ = 𝑈̂𝑇 

Because of the uniqueness of inverses of maps, this implies that 

𝑈 = 𝑈̂      ⟺      𝐵 = [𝑈]𝛽 = [𝑈̂]𝛽 = 𝐵̂. 

∎ 

• Example 10.56: We will later learn how to efficiently compute the inverses of matrices. For 

now, you can verify by direct computation that the inverse of (
7 4
3 2

) is (
1 −2
−1.5 3.5

) since 

(
7 4
3 2

) (
1 −2
−1.5 3.5

) = (
1 0
0 1

)      and     (
1 −2
−1.5 3.5

) (
7 4
3 2

) = (
1 0
0 1

). 

• Theorem 10.57: Suppose that 𝑉 and 𝑊 are finite dimensional vector spaces over the same field 

of the same dimension. Let 𝛽 and 𝛾 be ordered bases for 𝑉 and 𝑊 respectively. Then a linear 

map 𝑇 ∶ 𝑉 → 𝑊 is invertible if and only if [𝑇]𝛽
𝛾

 is invertible. If 𝑇 is invertible then [𝑇−1]𝛾
𝛽
=

([𝑇]𝛽
𝛾
)−1. 
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Proof: First suppose that 𝑇 is invertible. Let 𝐴 = [𝑇]𝛽
𝛾

 and let 𝐵 = [𝑇−1]𝛾
𝛽

. Then 

𝐴𝐵 = [𝑇]𝛽
𝛾 [𝑇−1]𝛾

𝛽
= [𝑇𝑇−1]𝛾

𝛾
= [𝐼𝑊]𝛾

𝛾
= 𝐼𝑛. 

Similarly one shows that 𝐵𝐴 = 𝐼𝑛. Hence 𝐴 = [𝑇]𝛽
𝛾

 is invertible and its inverse is 𝐵 = [𝑇−1]𝛾
𝛽

 

(i.e. ([𝑇]𝛽
𝛾
)−1 = [𝑇−1]𝛾

𝛽
). 

Now suppose that [𝑇]𝛽
𝛾

 is invertible. Let 𝑈 ∶ 𝑊 → 𝑉 be the (unique) linear map whose matrix 

with respect to the above ordered bases is ([𝑇]𝛽
𝛾
)−1 (i.e. [𝑈]𝛾

𝛽
= ([𝑇]𝛽

𝛾
)−1). Then 

[𝑇𝑈]𝛾
𝛾
= [𝑇]𝛽

𝛾 [𝑈]𝛾
𝛽
= [𝑇]𝛽

𝛾
([𝑇]𝛽

𝛾
)−1 = 𝐼𝑛 = [𝐼𝑊]𝛾

𝛾
     ⟹      𝑇𝑈 = 𝐼𝑊. 

Similarly one shows that 𝑈𝑇 = 𝐼𝑉. Hence 𝑇 is invertible (i.e. 𝑇−1 = 𝑈). 

∎ 

• The following theorem summarizes many of our ideas on representations, and says a little more: 

• Theorem 10.58: Suppose that 𝑉 and 𝑊 are finite dimensional vector spaces over the same field 

𝐹. Let 𝑛 = dim𝑉 and 𝑚 = dim𝑊. Let 𝛽 and 𝛾 be ordered bases for 𝑉 and 𝑊 respectively. Then 

the maps 

Φ𝛽
𝛾
∶ ℒ(𝑉,𝑊) → 𝑀𝑚×𝑛(𝐹)   given by   Φ𝛽

𝛾(𝑇) = [𝑇]𝛽
𝛾

 

𝜙𝛽 ∶ 𝑉 → 𝐹
𝑛   given by   𝜙𝛽(𝑥) = [𝑥]𝛽 

are isomorphisms. 

Proof: We already discussed why they are bijective in Note 10.26, and you guys proved their 

linearity in the homework. Hence Φ𝛽
𝛾
 and 𝜙𝛽 are isomorphisms. ∎ 

• Corollary 10.59: Suppose that 𝑉 and 𝑊 are finite dimensional vector spaces over the same field 

𝐹. Let 𝑛 = dim𝑉 and 𝑚 = dim𝑊. Then 

dimℒ(𝑉,𝑊) = 𝑚𝑛. 

Proof: By the previous theorem ℒ(𝑉,𝑊) is isomorphic to 𝑀𝑚×𝑛(𝐹) and dim𝑀𝑚×𝑛(𝐹) = 𝑚𝑛. 

Hence by Theorem 10.52 dimℒ(𝑉,𝑊) = 𝑚𝑛. 

∎ 

10.6 Change of Basis 

• As observed already, ordered bases are powerful tools for computing and performing operations 

on linear maps and vectors by passing to their representations. However, sometimes the standard 

bases that come with vector spaces are not the most convenient ones for performing certain 

calculations. The solution is straightforward: just use another ordered basis. This is what we 

endeavor to study now, and name of the technique is unsurprisingly called “change of bases.” 
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We want to emphasize that change of bases only applies to representations and not linear maps 

and vectors themselves since bases are irrelevant to the definition of the latter two. 

• Theorem 10.60: Suppose 𝑉 is a finite dimensional vector space and that 𝛽 and 𝛽′ are ordered 

bases for 𝑉. Letting 𝑄 = [𝐼𝑉]𝛽
𝛽′

, we have that 

(10. 61)                                                            [𝑣]𝛽′ = 𝑄[𝑣]𝛽               ∀𝑣 ∈ 𝑉. 

Furthermore, 𝑄 is invertible and 𝑄−1 = [𝐼𝑉]𝛽′
𝛽

. 

Remark: Because of (10.61) we say that 𝑄 changes 𝜷-coordinates to 𝜷′-coordinates and we 

say that 𝑄 is a change of basis/coordinates matrix. Observe that because 𝑄−1 = [𝐼𝑉]𝛽′
𝛽

, 𝑄−1 is 

also a change of basis matrix that does the reverse: it changes 𝛽′-coordinates to 𝛽-coordinates. 

Proof: By definition of matrix representations (see Note 10.26) 

𝑄[𝑣]𝛽 = [𝐼𝑉]𝛽
𝛽′[𝑣]𝛽 = [𝐼𝑉(𝑣)]𝛽′ = [𝑣]𝛽′ . 

Next, the matrix 𝑄 is invertible by Theorem 10.57 because it is a representation of an invertible 

map (i.e. the identity). Lastly, since (c.f. Note 10.39) 

[𝐼𝑉]𝛽
𝛽′⏞  

𝑄

[𝐼𝑉]𝛽′
𝛽
= [𝐼𝑉𝐼𝑉]𝛽′

𝛽′
= [𝐼𝑉]𝛽′

𝛽′
= 𝐼𝑛, 

[𝐼𝑉]𝛽′
𝛽 [𝐼𝑉]𝛽

𝛽′

⏟  
𝑄

= [𝐼𝑉𝐼𝑉]𝛽
𝛽
= [𝐼𝑉]𝛽

𝛽
= 𝐼𝑛, 

we have by the uniqueness of matrix inverses that 𝑄−1 = [𝐼𝑉]𝛽′
𝛽

. 

∎ 

• Example 10.62: Consider the ordered bases 

𝛽 = {𝑣1 = (1,0), 𝑣2 = (0,1)}   and   𝛽′ = {𝑣1
′ = (1,1), 𝑣2

′ = (−1,1)} 

of ℝ2. Let us compute the change of bases matrices 𝑄 = [𝐼𝑉]𝛽
𝛽′

 and 𝑅 = 𝑄−1 = [𝐼𝑉]𝛽′
𝛽

. Let’s start 

with 𝑅 since that’s easier. Notice that the matrix 𝑅 

takes [𝑣1
′ ]𝛽′ = (

1
0
)  to [𝑣1

′]𝛽 = (
1
1
)    and   takes [𝑣2

′ ]𝛽′ = (
0
1
)  to [𝑣2

′ ]𝛽 = (
−1
1
). 

In other words, writing 𝑅 = (
𝑏11 𝑏12
𝑏21 𝑏22

) we must have that 

(
𝑏11 𝑏12
𝑏21 𝑏22

) (
1
0
) = (

𝑏11
𝑏21
) = (

1
1
)    and   (

𝑏11 𝑏12
𝑏21 𝑏22

) (
0
1
) = (

𝑏12
𝑏22
) = (

−1
1
). 

From this we can straight away read off the values of the entries of 𝑅 (i.e. the 𝑏𝑖𝑗’s) to get that 



Haim Grebnev  Last Modified: April 25, 2025 

52 

 

𝑅 = (
1 −1
1 1

). 

Computing 𝑄 is also easy: simply set 𝑄 = 𝑅−1 and compute the inverse of 𝑅. However, we don’t 

have advanced tools to compute inverses just yet, so at the moment we can do this via systems of 

equations as follows. 

First we ask: what are the representations of the bases vectors of 𝛽 with respect to 𝛽′. In other 

words, if we write 

(
1
0
) = 𝑎 (

1
1
) + 𝑏 (

−1
1
)      and     (

0
1
) = 𝑐 (

1
1
) + 𝑑 (

−1
1
), 

what are the values of 𝑎, 𝑏, 𝑐, 𝑑? The answer is 𝑎 = 0.5, 𝑏 = −0.5, 𝑐 = 0.5, and 𝑑 = 0.5, we let 

you verify the details. Hence 𝑄 

takes [𝑣1]𝛽 = (
1
0
)  to [𝑣1]𝛽′ = (

𝑎
𝑏
) = (

0.5
−0.5

) 

and   takes [𝑣2]𝛽 = (
0
1
)  to [𝑣2]𝛽′ = (

𝑐
𝑑
) = (

0.5
0.5
). 

Hence, writing 𝑄 = (
𝑎11 𝑎12
𝑎21 𝑎22

) we must have that 

(
𝑎11 𝑎12
𝑎21 𝑎22

) (
1
0
) = (

𝑎11
𝑎21
) = (

0.5
−0.5

)    and   (
𝑎11 𝑎12
𝑎21 𝑎22

) (
0
1
) = (

𝑎12
𝑎22
) = (

0.5
0.5
) 

from which we can read off the value of 𝑄: 

𝑄 = (
1 −1
1 1

)
−1

⏟      
𝑅−1

= (
0.5 0.5
−0.5 0.5

). 

• Note 10.63: In general, if you want to change bases from 𝛽 to 𝛽′ = {𝑣1, … , 𝑣𝑛} and you can 

write the column vector representation [𝑣𝑖]𝛽 of each 𝑣𝑖 in terms of 𝛽, then the 𝑅 in the above 

example is obtained by simply making [𝑣𝑖]𝛽 its columns and setting 𝑄 = 𝑅−1. As the previous 

note illustrated this is often easy to do when 𝛽 = 𝐹𝑛, and so when changing bases from 𝛽′′ to 𝛽′ 

one option is to pass through 𝛽 = 𝐹𝑛 to make life easier (i.e. change coordinates 𝛽′′ → 𝛽 =

𝐹𝑛 → 𝛽′). 

• Theorem 10.64: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map and suppose that 𝛽 and 𝛽′ are ordered 

bases for 𝑉. Let 𝑄 = [𝐼𝑉]𝛽
𝛽′

. Then 

(10. 65)                                                       [𝑇]
𝛽′
𝛽′
= 𝑄[𝑇]𝛽

𝛽
𝑄−1. 

Proof: We have that 

[𝑇]
𝛽′
𝛽′
= [𝐼𝑉𝑇𝐼𝑉]𝛽′

𝛽′
= [𝐼𝑉]𝛽

𝛽′[𝑇]𝛽
𝛽[𝐼𝑉]𝛽′

𝛽
= 𝑄[𝑇]𝛽

𝛽
𝑄−1. 

∎ 
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• Note 10.66: In (10.65) we say that we changed bases for the matrix representation of 𝑇 from 𝛽 

to 𝛽′. In general an equation of the form (10.65) can be interpreted as that the matrix on the left-

hand side and the matrix stuck in between 𝑄 and 𝑄−1 on the right-hand side represent the same 

linear map but in different coordinates/bases (this is just an interpretation). Hence they are 

“similar” in a sense. Thus mathematicians came up with the following definition. 

• Definition 10.67: We say that two 𝑛 × 𝑛 matrices 𝐴 and 𝐵 are similar if there exists an 𝑛 × 𝑛 

invertible matrix 𝑄 such that 

𝐴 = 𝑄𝐵𝑄−1. 

Notice that by multiplying through this equation on the left and right by 𝑄−1 and 𝑄 respectively 

gives that 𝐵 = 𝑄−1𝐴𝑄 and thus is a symmetric property (the interested reader may also verify 

that it is transitive). 

• Example 10.68: Let us write down the matrix for the “reflection map” 𝑇 across the line 𝑦 = −𝑥 

in ℝ2 with respect to the standard basis. Consider the bases 𝛽 and 𝛽′ in Example 10.62. Off the 

bat, it may not be clear how to write down the matrix for 𝑇 in the standard basis 𝛽, but it is easy 

to do so in 𝛽′ because 𝑇 simply takes 𝑣1
′  to −𝑣1

′  and 𝑣2
′  to 𝑣2

′ . On the representation side, [𝑇]
𝛽′
𝛽

 

takes [𝑣1
′]𝛽′ = (

1
0
)  to [−𝑣1

′ ]𝛽′ = (
−1
0
)    and   takes [𝑣2

′ ]𝛽′ = (
0
1
)  to [𝑣2

′ ]𝛽′ = (
0
1
). 

Hence if we write [𝑇]
𝛽′
𝛽′
= (
𝑐11 𝑐12
𝑐21 𝑐22

), we have that 

(
𝑐11 𝑐12
𝑐21 𝑐22

) (
1
0
) = (

𝑐11
𝑐21
) = (

−1
0
)    and   (

𝑐11 𝑐12
𝑐21 𝑐22

) (
0
1
) = (

𝑐12
𝑐22
) = (

0
1
). 

From this we can read off the entries of [𝑇]
𝛽′
𝛽′

: 

[𝑇]
𝛽′
𝛽′
= (
−1 0
0 1

). 

We already computed 𝑄 = [𝐼𝑉]𝛽
𝛽′

 and its inverse 𝑄 = 𝑅−1 in Example 10.62, and so by (10.65) 

[𝑇]𝛽
𝛽
= (
1 −1
1 1

)
⏟      

𝑄−1

(
−1 0
0 1

)
⏟      

[𝑇]
𝛽′
𝛽′

(
0.5 0.5
−0.5 0.5

)
⏟        

𝑄

= (
1 −1
1 1

) (
−1 0
0 1

) (
0.5 0.5
−0.5 0.5

) = (
0 −1
−1 0

). 

Now that we see the answer, we actually see that this clearly has to be the matrix since this 

reflection takes (1,0) to (0, −1) and (0,1) to (−1,0) in the standard basis 𝛽. So the theory is 

right! An example of where the final answer will be less obvious is if you instead try to redo the 

above to reflect across a more general line 𝑦 = 𝑚𝑥. 

11 Row and Column Operations 

11.1 Row/Column Operations and Elementary Matrices 
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• Note 11.1: Suppose we want to solve the linear system of equations 

2𝑥 + 2𝑦 = 2, 

𝑥 + 3𝑦 = 3. 

From the perspective of linear algebra, this can be reformulated and solved as follows: 

(11. 2)            (
2 2
1 3

) (
𝑥
𝑦) = (

2
3
)      ⟹      (

𝑥
𝑦) = (

2 2
1 3

)
−1

(
2
3
)      ⟹      Voila! 

However, this is not helpful since we don’t have good ways of computing inverses of matrices 

just yet. So instead, we can do this as follows: 

2𝑥 +2𝑦 = 2
𝑥 +3𝑦 = 3

   ⟹    
𝑥 +𝑦 = 1
𝑥 +3𝑦 = 3

   ⟹    
𝑥 +𝑦 = 1
 2𝑦 = 2

   ⟹    
𝑥 +𝑦 = 1
 𝑦 = 1

 

⟹   
𝑥  = 0
 𝑦 = 1

   ⟹    Voila! 

Notice the operations that we did: we either multiplied a row through by a constant or subtracted 

one row from another. Observe that we could have ignored the 𝑥’s and 𝑦’s floating around in the 

above calculation and consider everything as entries of a matrix for writing efficiency. We 

remark that a slight modification of this algorithm can be used to compute the inverse matrix in 

(11.2). Thus, as we’ll see, such operations lie at the heart of solving systems of linear equations 

and computing inverses of matrices. 

• Definition 11.3: Suppose that 𝐴 is an 𝑚 by 𝑛 matrix. The following are called elementary row 

operations of type 1, 2, and 3 respectively: 

1. Interchanging two rows. 

2. Multiplying a row by a scalar. 

3. Adding a scalar multiple of a row to another row. 

Elementary column operations of type 1, 2, and 3 are defined exactly the same way but 

instead by doing the above operations on columns. 

• Surprisingly, for any matrix 𝐴 it’s possible to perform elementary row/column operations by 

multiplying it by suitable “elementary matrices:” 

• Definition 11.4: An 𝑛 × 𝑛 matrix 𝐸 is called an elementary matrix of type 1, 2, or 3 if it is 

obtained by performing one operation of type 1, 2, or 3 to the identity matrix 𝐼𝑛. 

• Note 11.5: If 𝐸 is an elementary matrix obtained by performing a row operation of type 𝑘 =

1,2,3 to the identity matrix, then multiplying it by 𝐴 from the left performs that same row 

operation on 𝐴. The same goes for column operations, but then you need to multiply it by 𝐴 from 

the right. For instance, suppose that 
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𝐴 = (

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

) 

If we take the 4 × 4 matrix 𝐸1 obtained from the identity matrix by switching 1st and 3rd rows, 

then multiplying this by 𝐴 from the left switches the 1st and 3rd rows of 𝐴: 

(

0 0 1 0
0 1 0 0

1 0 0 0

0 0 0 1

)

⏟          
𝐸1

(

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

)

⏟                
𝐴

= (

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

16 17 18 19 20

). 

Similarly, if we take the 5 × 5 matrix 𝐸2 obtained from the identity matrix by adding −2 times 

the 4th column to the 2nd column, then multiplying this by 𝐴 from the right adds −2 times the 4th 

column of 𝐴 to the 2nd column of 𝐴: 

(

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

)

⏟                
𝐴

(

 
 

1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

0 −2 0 1 0

0 0 0 0 1)

 
 

⏟              
𝐸2

= (

1 2 − 2 ⋅ 4 3 4 5

6 7 − 2 ⋅ 9 8 9 10

11 12 − 2 ⋅ 14 13 14 15

16 17 − 2 ⋅ 19 18 19 20

). 

• Proposition 11.6: Every elementary matrix is invertible, and its inverse is an elementary matrix 

of the same type. 

Proof: This is trivial: if 𝐸 is an elementary matrix obtained from the identity matrix by 

performing an elementary operation of type 𝑘, then undoing that elementary operation will be an 

elementary operation of the same type, which is equivalent to multiplying by an elementary 

matrix of the same type to get back to the identity matrix. 

∎ 

11.2 Matrix rank 

• Considering that we’ve defined rank for linear maps, it’s not surprising that we can define rank 

for matrices as well since the latter represent the former. To define the rank of the latter, we fix 

particular linear maps that they represent: 

• Definition 11.7: Suppose that 𝐴 ∈ 𝑀𝑚×𝑛(𝐹) is an 𝑚 by 𝑛 matrix. Let 𝐿𝐴 ∶ ℝ
𝑛 → ℝ𝑚 denote the 

linear map 𝐿𝐴𝑣 = 𝐴𝑣 where 𝐴𝑣 denotes matrix vector multiplication. We define the rank of 𝐴 as 

rank𝐴 = rank 𝐿𝐴. 

• In the above definition, it turns out that you don’t necessarily need to use the linear map 𝐿𝐴 that 

the matrix 𝐴 represents: you can use any other linear map that 𝐴 represents. This is the content of 

the following theorem. 
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• Theorem 11.8: Suppose that 𝑇 ∶ 𝑉 → 𝑊 is a linear map between finite-dimensional vector 

spaces and that 𝛽 and 𝛾 are ordered bases for 𝑉 and 𝑊 respectively. Then 

(11. 9)                                                      rank 𝑇 = rank[𝑇]𝛽
𝛾
. 

Proof: The book leaves this as an exercise: we’ll sketch the argument. Let 𝑚 = dim𝑉 and 𝑛 =

dim𝑊 and let 𝐴 = [𝑇]𝛽
𝛾

. If you let {𝑤1, … , 𝑤𝑘} be a basis of 𝑅(𝑇), then {[𝑤1]𝛾, … , [𝑤𝑘]𝛾} will 

be a linearly independent subset of 𝑅(𝐿𝐴) and hence dim𝑅(𝑇) ≤ dim𝑅(𝐿𝐴). Similarly you can 

argue that dim𝑅(𝑇) ≥ dim𝑅(𝐿𝐴). Hence dim𝑅(𝑇) = dim𝑅(𝐿𝐴), which is equivalent to 

(11.9). 

∎ 

• Lemma 11.10: A 𝑛 × 𝑛 matrix 𝐴 is invertible if and only if it is of rank 𝑛 (i.e. rank𝐴 = 𝑛). 

Proof: This follows immediately from the fact that 𝐴 represents 𝐿𝐴 ∶ ℝ
𝑛 → ℝ𝑛 and 𝐿𝐴 is 

invertible if and only if it has rank 𝑛 (or equivalently is surjective) – see Theorem 10.57 and 

Theorem 10.17. 

∎ 

• Theorem 11.11: Suppose that 𝐴 ∈ 𝑀𝑚×𝑛(𝐹). Suppose also that 𝑃 ∈ 𝑀𝑚×𝑚(𝐹) and 𝑄 ∈

𝑀𝑛×𝑛(𝐹) are invertible matrices. Then 

1. rank(𝑃𝐴) = rank𝐴, 

2. rank(𝐴𝑄) = rank𝐴, 

3. rank(𝑃𝐴𝑄) = rank𝐴. 

Proof: This will be a HW problem. ∎ 

• Using our theory above, we have a neat way of proving that elementary row and column 

operations preserve rank: 

• Corollary 11.12: If we apply an elementary row/column operation to a matrix 𝐴 to get a matrix 

𝐴̃, then rank𝐴 = rank 𝐴̃. 

Proof: By our discussion in Note 11.5, there exists an elementary matrix 𝐸 such that either 𝐴̃ =

𝐸𝐴 or 𝐴̃ = 𝐴𝐸 (depending on if we’re doing a row or column operation on 𝐴). Then by Theorem 

11.11, 

rank 𝐴̃ = rank𝐸𝐴 = rank𝐴    if   𝐴̃ = 𝐸𝐴 

or   rank 𝐴̃ = rank𝐴𝐸 = rank𝐴    if   𝐴̃ = 𝐴𝐸. 

∎ 

• Theorem 11.13: The rank of a matrix equals the dimension of the span of its columns. This is 

equivalent to the maximum number of linearly independent columns that you can choose from 𝐴. 
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Proof: Let 𝐴 ∈ 𝑀𝑚×𝑛(𝐹). By Proposition 10.11, 

rank𝐴 = dim𝑅(𝐿𝐴) = dim span{𝐿𝐴(𝑒1), … , 𝐿𝐴(𝑒𝑛)}. 

Letting 𝑐𝑗 denote the 𝑗th column of 𝐴, by multiplying out 𝐴𝑒𝑗 it’s not hard to see that 𝑐𝑗 = 𝐴𝑒𝑗 =

𝐿𝐴(𝑒𝑗). Hence the above equation gives that 

rank𝐴 = dim span{𝑐𝑗 , … , 𝑐𝑗}, 

which proves the first statement of the theorem. 

For the second statement, by Corollary 9.38 we can remove vectors from {𝑐𝑗 , … , 𝑐𝑗} to get a basis 

𝛽 = {𝑐̃𝑗 , … , 𝑐̃𝑘} of 𝑅(𝐿𝐴) with 𝑘 = dim𝑅(𝐿𝐴) = rank𝐴. Any linear independent list of columns 

has to have less than 𝑘 vectors since 𝛽 is a basis. On the other hand, {𝑐̃𝑗 , … , 𝑐̃𝑘} is a linear 

independent list of columns. Hence the maximum number of linearly independent columns is 𝑘, 

or in other words the rank of 𝐴. 

∎ 

• Theorem 11.14: Suppose that 𝐴 ∈ 𝑀𝑚×𝑛(𝐹) is a matrix with rank 𝑟. Then 𝑟 ≤ 𝑚 and 𝑟 ≤ 𝑛 and 

you can apply a finite number of row and column operations to turn 𝐴 into the form 

𝐷 = (
𝐼𝑟 𝑂1
𝑂2 𝑂3

) 

where the 𝑂1, 𝑂2, 𝑂3 are zero matrices (draw 𝐷 out!). Hence there exist elementary matrices 

𝐸1, … , 𝐸𝑘 and 𝐺1, … , 𝐺𝑗 such that 

𝐷 = 𝐸1…𝐸𝑘⏟    
Call this 𝐵

𝐴𝐺1…𝐺𝑗⏟    
Call this 𝐶

 

𝐷 = 𝐵𝐴𝐶, 

where observe that both 𝐵 and 𝐶 are invertible since they are products of elementary matrices. 

Observe that this implies that 

rank𝐷 = rank𝐴. 

Proof: The fact that 𝐴 can be turned into 𝐷 by applying a finite number of row and column 

operations is proved by an algorithm. The rest of the conclusions are immediate (the last one 

follows from Corollary 11.12). Instead of writing the algorithm out explicitly, we will do an 

example below from which it will be straightforward to understand how it works in the general 

case. 

∎ 

• Example 11.15: Here we illustrate the algorithm used to prove Theorem 11.14: 
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𝐴 = (
0 0 0 0
0 2 2 4
0 3 5 1

) → (
0 0 0 0
2 0 2 4
3 0 5 1

) → (
2 0 2 4
0 0 0 0
3 0 5 1

) → (
1 0 1 2
0 0 0 0
3 0 5 1

) 

→ (
1 0 1 2
0 0 0 0
0 0 2 −5

) → (
1 0 0 0
0 0 0 0
0 0 2 −5

) → (
1 0 0 0
0 0 2 −5
0 0 0 0

) → (
1 0 0 0
0 2 0 −5
0 0 0 0

) 

→ (
1 0 0 0
0 1 0 −2.5
0 0 0 0

) → (
1 0 0 0
0 1 0 0
0 0 0 0

) = 𝐷. 

• Note 11.16: We remark that as the algorithm progresses, it eventually arrives at a matrix of the 

form 

 

Then you continue the algorithm inductively on 𝐴′. 

• We now present some applications of Theorem 11.14, starting with invertible matrices: 

• Corollary 11.17: Every invertible matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) can be written as a product of 

elementary matrices: 

(11. 18)                                                             𝐴 = 𝐸1…𝐸𝑙 . 

Remark: You can think of (11.18) as decomposing 𝐴 into “simpler” matrices, though keep in 

mind that this decomposition is not unique. 

Proof: By Theorem 11.14 we can write 𝐷 = 𝐵𝐴𝐶 where 𝐷 is as stated there and 𝐵 = 𝐸1…𝐸𝑘 

and 𝐶 = 𝐺1…𝐺𝑗 are products of elementary matrices (and hence 𝐵 and 𝐶 are invertible). Since 𝐴 

is invertible, by Lemma 11.10 we have that rank𝐴 = 𝑛. By looking at the form of 𝐷, we see that 

this implies that 𝐷 = 𝐼𝑛. So 

𝐴 = 𝐵−1𝐷𝐶−1 = (𝐸1…𝐸𝑘)
−1𝐼𝑛(𝐺1…𝐺𝑗)

−1
= 𝐸𝑘

−1…𝐸1
−1𝐺1

−1…𝐺1
−1. 

By Proposition 11.6, inverses of elementary matrices are also elementary matrices. Hence this 

prove the corollary. 

∎ 

• Theorem 11.14 is also useful to conclude properties of general matrices too: 

• Corollary 11.19: Suppose that 𝐴 ∈ 𝑀𝑚×𝑛(𝐹) is a matrix. Then 

1. rank𝐴⊤ = rank𝐴. 
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2. rank𝐴 equals the dimension of the span of its rows. This is equivalent to the maximum 

number of linearly independent rows that you can choose from 𝐴. 

3. Dimensions of the span of the rows and the span of the columns of 𝐴 are equal and both 

equal to rank𝐴. 

Proof: First let’s prove 1). By Theorem 11.14 we can write 𝐷 = 𝐵𝐴𝐶 where 𝐷 is as stated there 

and 𝐵 and 𝐶 are both finite products of elementary matrices. Then 

𝐴 = 𝐵−1𝐷𝐶−1 

⟹     𝐴⊤ = (𝐵−1𝐷𝐶−1)⊤ = (𝐶−1)⊤𝐷(𝐵−1)⊤. 

Since 𝐵 and 𝐶 are products of elementary matrices, the inverse of elementary matrices are 

elementary matrices, and transposes of elementary matrices (check this last claim!), we have that 

both (𝐶−1)⊤ and (𝐵−1)⊤ are also products of elementary matrices. Hence by Corollary 11.12, 

rank𝐴⊤ = rank[(𝐶−1)⊤𝐷⊤(𝐵−1)⊤] = rank𝐷⊤. 

By looking at the form of 𝐷, we see that the maximum number of linearly independent columns 

in 𝐷 and 𝐷⊤ are the same and hence rank𝐷 = rank𝐷⊤. Since rank𝐷 = rank𝐴, the above 

equation indeed gives us that rank𝐷 = rank𝐴. 

Part 2) follows from observing that rows of 𝐴 are columns of 𝐴⊤ and then applying Theorem 

11.13. Part 3) follows from part 2) and Theorem 11.13. 

∎ 

Corollary 11.20: Suppose that 𝑇 ∶ 𝑉 → 𝑊 and 𝑈 ∶ 𝑊 → 𝑍 are linear maps over finite 

dimensional vector spaces. Suppose also that 𝐴 and 𝐵 are matrices such that the product 𝐴𝐵 

makes sense. Then 

1. rank𝑈𝑇 ≤ rank𝑈 

2. rank𝑈𝑇 ≤ rank𝑇 

3. rank𝐴𝐵 ≤ rank𝐴 

4. rank𝐴𝐵 ≤ rank𝐵. 

Proof: We’ll prove 1), then 3), then 4), and then 2). To prove 1), observe that 

𝑅(𝑈𝑇) = {𝑈𝑇(𝑣) ∶ 𝑣 ∈ 𝑉} = {𝑈(𝑇(𝑣)) ∶ 𝑣 ∈ 𝑉} ⊆ {𝑈(𝑤) ∶ 𝑤 ∈ 𝑉} = 𝑅(𝑈). 

Hence dim𝑅(𝑈𝑇) ≤ dim𝑅(𝑈), which is equivalent to 1). Part 3) follows from 1) simply by 

representing 1) in matrix form when 𝑈 = 𝐿𝐴 and 𝑇 = 𝐿𝐵. 

Let’s prove 4). From 3) and Corollary 11.19 we have that 

rank𝐴𝐵 = rank(𝐵⊤𝐴⊤)⊤ = rank(𝐵⊤𝐴⊤) ≤ rank𝐵⊤ = rank𝐵. 

Part 2) follows from 3) simply by representing 2) in matrix form. 

∎ 
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• Note 11.21: Understanding the rank of a matrix is important in linear algebra and its 

applications, such as in differential geometry. Our theory above allows us to compute this 

efficiently. In particular, to compute the rank of a matrix 𝐴, you can apply row and column 

operations to turn it into the form 𝐷 described in Theorem 11.14, from where you can read off 

the rank of 𝐴 as 𝑟. You don’t actually have to go as far as 𝐷. For instance, if you perform 

elementary operation as follows: 

𝐴 = (
2 1 3 1

1 2 3 4

5 4 9 6

)
some row/column operations
→                  (

1 2 3 4

0 −3 −6 −7

0 0 0 0

) 

then from here you can see that the biggest list of linearly independent columns that you can pull 

out of the matrix on the right is 2. Hence the rank of the matrix on the right is 2. Since you only 

performed elementary operations to 𝐴 to get the matrix on the right, this shows that the rank of 𝐴 

is 2 as well. 

11.3 Computing Matrix Inverses 

• We now study an efficient algorithm for computing inverses of matrices. We start with the 

following notation: 

• Notation 11.22: Suppose that 𝐴 ∈ 𝑀𝑚×𝑛(𝐹) and 𝐵 ∈ 𝑀𝑚×𝑘(𝐹) are matrices. The augmented 

matrix (𝐴|𝐵) is the 𝑚 by (𝑛 + 𝑘) matrix given by 

(𝐴|𝐵) = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛
 | 
𝑏11 ⋯ 𝑏1𝑘
⋮ ⋱ ⋮

𝑏𝑚1 ⋯ 𝑏𝑚𝑘

). 

The dividing line “ | ” in the middle doesn’t mean anything: it’s just a psychological placeholder 

to remind us that the 𝐴 and 𝐵 typically represent different quantities in application. 

• Note 11.23: Suppose that 𝐴 is an invertible 𝑛 × 𝑛 matrix. By Corollary 11.17 we can write 𝐴 as a 

product of elementary matrices: 

𝐴 = 𝐸1…𝐸𝑘 . 

Multiplying both sides by 𝐸𝑘
−1…𝐸1

−1 on the left gives: 

𝐸𝑘
−1…𝐸1

−1𝐴 = 𝐼𝑛, 

where recall that each 𝐸𝑖
−1 is also an elementary matrix (observe that this implies that 𝐴−1 =

𝐸𝑘
−1…𝐸1

−1). An interpretation of this equation is that it’s possible to apply row operations to 𝐴 to 

get 𝐼𝑛. 

Now comes the marvelous observation. Consider the augmented matrix (𝐴|𝐼𝑛) and let us 

perform the elementary row operations of 𝐸𝑘
−1…𝐸1

−1 to (𝐴|𝐼𝑛). As a quick aside: it’s an 

elementary exercise to check that for any matrices 𝑅,𝑀,𝑁, 

(11. 24)                                                     𝑅(𝑀|𝑁) = (𝑅𝑀|𝑅𝑁) 

whenever all operations involved make sense. Hence we get that 
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𝐸𝑘
−1…𝐸1

−1(𝐴|𝐼𝑛) = (𝐸𝑘
−1…𝐸1

−1𝐴|𝐸𝑘
−1…𝐸1

−1𝐼𝑛) = (𝐼𝑛|𝐴
−1). 

So here is the amazing algorithm: to compute the inverse of an invertible matrix 𝐴, take the 

augmented matrix (𝐴|𝐼𝑛), apply elementary row operations to it to turn the 𝐴 into 𝐼𝑛, in which 

case the augmented matrix will become(𝐼𝑛|𝐵), and then read off the “𝐵” to get the inverse 

matrix (i.e. 𝐵 = 𝐴−1)! 

The above reasoning is reversible. Suppose 𝐴 is 𝑛 × 𝑛 and you were able to perform elementary 

row operations 𝐺1…𝐺𝑗 to turn the augmented matrix (𝐴|𝐼𝑛) into (𝐼𝑛|𝐵) for some 𝐵: 

𝐺1…𝐺𝑗(𝐴|𝐼𝑛) = (𝐼𝑛|𝐵), 

Applying (11.24) to the left-hand side gives that 

((𝐺1…𝐺𝑗)𝐴|(𝐺1…𝐺𝑗)𝐼𝑛) = (𝐼𝑛|𝐵). 

Comparing the portions “(here|   )” implies that (𝐺1…𝐺𝑗)𝐴 = 𝐼𝑛 and hence (𝐺1…𝐺𝑗) = 𝐴
−1. 

Comparing the portions “(   |here)” then gives that 𝐴−1 = (𝐺1…𝐺𝑗)𝐼𝑛 = 𝐵. In other words, if we 

were able to do this, we can conclude that 𝐴 is invertible and similarly as before we can read of 

its inverse by looking at 𝐵. 

The algorithm will fail if you try to perform it on a noninvertible matrix 𝐴 (as we know it 

should!). In particular, it fails because no matter how hard you try it will be impossible to turn 

the 𝐴 into 𝐼𝑛 via row operations in the augmented matrices (𝐴|𝐼𝑛) and (𝐼𝑛|𝐵). 

• Example 11.25: Suppose we want to find the inverse of 

(11. 26)                                                             𝐴 = (
1 1
2 3

). 

To do this, we do 

(𝐴|𝐼2) = (
1 1
2 3

 | 
1 0
0 1

) → (
1 1
0 1

 | 
1 0
−2 1

) → (
1 0
0 1

 | 
3 −1
−2 1

). 

So the inverse is 

(11. 27)                                                        𝐴−1 = (
3 −1
−2 1

). 

You can check this by multiplying (11.26) and (11.27) out and seeing that you indeed get 𝐼2. 

11.4 Systems of Equations 

• As you have seen in the homework, matrix equations and systems of linear equations are 

intimately connected. Precisely, one can be used to rewrite the other. Moreover, inverting a 

matrix can be seen as solving an enormous system of linear equations and hence it’s not 

surprising that a slight modification of our algorithm for inverting matrices can be adapted to 

solving general systems of equations. We will demonstrate this with an example and then discuss 

what happens in the general case. 
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• Example 11.28: Suppose we want to solve the system of linear equations: 

𝑥1 − 4𝑥2 − 𝑥3 + 𝑥4 = 3, 

(11. 29)                                                2𝑥1 − 8𝑥2 + 𝑥3 − 4𝑥4 = 9, 

−𝑥1 + 4𝑥2 − 2𝑥3 + 5𝑥4 = −6. 

Here we have three equations for four unknowns. This is equivalent to solving a matrix equation 

of the form 𝐴𝑥 = 𝑏, in particular 

(
1 −4 −1 1

2 −8 1 −4

−1 4 −2 5

)
⏟              

𝐴

(

𝑥1
𝑥2
𝑥3
𝑥4

)

⏟  
𝑥

= (
3
9
−6

)
⏟  
𝑏

. 

We cannot solve this simply by inverting the matrix since 𝐴 isn’t square. The matrix 𝐴 is called 

the coefficient matrix. If this system has a solution, we say that it is consistent, otherwise we 

call it inconsistent. Observe that whether this system is consistent or not is equivalent to asking 

if the vector on the right-hand side is in the range of 𝐿𝐴. To solve the system (11.29), let’s 

subtract two times the first equation from the second equation and add the first equation to the 

third equation to get the system: 

𝑥1 − 4𝑥2 − 𝑥3 + 𝑥4 = 3, 

                      3𝑥3 − 6𝑥4 = 3, 

                      −3𝑥3 + 6𝑥4 = −3. 

Notice that 𝑥1, 𝑥2, 𝑥3, 𝑥4 are a solution of (11.29) if and only if they are a solution to this system. 

In that sense, these two systems are equivalent: they have the same solution set (i.e. set of 

solutions)! Notice that the operation we did with the equations in (11.29) is equivalent to 

performing row operations on the augmented matrix: 

(𝐴|𝑏) = (
1 −4 −1 1

2 −8 1 −4

−1 4 −2 5

 | 
3
9
−6
)

two row operations
→           (

1 −4 −1 1

0 0 3 −6

0 0 −3 6

 | 
3
3
−3
). 

Hence let’s continue solving this system by instead performing row operations on this augmented 

matrix: 

(
1 −4 −1 1

0 0 3 −6

0 0 −3 6

 | 
3
3
−3
) → (

1 −4 −1 1

0 0 1 −2

0 0 −1 2

 | 
3
1
−1
) → (

1 −4 −1 1

0 0 1 −2

0 0 0 0

 | 
3
1
0
)

⏟              
(Row) echelon form

 

→ (
1 −4 0 −1

0 0 1 −2

0 0 0 0

 | 
4
1
0
)

⏟              
(Row) reduced echelon form
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(either echelon form requires putting a 1 on the first row to the let of the “ | ” if it is not the zero 

matrix). This last augmented matrix represents the system of equations 

𝑥1 − 4𝑥2           − 𝑥4 = 4, 

(11. 30)                                                                      𝑥3 − 2𝑥4 = 1. 

                                  0 = 0. 

Hence we can set 𝑥2 and 𝑥4 to be anything (they’re called free variables) and set 𝑥1 = 4 +

4𝑥2 + 𝑥4 and 𝑥3 = 1 + 2𝑥4. If we let 𝑥2 = 𝑎 and 𝑥4 = 𝑏 denote 𝑥2’s and 𝑥4’s arbitrary values, 

in vector notation we can write the solution set as: 

{(

𝑥1
𝑥2
𝑥3
𝑥3

)  is a solution to 𝐴𝑥 = 𝑏} =

{
 
 

 
 

(

4 + 4𝑎 + 𝑏
𝑎

1 + 2𝑏
𝑏

) = (

4
0

1
0

)

⏟
𝑥0

+ 𝑎(

4
1

0
0

)

⏟
𝑣1

+ 𝑏(

1
0

2
1

)

⏟
𝑣2

∶ 𝑎, 𝑏 ∈ ℝ

}
 
 

 
 

. 

The algorithm that we just did to solve this system is called Gaussian elimination. Let’s make a 

few remarks about the process. If the system was inconsistent to start with, you would see this in 

the algorithm by encountering an impossible statement, such the third equation in (11.30) 

instead being something like 0 = 12. Next, we solved the system by going from the reduced 

echelon form (i.e. wrote (11.30)), but you can also do this from the echelon form but you’ll have 

to do some extra substitutions. Thirdly, although we won’t prove this, you should be aware that 

the reduced echelon form of a matrix 𝐴 is unique. 

The 1’s that have only zeros to their left in the echelon form (and also zeros above them in the 

reduced echelon form) are called pivots, which represent variables that are not free variables. We 

note that pivots are not allowed to be to the right of the “ | ” in the augmented matrix. 

Since 𝑏 ≠ 0 our system 𝐴𝑥 = 𝑏 is called nonhomogeneous, in which case observe that its 

solution set takes the form 

(11. 31)              {𝑥 ∈ ℝ4 is a solution to 𝐴𝑥 = 𝑏} = {𝑥0 + 𝑎𝑣1 + 𝑏𝑣2 ∶ 𝑎, 𝑏 ∈ ℝ} 

where observe that 𝑥0 is a solution to 𝐴𝑥 = 𝑏 (i.e. 𝐴𝑥0 = 𝑏). If 𝑏 = 0, then the system 𝐴𝑥 = 0 is 

called homogeneous, and it’s not hard to see by looking back at our algorithm that we would get 

that 

{𝑥 ∈ ℝ4 is a solution to 𝐴𝑥 = 0} = {𝑎𝑣1 + 𝑏𝑣2 ∶ 𝑎, 𝑏 ∈ ℝ}. 

Notice that this is equivalent to 𝑁(𝐿𝐴) and that 𝑣1 and 𝑣2 are a basis for ker 𝐿𝐴. So we can 

rewrite this as 

{𝑥 ∈ ℝ4 is a solution to 𝐴𝑥 = 𝑏} = 𝑥0 + {𝑥 ∈ ℝ
4 is a solution to 𝐴𝑥 = 0} = 𝑥0 + 𝑁(𝐿𝐴). 

This is an important principle!  
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The above discussion generalizes directly to bigger systems of equations, which you’ll have 

practice doing computations on in the homework. In particular, notice that in general the 

algorithm tells us that 

dimdom𝐿𝐴 = Width of 𝐴 = # of pivots+ # of free variables⏟          
dim𝑁(𝐿𝐴)

 

and so by the dimension theorem we get the important principle that 

# of pivots = dimdom𝐿𝐴 − dim𝑁(𝐿𝐴) = dim𝑅(𝐿𝐴) = rank𝐴. 

⟹      # of pivots = rank𝐴. 
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12 Determinants 

• We transition to the study of determinants. I’m going to warn you: this is a controversial subject 

since it is extremely useful while on the other hand it is not intuitive at first. Their uses come up 

in the definition of eigenvalues, in the proof that matrix groups are Lie groups, Wronskians in 

differential equations, change of variables for multiple integrals, implicit function theorem, etc. 

So what are determinants? At the basic level, they “determine” whether a square matrix is 

invertible or equivalently if a system with a square coefficient matrix is solvable for any right-

hand side (c.f. Note 11.1). We will study the determinant as follows, we will define it 

algebraically, and then study its properties and geometric meaning. First consider the 1 by 1 

matrix [𝑎]. Clearly it is invertible if and only if 𝑎 ≠ 0. So we set 

det[𝑎] = 𝑎. 

Next, in the homework you proved that a square 2 by 2 matrix 

(
𝑎 𝑏
𝑐 𝑑

) 

is invertible if and only if 𝑎(𝑑) − 𝑏(𝑐) ≠ 0. Hence we set 

det (
𝑎 𝑏
𝑐 𝑑

) = 𝑎 ⋅ det[𝑑] − 𝑏 ⋅ det[𝑐]. 

If you did a similar exercise for 3 by 3 matrices, you would get that 

(
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

𝑔 ℎ 𝑖
) 

is invertible if and only if 𝑎(𝑒𝑖 − 𝑓ℎ) − 𝑏(𝑑𝑖 − 𝑓𝑔) + 𝑐(𝑑ℎ − 𝑒𝑔) ≠ 0. Hence we set 

det (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

𝑔 ℎ 𝑖
) = 𝑎 ⋅ det (

𝑒 𝑓
ℎ 𝑖

) − 𝑏 ⋅ det (
𝑑 𝑓
𝑔 𝑖

) + 𝑐 ⋅ det (
𝑑 𝑒
𝑔 ℎ

). 

See a pattern!? 

• Definition 12.1: Define the determinant of 1 by 1 matrices by det[𝑎] = 𝑎. We define the 

determinant of bigger square matrices inductively as follows. Suppose we defined the algebraic 

expression for the determinant of 𝑚 ×𝑚 matrices. We define the determinant of a (𝑚 + 1) ×
(𝑚 + 1) matrix 𝐴 by 

(12. 2)     det (

𝑎1,1 ⋯ 𝑎1,𝑚+1
⋮ ⋱ ⋮

𝑎𝑚+1,1 ⋯ 𝑎𝑚+1,𝑚+1
) = 𝑎1,1 det [𝐴 but remove first row and first column]⏞                          

an 𝑚×𝑚 matrix

 

−𝑎1,2 det[𝐴 but remove first row and second column] + ⋯ 

+(−1)𝑚𝑎1,𝑚+1 det[𝐴 but remove first row and (𝑚 + 1)th column] 
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= 𝑎1,1 det 𝐴̃1,1 − 𝑎1,2 det 𝐴̃1,2 +⋯+ (−1)
𝑚𝑎1,𝑚+1 det 𝐴̃1,𝑚+1 =∑(−1)𝑗−1𝑎1,𝑗 det 𝐴̃1,𝑗

𝑘+1

𝑗=1

. 

• Definition 12.3: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map. Let 𝛽 be a basis for 𝑉. We define the 

determinant of 𝑇 as the determinant of its representation with respect to 𝛽: 

det 𝑇 = det[𝑇]𝛽
𝛽
. 

In the homework you will prove that this definition is well-defined. In other words, if you choose 

a different basis 𝛽̃ of 𝑉, then you will get the same answer for the determinant of 𝑇 (tip: first read 

this chapter before trying to prove this). 

12.1 Determinants and Elementary Row Operations 

• We will now study how determinants behave under elementary row operations. 

• Theorem 12.4: Suppose that 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is a square matrix and that 𝐵 is obtained by 

switching two rows in 𝐴 (i.e. an elementary row operation of type 1). Then 

(12. 5)                                                           det 𝐵 = −det 𝐴. 

Proof: We will prove this by induction. It is obviously true for 1 × 1 matrices and you can also 

check it directly for 2 × 2. Now suppose that we proved it for 𝑘 × 𝑘 matrices. Let 𝐴 be a 

(𝑘 + 1) × (𝑘 + 1) matrix. If the two rows that we’re switch do not involve the first row, then 

(12.5) follows immediately from (12.2) and our inductive hypothesis. So suppose that one of 

the rows that we’re switching is the first row. It’s actually enough to prove (12.5) when we’re 

switching the first and the second row for the following reason. If we’re switching the first and 

the 𝑗th row, this can be seen as first switching the first and the second row, then switching the 

second row and the 𝑗th row (which we already argued causes a sign flip in the determinant), and 

finally switching the first and second row again. Overall we did an odd number of row switches 

(three in fact), and hence we get (12.5). 

So suppose we’re switching the first and second row. By (12.2), 

det 𝐴 = 𝑎1,1 det 𝐴̃1,1 −⋯+ (−1)
𝑘𝑎1,𝑘+1 det 𝐴̃1,𝑘+1 =∑(−1)𝑖−1𝑎1,𝑖 det 𝐴̃1,𝑖

𝑘+1

𝑖=1

 

Letting (𝐴̃1,𝑖)̃2,𝑗 denote removing the second row and 𝑗th column of 𝐴 from 𝐴̃1,𝑖, applying (12.2) 

again to each 𝐴̃1,𝑖 in the above equation gives 

det 𝐴 = ∑(−1)𝑖−1𝑎1,𝑖∑(−1)?𝑎2,𝑗 det(𝐴̃1,𝑖)̃2,𝑗

𝑘+1

𝑗=1
𝑗≠𝑖

𝑘+1

𝑖=1
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(12. 6)                                       = ∑ (−1)?𝑎1,𝑖𝑎2,𝑗 det(𝐴̃1,𝑖)̃2,𝑗
𝑖,𝑗∈{1,…,𝑘+1}

𝑖≠𝑗

. 

Expanding 𝐵 similarly gives 

(12. 7)                                  det 𝐵 = ∑ (−1)?𝑎2,𝑖𝑎1,𝑗 det(𝐴̃1,𝑖)̃2,𝑗
,𝑗∈{1,…,𝑘+1}

𝑖≠𝑗

. 

So the question is how do the (−1)? relate to each other in (12.6) and (12.7). We can figure this 

out by tracking the signs in the expansions involved in the above two equations diagrammatically 

as follows. Take any two 𝑖 ≠ 𝑗 and without loss of generality assume that 𝑖 < 𝑗. Then (this is a 

demonstration, you need to be in class to understand it) 

Computing det 𝐴 using (12.2) involves 

𝑎1,1 ⋯ 𝑎1,𝑖⏞
(−1)𝑖−1

⋯ 𝑎1,𝑗 ⋯ 𝑎1,𝑘+1
𝑎2,1 ⋯ 𝑎2,𝑖 ⋯ 𝑎2,𝑗⏟

(−1)𝑗−2

⋯ 𝑎2,𝑘+1
}  sign of 𝑎1,𝑖𝑎2,𝑗 det(𝐴̃1,𝑖)̃2,𝑗  is 

(−1)𝑖+𝑗−3, 

Computing det 𝐵 using (12.2) involves 

𝑎2,1 ⋯ 𝑎2,𝑖 ⋯ 𝑎2,𝑗⏞
(−1)𝑗−1

⋯ 𝑎2,𝑘+1
𝑎1,1 ⋯ 𝑎1,𝑖⏟

(−1)𝑖−1

⋯ 𝑎1,𝑗 ⋯ 𝑎1,𝑘+1
}  sign of 𝑎1,𝑖𝑎2,𝑗 det(𝐴̃1,𝑖)̃2,𝑗  is 

(−1)𝑖+𝑗−2. 

Notice that (−1)𝑖+𝑗−2 = −(−1)𝑖+𝑗−3. Hence the signs in (12.6) and (12.7) are related as 

(−1)? = −(−1)?. Hence indeed det 𝐵 = −det 𝐴. 

∎ 

• Corollary 12.8: If two rows of a square matrix are identical, then the determinant of the matrix 

is zero. 

Proof: Let 𝐴 be a square matrix with two identical rows. Switch those two identical rows to get a 

matrix 𝐵. Since those two rows are identical, 𝐵 = 𝐴. On the other hand, det 𝐴 = det𝐵 =

−det 𝐴. So indeed det 𝐴 = 0. 

∎ 

• Theorem 12.9: Suppose that 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is a square matrix. Then for any 𝑎, 𝑏 ∈ 𝐹 and any 

row vectors 𝑣 = (𝑣1, … , 𝑣𝑚) and 𝑤 = (𝑤1, … , 𝑤𝑚), 
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det

(

 
 𝑖 {

𝑎1,1 ⋯ 𝑎1,𝑚
⋮ ⋱ ⋮

𝑎𝑣1 + 𝑏𝑤1 ⋯ 𝑎𝑣𝑚 + 𝑏𝑤𝑚

    
⋮ ⋱ ⋮

𝑎𝑚,1        ⋯       𝑎𝑚,𝑚 )

 
 
= 𝑎 det

(

 
 

𝑎1,1 ⋯ 𝑎1,𝑚
⋮ ⋱ ⋮

𝑣1 ⋯ 𝑣𝑚
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑚)

 
 
+ 𝑏 det

(

 
 

𝑎1,1 ⋯ 𝑎1,𝑚
⋮ ⋱ ⋮

𝑤1 ⋯ 𝑤𝑚
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑚)

 
 
. 

Remark: This can be thought of as linearity of the determinant in each row when all of the other 

rows are fixed. 

Proof: We prove this similarly to Theorem 12.4: by induction. It’s clearly true for 1 × 1 matrices 

and you can directly check it for 2 × 2 matrices. Now suppose that we proved it for 𝑘 × 𝑘 

matrices. Let 𝐴 be a (𝑘 + 1) × (𝑘 + 1) matrix. As in the previous proof, you can similarly argue 

that the inductive hypothesis already implies that the above equation is true if 𝑖 ≥ 2. If 𝑖 = 1, 

then by (12.2), the left-hand side of the above equation is equal to 

(𝑎𝑣1 + 𝑏𝑤2) det 𝐴̃1,1 −⋯+ (−1)
𝑘(𝑎𝑣𝑘+1 + 𝑏𝑤𝑘+1) det 𝐴̃1,𝑘+1 

= 𝑎[𝑣1 det 𝐴̃1,1 −⋯+ (−1)
𝑘𝑣𝑘+1 det 𝐴̃1,𝑘+1] 

+𝑏[𝑤1 det 𝐴̃1,1 −⋯+ (−1)
𝑘𝑤𝑘+1 det 𝐴̃1,𝑘+1]. 

By (12.2), this is precisely the right-hand side of the equation in this theorem (with 𝑚 = 𝑘 + 1). 

∎ 

• Corollary 12.10: Suppose that 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is a square matrix. If you multiply a row by a 

constant 𝑐 ∈ 𝐹 to get a matrix 𝐵 (i.e. an elementary row operation of type 2), then 

det 𝐵 = 𝑐 det 𝐴. 

Proof: Fix a row index 𝑖. Then this result follows immediately from Theorem 12.9 by setting 

there 𝑎 = 𝑐, 𝑣 = (𝑎𝑖,1, … , 𝑎𝑖,𝑚), 𝑏 = 0, and 𝑤 = 0. 

∎ 

• Corollary 12.11: Suppose that 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is a square matrix. If you add a scalar multiple of 

a row to another row to get a matrix 𝐵 (i.e. an elementary row operation of type 3), then 

det 𝐵 = det 𝐴. 

Proof: Suppose that we’re adding 𝑐 ∈ 𝐹 times the 𝑗th row to the 𝑖th row to get 𝐵. By Theorem 

12.9, 

det 𝐵 = det

(

 
 

𝑎1,1 ⋯ 𝑎1,𝑚
⋮ ⋱ ⋮

𝑎𝑖,1 + 𝑐𝑎𝑗,1 ⋯ 𝑎𝑖,𝑚 + 𝑐𝑎𝑗,𝑚
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑚 )
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= det

(

 
 

𝑎1,1 ⋯ 𝑎1,𝑚
⋮ ⋱ ⋮

𝑎𝑖,1 ⋯ 𝑎𝑖,𝑚
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑚)

 
 

⏟              
det𝐴

+ 𝑐 det

(

 
 

𝑎1,1 ⋯ 𝑎1,𝑚
⋮ ⋱ ⋮

𝑎𝑗,1 ⋯ 𝑎𝑗,𝑚
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑚)

 
 
. 

Notice that the last matrix has two identical rows since the 𝑖th row is equal to the 𝑗th row. Hence 

by Corollary 12.8 the last matrix is zero. This proves this corollary. 

∎ 

• Corollary 12.12: If a square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is not invertible, then det 𝐴 = 0. 

Proof: If 𝐴 ∈ 𝑀𝑚×𝑚 is not invertible, then by Lemma 11.10 it does not have (max) rank 𝑚. 

Hence by Corollary 11.19, its row vectors are not spanning. Since there are 𝑚 rows, this means 

that they are linearly dependent. This means that one of the rows can be written as a linear 

combination of the other rows. Letting 𝑟1, … , 𝑟𝑚 denote the rows of 𝐴, suppose that the first row 

can be written as a linear combination of the other rows: 

𝑟1 = 𝑎2𝑟2 +⋯+ 𝑎𝑚𝑟𝑚. 

since the proof in the other cases is similar. Then by Theorem 12.9 and Corollary 12.8, 

det 𝐴 = det(

𝑟1
𝑟2
⋮

𝑟𝑚

) = det(

𝑎2𝑟2 +⋯+ 𝑎𝑚𝑟𝑚
𝑟2
⋮

𝑟𝑚

) = 𝑎2 det(

𝑟2
𝑟2
⋮

𝑟𝑚

)

⏟      
0

+⋯+ 𝑎𝑚 det(

𝑟𝑚
𝑟2
⋮

𝑟𝑚

)

⏟      
0

= 0. 

∎ 

• It is also true that if 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is invertible, then det 𝐴 ≠ 0 (i.e. the converse of the above 

corollary). We will prove that in Corollary 12.18 below. Recall that this is partly what we’re 

aiming for: the determinant “determines” whether a matrix is invertible. 

12.2 Properties of Determinants 

• Just as we studied rank of square matrices by decomposing them into elementary matrices, we 

will use a similar technique to study the properties of determinants. 

• Lemma 12.13: The determinant of the identity matrix 𝐼𝑚 is one. 

Proof: We prove this by induction on 𝑚. It’s obviously true for 𝑚 = 1: det[1] = 1. Now 

suppose that we proved the lemma for 𝐼𝑘, let’s prove it for 𝐼𝑘+1. By (12.2) and the inductive 

hypothesis, 

det 𝐼𝑘+1 = 1 ⋅ det 𝐼𝑘 − 0 ⋅ (something) + ⋯+ (−1)𝑘0 ⋅ (something) = 1. 

∎ 
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• Lemma 12.14: Suppose that 𝐸1, 𝐸2, 𝐸3 ∈ 𝑀𝑚×𝑚(𝐹) are elementary matrices of types 1, 2, and 3 

respectively. Suppose 𝐸2 is associated with the elementary operation of multiplying a row by 𝑐 ∈

𝐹. Then 

det 𝐸1 = −1,    det 𝐸2 = 𝑐,    det 𝐸3 = 1. 

Proof: We will prove that det 𝐸2 = 𝑐, the others are proved similarly. By definition 𝐸2 is 

obtained by multiplying a row of 𝐼𝑚 by 𝑐, and hence by Corollary 12.10 and Lemma 12.13 

det 𝐸2 = 𝑐 ⋅ 1 = 𝑐. 

∎ 

• Lemma 12.15: Suppose that 𝐸, 𝐵 ∈ 𝑀𝑚×𝑚(𝐹) where 𝐸 is an elementary matrix. Then 

det(𝐸𝐵) = det 𝐸 det 𝐵. 

Proof: First suppose that 𝐸 is an elementary matrix of type 1. Hence 𝐸𝐵 switches two rows of 𝐵 

and thus by Theorem 12.4, det(𝐸𝐵) = −det 𝐵. On the other hand, by Lemma 12.14, det 𝐸 =

−1 and so det 𝐸 det 𝐵 = −det𝐵. So indeed det(𝐸𝐵) = det 𝐸 det 𝐵. The proofs in the cases 

when 𝐸 is an elementary matrix of types 2 or 3 are handled similarly. 

∎ 

• Theorem 12.16: Suppose that 𝐴, 𝐵 ∈ 𝑀𝑚×𝑚(𝐹) are square matrices. Then 

(12. 17)                                                   det(𝐴𝐵) = det 𝐴 det 𝐵. 

Proof: First suppose that both 𝐴 and 𝐵 are invertible. Then by Corollary 11.17 we can 

decompose 𝐴 and 𝐵 into elementary matrices: 𝐴 = 𝐸1…𝐸𝑘 and 𝐵 = 𝐺1…𝐺𝑗. Applying Lemma 

12.15 many times gives that 

det(𝐴𝐵) = det(𝐸1…𝐸𝑘𝐺1…𝐺𝑗) = det 𝐸1…det 𝐸𝑘 det 𝐺1…det 𝐺𝑗 

= det(𝐸1…𝐸𝑘) det(𝐺1…𝐺𝑗) = det 𝐴 det 𝐵. 

Now suppose that one of 𝐴 or 𝐵 is not invertible and hence not of (max) rank 𝑚. By Corollary 

11.20 we get that 𝐴𝐵 is not of (max) rank 𝑚 and hence not invertible. Thus by Corollary 12.12 

both sides of (12.17) are simply equal to zero. 

∎ 

• Corollary 12.18: If 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is invertible, then det 𝐴 ≠ 0 and 

(12. 19)                                                        det(𝐴−1) =
1

det 𝐴
. 

Proof: From 

det 𝐴 det(𝐴−1) = det(𝐴𝐴−1) = det 𝐼𝑚 = 1, 

we get that det 𝐴 cannot be zero. By solving for det(𝐴−1), we get (12.19). 
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∎ 

• Now we carry out a similar program to study transposes. 

• Lemma 12.20: If 𝐸 is an elementary matrix, then det 𝐸 = det(𝐸⊤). 

Proof: This is proved very similarly to Lemma 12.14, we leave the details to the reader. ∎ 

• Theorem 12.21: For any square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹), det(𝐴
⊤) = det 𝐴. 

Proof: First suppose that 𝐴 is invertible and hence we can decompose it into elementary 

matrices: 𝐴 = 𝐸1…𝐸𝑘. Then by Lemma 12.20, 

det 𝐴⊤ = det[(𝐸1…𝐸𝑘)
⊤] = det(𝐸𝑘

⊤…𝐸1
⊤) = det(𝐸𝑘

⊤)…det(𝐸1
⊤) = det(𝐸𝑘)…det(𝐸1) 

= det(𝐸1)…det(𝐸𝑘) = det(𝐸1…𝐸𝑘) = det 𝐴. 

Now suppose that 𝐴 is not invertible and hence not of (max) rank 𝑚. By Corollary 11.19 we 

have that rank𝐴 = rank(𝐴⊤) and so 𝐴⊤ also does not have rank 𝑚 and thus is not invertible. So 

det(𝐴⊤) = det 𝐴 simply because both det(𝐴⊤) and det 𝐴 are zero. 

∎ 

• Corollary 12.22: Theorem 12.4, Corollary 12.10, and Corollary 12.11 all hold for column 

operations as well. 

Proof: To see that this is true for any square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹), note that column operations 

on 𝐴 are given by row operations on 𝐴⊤ and then use the fact that taking the transpose of a 

matrix doesn’t change the determinant (i.e. use Theorem 12.21). 

∎ 

• Note 12.23: The formula (12.2) computes the determinant by expanding along the first row. You 

can in fact expand along a different row or even column! Expanding along an 𝑖th row looks as 

follows: 

det

(

 
 𝑖 {

𝑎1,1 ⋯ 𝑎1,𝑚
⋮ ⋱ ⋮
𝑎𝑖,1 ⋯ 𝑎𝑖,𝑚

    
⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑚)

 
 
= (−1)𝑖−1[𝑎𝑖,1 det [𝐴 but remove 𝑖th row and first column]⏞                        

an (𝑚−1)×(𝑚−1) matrix

 

−𝑎𝑖,2 det[𝐴 but remove 𝑖th row and second column] + ⋯ 

+(−1)𝑚−1𝑎𝑖,𝑚 det[𝐴 but remove 𝑖th row and 𝑚th column]] 

= (−1)𝑖−1∑(−1)𝑗−1𝑎𝑖,𝑗 det 𝐴𝑖𝑗

𝑚

𝑗=1

=∑(−1)𝑖+𝑗𝑎𝑖,𝑗 det 𝐴𝑖𝑗

𝑚

𝑗=1

. 
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(here we used that (−1)−2 = 1). To prove this, first interchange the 1st and 𝑖th row, expand along 

the first row using (12.2), and then in the submatrices interchange the rows (𝑖 − 2) times to get 

the matrices 𝐴𝑖𝑗 above. You will do (𝑖 − 1) interchanges in total, which is the origin of the 

(−1)𝑖−1 above. 

Expanding along the 𝑗th column looks as follows 

det

(

 
 
𝑎1,1 ⋯ 𝑎1,𝑗
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑗

⏞          
𝑗

  

⋯ 𝑎1,𝑚
⋱ ⋮

⋯ 𝑎𝑚,𝑚

)

 
 
= (−1)𝑗−1[𝑎1,𝑗 det [𝐴 but remove first row and 𝑗th column]⏞                        

an (𝑚−1)×(𝑚−1) matrix

 

−𝑎2,𝑗 det[𝐴 but remove second row and 𝑗th column] + ⋯ 

+(−1)𝑚−1𝑎𝑚,𝑗 det[𝐴 but remove 𝑚th row and 𝑗th column]] 

=∑(−1)𝑖+𝑗𝑎𝑖,𝑗 det 𝐴𝑖𝑗

𝑚

𝑖=1

. 

Using the fact that det 𝐴 = det 𝐴⊤, this is proved by simply taking the transpose of the matrix 𝐴, 

computing the determinant of 𝐴⊤ by expanding along the  𝑗th row, which will be equivalent to 

the above expansion along the 𝑗th column. 

• The determinant has a geometric interpretation as well: 

• Theorem 12.24: If you have vectors 𝑣1, … , 𝑣𝑚 ∈ ℝ
𝑚, the volume (or area if 𝑚 = 2) of the 

parallelepiped that they span is equal to the absolute value of the determinant of the matrix 

obtained by making 𝑣1, … , 𝑣𝑚 its columns or rows: 

Vol{𝑡1𝑣1 +⋯𝑡𝑚𝑣𝑚 ∶ each 0 ≤ 𝑡𝑖 ≤ 1} 

= |det (
(𝑣1)1 ⋯ (𝑣𝑚)1
⋮ ⋱ ⋮

(𝑣1)𝑚 ⋯ (𝑣𝑚)𝑚

)| = |det (
(𝑣1)1 ⋯ (𝑣1)𝑚
⋮ ⋱ ⋮

(𝑣𝑚)1 ⋯ (𝑣𝑚)𝑚

)|. 

Proof: You will most likely explore this in the homework. The proof is technically beyond the 

scope of the class because we need to define volume, which you do in a measure theory class. 

We remark that the absolute values above are needed since, unlike volume, determinants can be 

negative. The two determinants are equal because of the law det 𝐴 = det 𝐴⊤. 

∎ 

• In particular, the above geometric interpretation explains immediately why a matrix is invertible 

if and only if its determinant is nonzero: can you figure out why? 
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• The following is a famous and useful rule of thumb that you should be aware of called Cramer’s 

rule. It has a higher dimensional analog (see Theorem 4.9 in the book), though we won’t cover it 

in this class. 

• Theorem 12.25: 

If 𝐴 = (
𝑎 𝑏
𝑐 𝑑

)  is invertible, then 𝐴−1 =
1

det 𝐴
(
𝑑 −𝑏
−𝑐 𝑎

). 

Proof: We know that if 𝐴 is invertible, then det 𝐴 ≠ 0 and so we’re not dividing by zero above. 

The fact that the above formula gives 𝐴−1 can be checked directly by multiplying it by 𝐴 to get 

𝐼2. 

∎ 

 

13 Eigenspaces and Diagonalization 

13.1 Eigenvalues and Eigenvectors 

• We now get to the most exciting part of linear algebra: the theory of eigenvalues and 

eigenvectors and their application to diagonalization – a powerful technique in linear algebra. 

This theory also goes by the name of “spectral theory” whose extensions to infinite dimensional 

vector spaces (something you’d study in a class on partial differential equations for instance) has 

had profound influence on analysis, differential geometry, and inverse problems. 

This theory is stunning: it starts with a simple idea which surprisingly develops into an entire 

collection of nontrivial and powerful facts that fit together perfectly and intertwine almost all of 

the ideas we have covered so far. The simple idea is the following: if we have a linear map 𝑇 ∶

𝑉 → 𝑉, can we find directions that are preserved under 𝑇: 

• Definition 13.1: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map. A nonzero vector 𝑣 ∈ 𝑉 is called an 

eigenvector of 𝑇 if there exists a scalar 𝜆 ∈ 𝐹 such that 𝑇(𝑣) = 𝜆𝑣 (note that 𝜆 can be zero). The 

scalar 𝜆 is called the eigenvalue corresponding to the eigenvector 𝑣. 

• The definition for matrices is analogous. 

• Definition 13.2: Suppose that 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is a square matrix. A nonzero vector 𝑣 ∈ 𝐹𝑚 is 

called an eigenvector of 𝐴 if there exists a scalar 𝜆 ∈ 𝐹 such that 𝐴𝑣 = 𝜆𝑣. The scalar 𝜆 is called 

the eigenvalue corresponding to the eigenvector 𝑣. This is equivalent to 𝑣 being an eigenvector 

of 𝐿𝐴 ∶ 𝐹
𝑚 → 𝐹𝑚 with eigenvalue 𝜆 since 𝐴𝑣 = 𝜆𝑣 represents 𝐿𝐴(𝑣) = 𝜆𝑣. 

• Note 13.3: So how does one find eigenvectors and eigenvalues? A neat way to do this is to first 

find eigenvalues and then find eigenvectors as follows. Suppose you have a linear map 𝑇 ∶ 𝑉 →

𝑉 where 𝑉 is finite dimensional whose representation is given by a square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹). 

The following also work if you simply started with a square matrix 𝐴 with no reference to a 
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linear map. A scalar 𝜆 ∈ 𝐹 is an eigenvalue if and only if (the 𝑣 below is an eigenvector 

associated to 𝜆) 

∃ nonzero 𝑣 ∈ 𝐹𝑚 ∶ 𝐴𝑣 = 𝜆𝑣     ⟺     ∃ nonzero 𝑣 ∈ 𝐹𝑚 ∶ 𝐴𝑣 − 𝜆𝑣 = 0 

⟺     ∃ nonzero 𝑣 ∈ 𝐹𝑚 ∶ (𝐴 − 𝜆𝐼𝑚)𝑣 = 0     ⟺      ∃ nonzero 𝑣 ∈ 𝐹𝑚 ∶ 𝑣 ∈ null(𝐿𝐴 − 𝜆𝐼𝐹𝑚) 

dimension theorem
⇔                det(𝐴 − 𝜆𝐼𝑚) = 0. 

The matrix 𝐴 − 𝜆𝐼𝑚 looks as follows: 

(13. 4)                                       (

𝑎1,1 − 𝜆 𝑎1,2 ⋯ 𝑎1,𝑚
𝑎2,1 𝑎2,2 − 𝜆 ⋯ 𝑎2,𝑚
⋮ ⋮ ⋱ ⋮

𝑎𝑚,1 𝑎𝑚,2 ⋯ 𝑎𝑚,𝑚 − 𝜆

). 

If you take the determinant of this and set it zero you will get an equation of the form 

𝑏𝑚𝜆
𝑚 + 𝑏𝑚−1𝜆

𝑚−1 +⋯+ 𝑏1𝜆 + 𝑏0 = 0. 

The formal polynomial (c.f. Definition 12.3 for the second “=” here) 

𝑓(𝑡) = det(𝑇 − 𝜆𝐼𝑉) = det(𝐴 − 𝑡𝐼𝑚) = 𝑏𝑚𝑡
𝑚 +⋯+ 𝑏0 

is called the characteristic polynomial of 𝑇 and 𝐴 and so we get the important principle that 

𝜆 ∈ 𝐹 is an eigenvalue of 𝐴 if and only if it is a root of the characteristic polynomial 𝑓(𝑡) =

𝑏𝑚𝑡
𝑚 +⋯+ 𝑏0 when the latter is thought of as a function. This is how you solve for 

eigenvalues! 

Before we move on, let’s study the polynomial 𝑓 itself. By computing the determinant of (13.4) 

using (12.2) iteratively, you will show in the homework that 

(13. 5)                                                                𝑏𝑚 = (−1)
𝑚 

and     𝑏𝑚−1 = (−1)
𝑚−1𝑎1,1 +⋯+ (−1)

𝑚−1𝑎𝑚,𝑚 = (−1)
𝑚−1 tr 𝐴 = tr 𝑇. 

Moreover, we have that 

(13. 6)                                  𝑏0 = 𝑓(0) = det(𝐴 − 0𝐼𝑚) = det 𝐴 = det 𝑇. 

Computing the other coefficients 𝑏𝑖 of 𝑓 is harder. Before we continue, we interrupt this note 

with an important definition and result from algebra: 

• Note 13.7: Suppose that ℎ = 𝑎𝑛𝑥
𝑛 +⋯+ 𝑎0 ∈ 𝑃(𝐹) is a (formal) polynomial of degree 𝑛 over 

𝐹 (i.e. 𝑎𝑛 ≠ 0). We say that ℎ splits (over 𝐹) if it can be written as the formal product 

(13. 8)                                                ℎ(𝑥) = 𝑎𝑛(𝑥 − 𝑏1)… (𝑥 − 𝑏𝑛). 

for some 𝑏1, … , 𝑏𝑛 ∈ 𝐹 (the 𝑏𝑖’s can repeat). Clearly each 𝑏𝑖 is a root of ℎ when ℎ is thought of 

as a function ℎ ∶ 𝐹 → 𝐹 (i.e. each ℎ(𝑏𝑖) = 0). Conversely, it’s a theorem from algebra that if 

𝑏1, … , 𝑏𝑛 are roots of ℎ, then (13.8) holds and furthermore it is the unique way to split ℎ up to 
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rearranging the (𝑥 − 𝑏𝑖) terms. This is not hard to prove: it’s done by induction. Note that this 

implies that ℎ cannot have more than 𝑛 distinct roots. 

Not all polynomials split. For instance, good luck splitting 𝑥2 + 1 over ℝ. However there is one 

very special field over which polynomials always split: 

• Theorem 13.9: (Fundamental Theorem of Algebra) Any polynomial over 𝐹 = ℂ splits. 

Remark: Because of this theorem, we say that ℂ is an algebraically closed field. 

Proof: Proving this theorem is beyond the scope of this class. The simplest proofs use complex 

analysis or homotopy of continuous maps over the circle. ∎ 

• Note 13.3 continued: Suppose that we can split our characteristic polynomial of 𝑇 and 𝐴: 

(13. 10)                                             𝑓(𝑡) = 𝑏𝑚(𝑡 − 𝜆1)… (𝑡 − 𝜆𝑚) 

You will show in the homework that distributing (13.10) and using (13.5) and (13.6) gives that 

𝑏𝑚−1 = 𝑏𝑚[−𝜆1 −⋯− 𝜆𝑚] = (−1)
𝑚−1 tr 𝐴      ⟹     𝜆1 +⋯+ 𝜆𝑚 = tr𝐴 = tr 𝑇⏟                

famous fact

, 

𝑏𝑚 = 𝑏𝑚(−1)
𝑚𝜆1…𝜆𝑚 = det 𝐴      ⟹      𝜆1…𝜆𝑚 = det 𝐴 = det 𝑇⏟                

famous fact

. 

Now, suppose we fix an eigenvalue 𝜆 ∈ 𝐹. Solving for an eigenvector associated to it is easy. 

From our reasoning before we see that 𝑣 is an eigenvector if and only if 

(𝐴 − 𝜆𝐼𝑚)𝑣 = 0     ⟺     (

𝑎1,1 − 𝜆 𝑎1,2 ⋯ 𝑎1,𝑚
𝑎2,1 𝑎2,2 − 𝜆 ⋯ 𝑎2,𝑚
⋮ ⋮ ⋱ ⋮

𝑎𝑚,1 𝑎𝑚,2 ⋯ 𝑎𝑚,𝑚 − 𝜆

)(

𝑣1
⋮

𝑣𝑚
) = (

0
⋮

0
)      ⟺ 

(𝑎1,1 − 𝜆)𝑣1 + 𝑎1,2𝑣2 +⋯+ 𝑎1,𝑚𝑣𝑚 = 0, 

𝑎2,1𝑣1 + (𝑎1,2 − 𝜆)𝑣2 +⋯+ 𝑎2,𝑚𝑣𝑚 = 0, 

⋮ 

𝑎𝑚,1𝑣1 + 𝑎𝑚,2𝑣2 +⋯+ (𝑎𝑚,𝑚 − 𝜆)𝑣𝑚 = 0. 

Hence to find all eigenvectors associated to 𝜆 (there is no reason for there to only be one 

eigenvector!), just solve the above system of equations. There will be at least one (nonzero) 

eigenvector since det(𝐴 − 𝜆𝐼𝑚) = 0 and so the above system has at least one free variable. In 

fact, the above shows that the set of all eigenvectors associated to the eigenvalue 𝜆 is a vector 

space given by: 

𝐸𝜆 = null(𝑇 − 𝜆𝐼𝑉)     which is represented by     null(𝐴 − 𝜆𝐼𝑚). 

This is called the eigenspace of 𝜆. 
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One more thing. Suppose that 𝜆 is an eigenvalue of 𝐴. The algebraic multiplicity of 𝜆 is defined 

as the largest value of 𝑘 such that it’s possible to write 

(13. 11)                                      𝑓(𝑡) = (𝑡 − 𝜆)𝑘 ⋅ (some polynomial). 

(here we say that 𝑓(𝑡) is “divisible” by (𝑡 − 𝜆)𝑘). If you split 𝑓(𝑡) as 

𝑓(𝑡) = (𝑡 − 𝜆1)
𝑘1 …(𝑡 − 𝜆𝑗)

𝑘𝑗
 

where all of the 𝜆𝑖 are distinct, then each 𝑘𝑖 is the algebraic multiplicity of 𝜆𝑖 (this is proved 

similarly to the theorem from algebra mentioned in Note 13.7). Note the important fact that in 

this case 

(13. 12)                                                        𝑘1 +⋯+ 𝑘𝑗 = 𝑚. 

The geometric multiplicity of 𝜆 is defined as the dimension of its eigenspace 𝐸𝜆: 

geometric multiplicity of 𝜆 = dim(𝐸𝜆). 

So how do the two multiplicities relate? 

• Theorem 13.13: Suppose that you have a linear map 𝑇 ∶ 𝑉 → 𝑉 where 𝑉 is finite dimensional 

and suppose that 𝜆 ∈ 𝐹 is an eigenvalue. Then 

1 ≤ geometric multiplicity of 𝜆⏟                
dim𝐸𝜆

≤ algebraic multiplicity of 𝜆. 

Remark: When we study diagonalization later, we’ll see that geometric multiplicity of 𝜆 being in 

fact equal to algebraic multiplicity of 𝜆 is a highly sought after condition. 

Proof: Let 𝑚 = dim𝑉. Let “𝑔 = dim𝐸𝜆” and “𝑎” denote the geometric and algebraic 

multiplicities of 𝜆 respectively. We need to show that 1 ≤ 𝑔 ≤ 𝑎. The fact that 1 ≤ 𝑔 follows 

from the fact that, as noted above, there is at least one (nonzero) eigenvector for every 

eigenvalue. Now, let {𝑣1, … , 𝑣𝑔} be an ordered basis for 𝐸𝜆 and extend it to an ordered basis 𝛽 =

{𝑣1, … , 𝑣𝑔, 𝑤1, … , 𝑤𝑚−𝑔} of 𝑉. It’s not hard to see that with respect to this ordered basis, the 

representation of 𝑇 is of the form 

[𝑇]𝛽
𝛽
= 𝐴 = (

𝜆𝐼𝑔 𝐵

0 𝐶
) 

(the “0” here represents a zero matrix). Hence the characteristic polynomial of 𝑇 is given by (in 

the third equality below we use the result of Exercise 21 on page 229 in the book) 

𝑓(𝑡) = det(𝐴 − 𝑡𝐼𝑚) = det (
𝜆𝐼𝑔 − 𝑡𝐼𝑔 𝐵

0 𝐶 − 𝑡𝐼𝑚−𝑔
) = det(𝜆𝐼𝑔 − 𝑡𝐼𝑔) det(𝐶 − 𝑡𝐼𝑚−𝑔) 

= (𝜆 − 𝑡)𝑔 det(𝐼𝑔) det(𝐶 − 𝑡𝐼𝑚−𝑔) = (𝑡 − 𝜆)
𝑔 ⋅ (some polynomial). 

Since the algebraic multiplicity “𝑎” of 𝜆 is the largest power of (𝑡 − 𝜆) so that one can write 

𝑓(𝑡) as in (13.11), we conclude that 𝑔 ≤ 𝑎. 
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∎ 

• Example 13.14: Consider the map 𝑇 ∶ ℝ2 → ℝ2 that rotates the plane by 90 degree 

counterclockwise. With respect to the standard basis, its representation is given by: 

𝐴 = (
0 −1
1 0

). 

Its characteristic polynomial is 

𝑓(𝑡) = det(𝐴 − 𝑡𝐼2) = det (
−𝑡 −1
1 −𝑡

) = 𝑡2 + 1. 

Notice that we cannot split this polynomial (over ℝ). This in fact makes sense because 

geometrically we know that rotation by 90 degrees does not preserve any directions! 

If, however, you view the above matrix as a complex matrix (i.e. 𝐴 ∈ 𝑀2×2(ℂ)), then you will 

get the splitting 𝑓(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖). Geometrically this means that if you view 𝐴 as 

representing a rotation in ℂ2, then there are fixed directions (they’re hard to visualize!). 

13.2 Diagonalization 

• We now study one of the most important applications of spectral theory: diagonalization. When 

possible, this technique allows one to find an ordered basis with respect to which the 

representation of a linear map is a diagonal matrix. This not only helps understand the structure 

of the linear map, but also allows one to take powers of it very quickly. This, for instance, opens 

the gateway to composing functions with linear maps by running the latter through the former’s 

Taylor series. 

• Definition 13.15: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map where 𝑉 is finite dimensional. We say 

that 𝑇 is diagonalizable if there exists an ordered basis 𝛽 of 𝑉 such that [𝑇]𝛽
𝛽

 is a diagonal 

matrix: 

(13. 16)                                               [𝑇]𝛽
𝛽
= (

𝜆1 0 ⋯ 0

0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜆𝑚

). 

It’s not an accident that we use the letters 𝜆𝑖 here for the diagonal matrix, see Note 13.18 below! 

• Definition 13.17: A square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is called diagonalizable if 𝐿𝐴 ∶ 𝐹
𝑚 → 𝐹𝑚 is 

diagonalizable. 

• Note 13.18: Let’s discuss Definition 13.15 a little bit further. Suppose that we diagonalized 𝑇 as 

in (13.16). Notice then that 𝑒1, … , 𝑒𝑚 are eigenvectors of [𝑇]𝛽
𝛽

 with associated eigenvalues 

𝜆1, … , 𝜆𝑚. Thus 𝑒1, … , 𝑒𝑚 are representations of an ordered basis of eigenvectors {𝑣1, … , 𝑣𝑚}. 

Conversely, if we had an ordered basis of eigenvectors 𝛽 = {𝑣1, … , 𝑣𝑚}, then it’s not hard to see 

that the representation [𝑇]𝛽
𝛽

 of 𝑇 is going to be of the form (13.16). 
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Let’s see what diagonalization of a square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) looks like (c.f. Definition 

13.17). If 𝐿𝐴 is diagonalizable, then by the previous paragraph there exists an ordered basis of 

eigenvectors 𝛽 = {𝑣1, … , 𝑣𝑚} such that [𝐿𝐴]𝛽
𝛽

 is equal to a diagonal matrix 𝐷. By changing bases 

from {𝑒1, … , 𝑒𝑚} → {𝑣1, … , 𝑣𝑚}, we get that 

(13. 19)                                                              𝐴 = 𝑄𝐷𝑄−1 

for some matrix 𝑄 ∈ 𝑀𝑚×𝑚(𝐹). In other words, 𝐴 is similar to a diagonal matrix. In fact, some 

thought should convince you that the columns of 𝑄 will be 𝑣1, … , 𝑣𝑚 represented with respect to 

the standard ordered basis {𝑒1, … , 𝑒𝑚}. Similar to the previous paragraph, you can get the 

converse: if 𝐴 is similar to a diagonal matrix (i.e. (13.19) holds), then 𝐴 is diagonalizable. This 

proves the following two corollaries: 

• Corollary 13.20: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map where 𝑉 is finite dimensional. Then 𝑇 

is diagonalizable if and only if there exists a basis of eigenvectors {𝑣1, … , 𝑣𝑚} for 𝑉. 

• Corollary 13.21: A square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹) is diagonalizable if and only if it is similar to a 

diagonal matrix. 

• We detract for a moment to talk about the relation between diagonalizability and the ability to 

split characteristic polynomials: 

• Theorem 13.22: The characteristic polynomial of any diagonalizable linear map 𝑇 ∶ 𝑉 → 𝑉, 

where 𝑉 is finite dimensional, splits. The same is true for square matrices 𝐴 ∈ 𝑀𝑚×𝑚(𝐹). 

Proof: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is diagonalizable. Then there exists an ordered basis 𝛽 of 𝑉 such 

that [𝑇]𝛽
𝛽

 is diagonal as in (13.16). The characteristic polynomial of 𝑇 is given by 

(13. 23)            𝑓(𝑡) = det ([𝑇]𝛽
𝛽
− 𝑡𝐼𝑚) = det(

𝜆1 − 𝑡 0 ⋯ 0

0 𝜆2 − 𝑡 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜆𝑚 − 𝑡

) 

= (𝜆1 − 𝑡)… (𝜆𝑚 − 𝑡) = (−1)
𝑚(𝑡 − 𝜆1)… (𝑡 − 𝜆𝑚), 

and hence indeed splits. 

To prove the theorem for a diagonalizable matrix 𝐴, simply apply the above to 𝐿𝐴 ∶ 𝐹
𝑚 → 𝐹𝑚. 

∎ 

• Note 13.24: The converse of Theorem 13.25 is not true: if the characteristic polynomial split, 

that does not necessarily imply that the linear map or matrix is diagonalizable. For instance, the 

matrix 

𝐴 = (
1 0
1 1

) 
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only has the eigenvalue 𝜆 = 1 but as you can check 𝐸1 = span{(0,1)} is only one-dimensional. 

Hence by Corollary 13.20 (applied to 𝐿𝐴 ∶ ℝ
2 → ℝ2) 𝐴 is not diagonalizable. 

• Although Corollary 13.21 is conceptually important, it doesn’t provide an algorithm to determine 

whether a matrix is diagonalizable and to diagonalize it if that’s the case. Corollary 13.20 and 

(13.19) give us such an algorithm, but they require us to both find a list of eigenvectors and 

furthermore ensure that they’re a basis if possible. It turns out that eigenvectors possess certain 

nice properties that allow us to circumvent some of that work, beginning with the following: 

• Theorem 13.25: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map. Suppose that 𝜆1, … , 𝜆𝑙 are distinct 

eigenvalues of 𝑇. For each 𝑖 = 1, … , 𝑙, let 𝑆𝑖 = {𝑣𝑖,1, … , 𝑣𝑖,𝑛𝑖} ⊆ 𝐸𝜆𝑖 be a linearly independent set 

of eigenvectors associated to 𝜆𝑖. Then the list 

𝑆1 ∪ …∪ 𝑆𝑙 = {𝑣1,1, … , 𝑣1,𝑛1⏟        
Eigenvectors of 𝜆1

, … , 𝑣𝑙,1, … , 𝑣𝑙,𝑛𝑙⏟      
Eigenvectors of 𝜆𝑙

} 

is also linearly independent. 

Proof: First let’s do the case 𝑙 = 2 where the notation is easier. Let 𝑆1 = {𝑣1, … , 𝑣𝑘} and 𝑆2 =
{𝑤1, … , 𝑤𝑛}. We prove that 𝑆1 ∪ 𝑆2 is linearly independent by contradiction: suppose not! Then 

there exist constants 𝑎1, … , 𝑎𝑘 , 𝑏1, … , 𝑏𝑛 ∈ 𝐹 not all zero so that 

(13. 26)                                 𝑎1𝑣1 +⋯+ 𝑎𝑘𝑣𝑘 + 𝑏1𝑤1 +⋯+ 𝑏𝑛𝑤𝑛 = 0. 

Observe that 𝑎1, … , 𝑎𝑘 cannot all be zero because if they were, then this would imply that not all 

of the 𝑏1, … , 𝑏𝑛 are zero and hence the above would imply that 𝑤1, … , 𝑤𝑛 are linearly dependent 

– a contradiction! Now, applying 𝑇 to both sides of the above equation gives that 

(13. 27)                         𝑎1𝜆1𝑣1 +⋯+ 𝑎𝑘𝜆1𝑣𝑘 + 𝑏1𝜆2𝑤1 +⋯+ 𝑏𝑛𝜆2𝑤𝑛 = 0. 

Subtracting 𝜆2 times (13.26) from (13.27) gives: 

𝑎1(𝜆1 − 𝜆2)𝑣1 +⋯+ 𝑎𝑘(𝜆1 − 𝜆2)𝑣𝑘 + 𝑏1(𝜆2 − 𝜆2)𝑤1 +⋯+ 𝑏𝑛(𝜆2 − 𝜆2)𝑤𝑛 = 0 

⟹     𝑎1(𝜆1 − 𝜆2)𝑣1 +⋯+ 𝑎𝑘(𝜆1 − 𝜆2)𝑣𝑘 = 0. 

In other words, since 𝜆1 ≠ 𝜆2 and not all of the 𝑎1, … , 𝑎𝑘 are zero, we obtained a linear 

combination of the form 

(13. 28)                                                    𝑏1𝑣1 +⋯+ 𝑏𝑘𝑣𝑘 = 0, 

where not all of the 𝑏1, … , 𝑏𝑘 ∈ 𝐹 are zero. But this implies that the 𝑣1, … , 𝑣𝑘 are linearly 

dependent – a contradiction! To summarize: by utilizing the eigenvalue properties of 𝑇, we were 

able to “eliminate” the 𝑤1, … , 𝑤𝑛 from the linear combination (13.26) to get the linear 

combination (13.28) and obtain a contradiction. 

In the general case, this is done similarly. By taking a linear combination 

𝑎1,1𝑣1,1 +⋯+ 𝑎1,𝑛1𝑣1,𝑛1⏟                
Linear comb. of eigenvectors of 𝜆1

+⋯+ 𝑎𝑙,1𝑣𝑙,1 +⋯+ 𝑎𝑙,𝑛𝑙𝑣𝑙,𝑛𝑙⏟              
Linear comb. of eigenvectors of 𝜆𝑙

= 0, 



Haim Grebnev  Last Modified: April 25, 2025 

80 

 

where not all of the 𝑎1, … , 𝑎𝑙,𝑛𝑙 ∈ 𝐹 are zero, just as above one eliminates 𝑣𝑙,1, … , 𝑣𝑙,𝑛𝑙 to get a 

linear combination of the form 

𝑏1,1𝑣1,1 +⋯+ 𝑏1,𝑛1𝑣1,𝑛1⏟                
Linear comb. of eigenvectors of 𝜆1

+⋯+ 𝑏𝑙−1,1𝑣𝑙−1,1 +⋯+ 𝑏𝑙−1,𝑛𝑙−1𝑣𝑙−1,𝑛𝑙−1⏟                      
Linear comb. of eigenvectors of 𝜆𝑙−1

= 0 

where not all of the 𝑏1, … , 𝑏𝑙−1,𝑛𝑙−1 ∈ 𝐹 are zero. Then one repeats such an “elimination” 

procedure until one arrives at a contradiction similar to the one obtained from (13.28) (i.e. in 

this case that the 𝑣1,1, … , 𝑣1,𝑛1 are linearly dependent). 

∎ 

• Theorem 13.29: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map where 𝑉 is finite dimensional. Suppose 

also that the characteristic polynomial of 𝑇 splits: 

𝑓(𝑡) = (−1)𝑚(𝑡 − 𝜆1)
𝑘1 …(𝑡 − 𝜆𝑗)

𝑘𝑗
 

where 𝜆1, … , 𝜆𝑗 are all of 𝑇’s distinct eigenvalues (and hence 𝑘1, … , 𝑘𝑗 are their multiplicities). 

Then 

a. 𝑇 is diagonalizable if and only if the geometric multiplicity of each 𝜆𝑖 is equal to its 

algebraic multiplicity: 

dim𝐸𝜆𝑖 = 𝑘𝑖 . 

b. If 𝑇 is diagonalizable and 𝛽1, … , 𝛽𝑗 are bases for 𝐸𝜆1 , … , 𝐸𝜆𝑗 respectively, then 𝛽 = 𝛽1 ∪

…∪ 𝛽𝑗 is a basis for 𝑉. 

The same theorem holds with 𝑇 replaced by a square matrix 𝐴 ∈ 𝑀𝑚×𝑚(𝐹). 

Proof: First we’ll prove a). Suppose that 𝑇 is diagonalizable, we want to show that dim𝐸𝜆𝑖 = 𝑘𝑖. 

Since 𝑇 is diagonalizable, there exists an ordered basis 𝛽 for 𝑉 so that [𝑇]𝛽
𝛽

 is diagonal: 

[𝑇]𝛽
𝛽
=

(

 

𝜆1𝐼𝑚1 0 ⋯ 0

0 𝜆2𝐼𝑚2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜆2𝐼𝑚2)

  

for some sizes 𝑚1, … ,𝑚𝑗 to be determined. On the one hand, a computation like in (13.23) gives 

that 

𝑓(𝑡) = (−1)𝑚(𝑡 − 𝜆1)
𝑚1 …(𝑡 − 𝜆𝑗)

𝑚𝑗
, 

and so each 𝑚𝑖 = 𝑘𝑖 by the uniqueness of splitting. On the other hand, the equation for [𝑇]𝛽
𝛽

 

above shows that 𝑒1, … , 𝑒𝑚 are representations of linearly independent eigenvectors of 𝑇 and that 

for each 𝜆𝑖 there are 𝑚𝑖 eigenvectors associated to it. Hence 𝑘𝑖 = 𝑚𝑖 ≤ dim𝐸𝜆𝑖. Since dim𝐸𝜆𝑖 ≤

𝑘𝑖 by Theorem 13.13, we get that dim𝐸𝜆𝑖 = 𝑘𝑖. 
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Now suppose that each dim𝐸𝜆𝑖 = 𝑘𝑖, we want to show that 𝑇 is diagonalizable. Let 𝛽𝑖 be a basis 

for each 𝐸𝜆𝑖, which of course has dim𝐸𝜆𝑖 number of vectors. Consider 𝛽 = 𝛽1 ∪ …∪ 𝛽𝑗. On the 

one hand, by Theorem 13.25 we have that 𝛽 = 𝛽1 ∪ …∪ 𝛽𝑗 is linearly independent and in 

particular has no repeats. On the other hand, by (13.12) we have that the number of vectors in 𝛽 

is given by 

dim𝐸𝜆1 +⋯+ dim𝐸𝜆𝑗 = 𝑘1 +⋯+ 𝑘𝑚 = 𝑚. 

Hence 𝛽 is a basis for 𝑉 consisting of eigenvectors. Thus by Corollary 13.20 𝑇 is diagonalizable. 

This also proves b). 

As before, we prove the theorem for a square matrix 𝐴 simply by applying the above to 𝐿𝐴 ∶

𝐹𝑚 → 𝐹𝑚. 

∎ 

• Corollary 13.30: Suppose that 𝑇 ∶ 𝑉 → 𝑉 is a linear map where 𝑉 is 𝑚-dimensional. If 𝑇 has 𝑚 

distinct eigenvalues 𝜆1, … , 𝜆𝑚, then 𝑇 is diagonalizable. The same holds for square matrices 𝐴 ∈

𝑀𝑚×𝑚(𝐹). 

Proof: We have that the characteristic polynomial splits as: 

𝑓(𝑡) = (−1)𝑚(𝑡 − 𝜆1)… (𝑡 − 𝜆𝑚). 

Hence every 𝜆𝑖 has an algebraic multiplicity of 𝑘𝑖 = 1. Thus by Theorem 13.13 

1 ≤ dim𝐸𝜆𝑖 ≤ 𝑘𝑖 = 1 

and so each dim𝐸𝜆𝑖 = 𝑘𝑖. Thus by Theorem 13.29 a) our linear map 𝑇 or matrix 𝐴 is 

diagonalizable. 

∎ 

• Amazingly there is one class of matrices that is always guaranteed to be diagonalizable which 

appears in many places of mathematics: 

• Theorem 13.31: (Spectral Theorem) Suppose that 𝐴 ∈ 𝑀𝑚×𝑚(ℝ) is a symmetric real matrix, 

which means that 𝐴⊤ = 𝐴 (i.e. it’s symmetric across the diagonal). Then all eigenvalues of 𝐴 are 

real, the characteristic polynomial of 𝐴 splits, and 𝐴 is diagonalizable. Moreover, there exists an 

orthonormal basis 𝑢1, … , 𝑢𝑚 of eigenvector with respect to the dot product of 𝐴, which means 

that the length of each 𝑢𝑖 is one and 𝑢𝑖 ⊥ 𝑢𝑗 if 𝑖 ≠ 𝑗. In this case 

(13. 32)                                                             𝐴 = 𝑈𝐷𝑈−1, 

where the columns of 𝑈 are 𝑢1, … , 𝑢𝑗. Furthermore, because the columns of 𝑈 are orthonormal, 

(13. 33)                                                               𝑈−1 = 𝑈⊤ 

and so (13.32) can be rewritten as 



Haim Grebnev  Last Modified: April 25, 2025 

82 

 

𝐴 = 𝑈𝐷𝑈⊤. 

Proof: This is proved by induction, and uses the following equation relating dot products and 

transposes: 

(𝐵𝑥) ⋅ 𝑦 = 𝑥 ⋅ (𝐵⊤𝑦)     and     𝑥 ⋅ (𝐶𝑦) = (𝐶⊤𝑥) ⋅ 𝑦, 

which is an elementary exercise. We note that proving (13.33) is also on the level of an 

elementary exercise. We don’t have time to prove this theorem in this course. 

∎ 

Have a great summer! 


