
Math 255: Real Analysis
The real numbers
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Course information

• Email: haim.grebnev@yale.edu

• All materials on Canvas

• Homework assignments due every Friday at 11:59 p.m. (30% of 
grade)

• Two midterms (40% of grade) and final exam (30% of grade)



Classroom expectations

• Study together (discord channel?)

• Discuss homework together! 

• No looking up solutions, no use of AI

• Create a welcoming environment!

• Use all the resources available to you

• Don’t be afraid to ask questions!

• But everyone must write their own solutions!



Homework

• First homework due Friday Sept. 6th (plan to post it tomorrow)

• Unless stated otherwise, all solutions need to be written as proofs.

• Will be due on Fridays at 11:59 p.m.

• You can only use results proved in class up to that point.

• If in doubt, ask!



What is Real Analysis?

• A few examples are:

• “Real analysis”

• “Complex analysis”

• “Functional analysis”

• We will study “real analysis:” we study calculus while proving 
everything. 

• We don’t emphasize computation

• “Analysis” is an overarching field of math that stems from the idea of 
the “infinitesimal” (i.e. calculus)



Real numbers

• A great starting point is to recall the intermediate value theorem:

• Because we’ll be dealing with the “infinitesimal” on the real number 
line, we need to study the nature of the real line on the tiniest scale

Real number line

Y axis

X axis

A continuous function 𝑓 (i.e. you can draw it 

without lifting the pencil off of the paper)

𝑓 is positive 

here

𝑓 is negative 

here
Then, 𝑓 must intersect 

the X axis somewhere 

in between



The need for real numbers
Real number line

Y axis

X axis

A continuous function 𝑓 (i.e. you can draw it 

without lifting the pencil off of the paper)

𝑓 is positive 

here

𝑓 is negative 

here
Then, 𝑓 must intersect 

the X axis somewhere 

in between

• From a math point of view, this isn’t an obvious theorem.

• It’s not true if you think of the X-axis and Y-axis only consisting 

of rational numbers.

•We have to prove that 

there are no “holes” in 

the fabric of the “real 

line.”

•To prove it, take a sequence of x 

values where 𝑓 is positive, and 

x-values where 𝑓 is negative that 

converge to where 𝒇 is zero.

•How do we know that 

the sequences converge 

to something?



Defining the real numbers

• In other words, the idea is that we can approximate all real numbers by 
rational numbers better and better

• How does one define real numbers?

• A natural idea is to define them as infinite decimals:

𝜋 = 3.1415… ,     5.7000…,     2.000…

• We can write these as sequences of rational numbers (i.e. fractions):

3

1
,
31

10
,
314

100
,
3141

1000
,
31415

10000
,… → 𝜋,

5

1
,
57

100
,
570

1000
,
5700

10000
,… → 5.7000



Defining the real numbers

• Numbers in math are constructed as follows:

Whole numbers

ℤ = … ,−1,−2,−3,0,1,2,3, …

Rational numbers

ℚ (e.g. −
1

2
,
4

3
, 5 =

5

1
)

Real numbers

ℝ (e.g. 3,
3

7
, 𝜋, 2)

Complex numbers

ℂ (e.g. 4, 2 + 𝑖, 𝜋 − 7𝑖)

We assume we know this

We will define this We won’t worry about this

Some numbers can’t be written as fractions



Defining the real numbers

Integers

ℤ

Rational

ℚ

Real

ℝ

Complex

ℂ
ℤ

ℚ

ℝ

ℂ



Limits of sequences

• To define real numbers as better and better approximations of rational 
numbers, we need notion of limits.

• Suppose you have an (infinite) sequence of rational numbers 
𝑞1, 𝑞2, 𝑞3, … (i.e. there’s infinity many of them).

• Suppose they get closer and closer to some rational number 𝑞.

• For example, 𝑞1 = Τ1 1 , 𝑞2 = Τ1 2 , 𝑞3 = Τ1 3 , 𝑞4 = Τ1 4 , 𝑞5 = Τ1 5 ,…

• What does our example sequence above get closer and closer to to? 

Answer: zero

Number line

𝑞1𝑞2𝑞6 𝑞3𝑞4𝑞5
…

They seem to get closer and closer to 𝑞

𝑞 𝑞7𝑞8



Limits of sequences

• How can we mathematically describe this?

Definition (Limit): Suppose that you have a sequence of rational numbers 

𝑞1, 𝑞2, 𝑞3, …  (there’s infinity many of them). We say that the limit of this 

sequence is 𝑞 if

 For any 𝜀 > 0, there exists an 𝑁 > 0 such that for any 𝑛 > 𝑁, 

𝑞 − 𝑞𝑛 < 𝜀

Technically 𝜀 >
0 is rational (for 

now) because 

we don’t yet 

“know” what 

real numbers 

are.

Choose an arbitrary distance

Number line

𝑞1𝑞2𝑞6 𝑞3𝑞4𝑞5
…

𝑞 𝑞7𝑞8

If you go far enough in the sequence

Afterwards, you’ll always be within 

that distance of the limit.

• We write lim
𝑛→∞

𝑞𝑛 = 𝑞

(                                       )

𝜀 > 0
For this 𝜀 > 0, you would need 𝑁 = 5, since for 𝑛 ≥ 5, 
𝑞 − 𝑞𝑛 < 𝜀

𝑏

Recall that on a number line 𝑎 − 𝑏  

is the “distance” between them.

𝑎

distance



Defining the real numbers

• Let’s try an example. Take ሼ
ሽ

𝑞1 = Τ1 2 , 𝑞2 = Τ1 3 , 𝑞3 = Τ1 4 , 𝑞4 =
Τ1 5 ,… . In other words, 𝑞𝑛 = Τ1 𝑛.

Definition (Limit): Suppose that you have a sequence of rational numbers 

𝑞1, 𝑞2, 𝑞3, …  (there’s infinity many of them). We say that the limit of this 

sequence is 𝑞 if

 For any 𝜀 > 0, there exists an 𝑁 > 0 such that for any 𝑛 > 𝑁, 

𝑞 − 𝑞𝑛 < 𝜀

• It looks like it goes to zero (i.e. it’s limit is zero). In other it seems that 𝑞 = 0.

• If 𝜀 = 0.23, what 𝑁 > 0 do we need? Answer: 𝑁 = 5, since if 𝑛 ≥ 5, then 
0 − 𝑞𝑛 = 0 − Τ1 𝑛 = Τ1 𝑛 < 0.23

(                                       )

𝜀 = 0.23

Number line

Τ1 1Τ1 2Τ1 3Τ1 4Τ1 5
…

0 …

• If 𝜀 = 0.05, what 𝑁 > 0 do we need? Answer: 𝑁 = 21, since if 𝑛 ≥ 21, then 
0 − 𝑞𝑛 = 0 − Τ1 𝑛 = Τ1 𝑛 < 0.05



Defining the real numbers

• Let’s try an example. Take ሼ
ሽ

𝑞1 = Τ1 2 , 𝑞2 = Τ1 3 , 𝑞3 = Τ1 4 , 𝑞4 =
Τ1 5 ,… . In other words, 𝑞𝑛 = Τ1 𝑛. We have that 𝑞 = 0

Definition (Limit): Suppose that you have a sequence of rational numbers 

𝑞1, 𝑞2, 𝑞3, …  (there’s infinity many of them). We say that the limit of this 

sequence is 𝑞 if

 For any 𝜀 > 0, there exists an 𝑁 > 0 such that for any 𝑛 > 𝑁, 

𝑞 − 𝑞𝑛 < 𝜀

Number line

Τ1 1Τ1 2Τ1 3Τ1 4Τ1 5
…

0 …

• Let’s prove that lim
𝑛→∞

Τ1 𝑛 = 0 using the definition. Take any 𝜀 > 0.

Take any 𝑁 > Τ1 𝜀. This works because for any 𝑛 > 𝑁 > Τ1 𝜀, by 

reversing the above work

𝑞 − 𝑞𝑛 < 𝜀

Play around:

𝑞 − 𝑞𝑛 < 𝜀
0 − Τ1 𝑛 < 𝜀

1

𝑛
< 𝜀

1

𝜀
< 𝑛

Aha! We need 
1

𝜀
< 𝑁

This proves that indeed 
lim
𝑛→∞

𝑞𝑛 = lim
𝑛→∞

Τ1 𝑛 = 0!  

∎



Defining the real numbers

• Let’s try another example: take the sequence 𝑞𝑛 =
𝑛

𝑛+1
.

Definition (Limit): Suppose that you have a sequence of rational numbers 

𝑞1, 𝑞2, 𝑞3, …  (there’s infinity many of them). We say that the limit of this 

sequence is 𝑞 if

 For any 𝜀 > 0, there exists an 𝑁 > 0 such that for any 𝑛 > 𝑁, 

𝑞 − 𝑞𝑛 < 𝜀

• Computing a few of the terms:

𝑞1 =
1

2
= 0.5, 𝑞2 =

2

3
= 0. ത6,… 𝑞20 =

20

21
= 0.9523… ,… 𝑞50 =

50

51
= 0.9803…

• What does it look like it tends to: Answer: 1

• So we guess that the limit is 1, let’s prove it!

Number line

𝑞1𝑞2𝑞6 𝑞3𝑞4𝑞5
…

1 𝑞7𝑞8



Defining the real numbers

• Let’s try another example: take the sequence 𝑞𝑛 =
𝑛

𝑛+1
. Here 𝑞 = 0.

Definition (Limit): Suppose that you have a sequence of rational numbers 

𝑞1, 𝑞2, 𝑞3, …  (there’s infinity many of them). We say that the limit of this 

sequence is 𝑞 if

 For any 𝜀 > 0, there exists an 𝑁 > 0 such that for any 𝑛 > 𝑁, 

𝑞 − 𝑞𝑛 < 𝜀

Number line

𝑞1 𝑞2 𝑞6𝑞3 𝑞4 𝑞5
…
1𝑞7𝑞8

• Let’s prove that lim
𝑛→∞

𝑛

𝑛+1
= 1 using the definition. Take any 𝜀 > 0.

Take any 𝑁 > Τ1 − 𝜀 𝜀. This works because for any 𝑛 > 𝑁 > 1 − 𝜀 ∕ 𝜀, 

by reversing the above work

𝑞 − 𝑞𝑛 < 𝜀

Play around:

𝑞 − 𝑞𝑛 < 𝜀

1 −
𝑛

𝑛 + 1
< 𝜀

1 −
𝑛

𝑛 + 1
< 𝜀

𝑛 + 1 − 𝑛 < 𝑛 + 1 𝜀
1 < 𝑛𝜀 + 𝜀

1 − 𝜀

𝜀
< 𝑛

Aha! We need:
1 − 𝜀

𝜀
< 𝑁

This proves that indeed 
lim
𝑛→∞

𝑞𝑛 = lim
𝑛→∞

𝑛 ∕ ሺ

)
𝑛 +

1 = 0!
∎
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Math 255 Single Variable Analysis (All lectures starting with lecture 2) 

Haim Grebnev 

Limits continued 

• Theorem (Triangle Inequality for Rational Numbers): Suppose that 𝑎 and 𝑏 are rational 

numbers. Then 

|𝑎 + 𝑏| ≤ |𝑎| + |𝑏| 

|𝑎 − 𝑏| ≥ ||𝑎| − |𝑏|| 

Proof: √(𝑎 + 𝑏)2 = √𝑎2 + 2𝑎𝑏 + 𝑏2 ≤ √|𝑎|2 + 2|𝑎||𝑏| + |𝑏|2 = √(|𝑎| + |𝑏|)2. So |𝑎 + 𝑏| ≤

|𝑎| + |𝑏|. 

For the second one: 

|𝑎| ≤ |𝑎 − 𝑏| + |𝑏|      ⇒ |𝑎| − |𝑏| ≤ |𝑎 − 𝑏| 

|𝑏| ≤ |𝑏 − 𝑎| + |𝑎|      ⇒ |𝑏| − |𝑎| ≤ |𝑏 − 𝑎| = |𝑎 − 𝑏| 

So |𝑎 − 𝑏| ≥ ||𝑎| − |𝑏||. 

∎ 

• Theorem (Uniqueness of limits): Suppose {𝑞𝑛} is a sequence of rational numbers with limit 

rational number 𝑞. Then this limit is unique (i.e. you can’t have a different rational �̃� that is also 

a limit of 𝑞𝑛). 

Proof: Suppose �̃� is also a limit of {𝑞𝑛}. We will show that �̃� = 𝑞 by showing that for any 𝜀 > 0, 

|�̃� − 𝑞| < 𝜀. Take any 𝜀 > 0. Playing around: 

|𝑞 − �̃�| < |𝑞 − 𝑞𝑛| + |𝑞𝑛 − �̃�| 

There exists an 𝑁1 > 0 such that for all 𝑛 > 𝑁1, |𝑞𝑛 − 𝑞| < 𝜀 2⁄  and for all 𝑛 > 𝑁2, |𝑞𝑛 − �̃�| <

𝜀 2⁄ . Take 𝑁 = max{𝑁1, 𝑁2}. Then for all 𝑛 > 𝑁, 

|𝑞 − 𝑞𝑛| + |𝑞𝑛 − �̃�| <
𝜀

2
+
𝜀

2
= 𝜀 

and so |𝑞 − �̃�| < 𝜀. 

∎ 

• Theorem (Operations with Limits): Suppose that {𝑞𝑛} and {�̃�𝑛} are sequences of rational 

numbers with limits 𝑞 and �̃� respectively (i.e. lim𝑛→∞ 𝑞𝑛 = 𝑞 and lim𝑛→∞ �̃�𝑛 = �̃�). Then 

o lim
𝑛→∞

(𝑞𝑛 + �̃�𝑛) = 𝑞 + �̃�. 

o Same holds if you change “+” above to “−,” “×,” and “÷” (last if �̃� ≠ 0). 
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Proof: Let’s prove the “+” version. The rest are an exercise. Take any 𝜀 > 0. We need to show 

that there exists 𝑁 > 0 such that for all 𝑛 > 𝑁, 

|(𝑞𝑛 + �̃�𝑛) − (𝑞 + �̃�)| < 𝜀, 

Playing around: 

|(𝑞𝑛 + �̃�𝑛) − (𝑞 + �̃�)| = |(𝑞𝑛 − 𝑞) + (�̃�𝑛 − �̃�)| ≤ |𝑞𝑛 − 𝑞| + |�̃�𝑛 − 𝑞|. 

Because lim𝑛→∞ 𝑞𝑛 = 𝑞 and lim𝑛→∞ �̃�𝑛 = �̃�, there exist 𝑁1 > 0 and 𝑁2 > 0 such that for all 𝑛 >

𝑁1, |𝑞𝑛 − 𝑞| < 𝜀 2⁄  and for all 𝑛 > 𝑁2, |�̃�𝑛 − �̃�| < 𝜀 2⁄ . Take 𝑁 = max{𝑁1, 𝑁2}. Then for all 

𝑛 > 𝑁, 

|𝑞𝑛 − 𝑞| + |�̃�𝑛 − 𝑞| <
𝜀

2
+
𝜀

2
= 𝜀 

and so |(𝑞𝑛 + �̃�𝑛) − (𝑞 + �̃�)| < 𝜀. 

∎ 

Defining Real Numbers 

• Recall the idea of defining real numbers as limits of rational numbers: 

3

10
,
31

100
,
314

1000
,… → 𝜋 

• A few problems: 

o We only defined limits if the limit is rational, not a real number in general. So we need a 

notion of a sequence that “looks like” it has a limit. 

o Different sequences of rationales can converge to the same real number, for instance 

{2,2,2,2, … }, {2.1, 2.01, 2.001, 2.0001,… }, {1.9, 1.99, 1.999, 1.9999,… } all converge to 2. 

• Cauchy came up with a notion of a sequence that “looks like” it has a limit: 

• Definition (Cauchy Sequence): We say that a sequence of rational numbers {𝑞𝑛} is a Cauchy 

sequence if 

For any 𝜀 > 0, there exists an 𝑁 > 0 such that for any 𝑛 > 𝑁, |𝑞𝑁 − 𝑞𝑛| < 𝜀 

(Alternative version): For any 𝜀 > 0, there exists an 𝑁 > 0 such that for any 𝑚, 𝑛 > 𝑁, 

|𝑞𝑚 − 𝑞𝑛| < 𝜀 

• Remark: In the homework, you’ll prove that these are equivalent definitions. 

• Definition (Set): A set is a collection of elements (i.e. objects). 

• Definition (Real Numbers): A real number “𝑟” is a set of Cauchy sequences of rational numbers 

with the following properties 
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o If you take any two (Cauchy) sequences {𝑞𝑛} and {�̃�𝑛} in 𝑟, they must be equivalent in the 

sense 

lim
𝑛→∞

(𝑞𝑛 − �̃�𝑛) = 0. 

o The set 𝑟 contains all Cauchy sequences of rational numbers equivalent to what it contains 

(i.e. if you think of another sequence {�̃�𝑛} that is equivalent to {𝑞𝑛} already in 𝑟, then {�̃�𝑛} is 

actually in 𝑟 as well). 

We denote the set of all real numbers by ℝ. 

• Notation: If 𝑆1 and 𝑆2 are sets, then 

o 𝑆1 ∩ 𝑆2 denotes their intersection. 

o 𝑆1 ∪ 𝑆2 denotes their union. 

o ∅ denotes the empty set. 

o 𝑆1 ⊆ 𝑆2 means 𝑆1 is contained in 𝑆2. 

o If 𝑎 is an element, then 𝑎 ∈ 𝑆1 means “𝑎 is in 𝑆1.” If 𝑎 is not in 𝑆1, we write 𝑎 ∉ 𝑆1. 

• Proposition: Different real numbers cannot have shared Cauchy sequences. In other words, if 

𝑟, �̃� ∈ ℝ are not equal, then 𝑟 ∩ �̃� = ∅. 

Proof: Suppose that 𝑟 are �̃� are real and have the same Cauchy sequence of rational numbers 

{𝑞𝑛}. We will show that 𝑟 = �̃�. Take any Cauchy sequences of rational numbers {𝑝𝑛} ∈ 𝑟 and 

{𝑝𝑛} ∈ �̃�. Then 

lim
𝑛→∞

(𝑝𝑛 − 𝑝𝑛) = lim
𝑛→∞

(𝑝𝑛 − 𝑞𝑛) + lim
𝑛→∞

(𝑞𝑛 − 𝑝𝑛) = 0 + 0 = 0. 

So {𝑝𝑛} and {�̃�𝑛} are “equivalent.” So {𝑝𝑛} ∈ 𝑟 and {𝑝𝑛} ∈ �̃�. Since {𝑝𝑛} and {𝑝𝑛} were 

arbitrarily chosen, this shows that 𝑟 = �̃�. 

∎ 

• Corollary: For every Cauchy sequence of rational numbers {𝑞𝑛}, there exists one and only one 

real number 𝑟 containing it. 

• We think of rational numbers sitting in real numbers as follows: if 𝑞 is a rational number, we 

think of it as sitting in the real numbers as the set containing the constant Cauchy sequence 

{𝑞, 𝑞, 𝑞, … }. For instance, we think of 0 as the set containing {0,0,0, … }. 

• Definition (Operations on Reals): Suppose that 𝑟1 and 𝑟2 are real numbers. Take any Cauchy 

sequences of rational numbers {𝑝𝑛} ∈ 𝑟 and {𝑞𝑛} ∈ 𝑟2 in them respectively. 

o We define 𝑟1 + 𝑟2 as the real number containing the Cauchy sequence {𝑝𝑛 + 𝑞𝑛} =
{𝑝1 + 𝑞1, 𝑝2 + 𝑞2, 𝑝3 + 𝑞3, … }. 
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o We define 𝑟1 − 𝑟2, 𝑟1 ⋅ 𝑟2, 𝑟 ÷ 𝑟2 (if 𝑟2 ≠ 0) by replacing “+” with “−,” “⋅,” and “÷” 

respectively in the above statement. 

o We define |𝑟1| as the real number containing the Cauchy sequence {|𝑝𝑛|} 

o We define 𝑟1 ≤ 𝑟2 if 𝑟1 = 𝑟2 or eventually 𝑝𝑛 ≤ 𝑞𝑛 (i.e. there exists an 𝑁 > 0 for all 𝑛 > 𝑁, 

𝑝𝑛 ≤ 𝑞𝑛). 

o We define 𝑟1 < 𝑟2 if 𝑟1 ≤ 𝑟2 and 𝑟1 ≠ 𝑟2. 

• Proposition: The first three “∘” points above are well-defined (i.e. the stated sequences are 

indeed Cauchy and that the definitions don’t depend on the {𝑝𝑛} ∈ 𝑟 and {𝑞𝑛} ∈ 𝑟2 that we 

choose). 

Proof: We’ll prove that the third point is well-defined, the rest are an exercise. First we show 

that {|𝑝𝑛|} is Cauchy. Take any 𝜀 > 0. Playing around: 

||𝑝𝑁| − |𝑝𝑛|| ≤ |𝑝𝑁 − 𝑝𝑛| 

Since {𝑝𝑛} is Cauchy, there exists an 𝑁 > 0 such that for 𝑛 > 𝑁, |𝑝𝑁 − 𝑝𝑛| < 𝜀. So by the above 

||𝑝𝑁| − |𝑝𝑛|| < 𝜀. So indeed {|𝑝𝑛|} is Cauchy. 

Now suppose we choose another {𝑝𝑛} ∈ 𝑟1. We have to show that the real number containing 

{|�̃�𝑛|} is the same one that contains {|𝑝𝑛|} so that the definition of |𝑟1| does not depend on the 

Cauchy sequence we choose. This will follow if we show that {|�̃�𝑛|} is equivalent to {|𝑝𝑛|}, or in 

other words that lim𝑛→∞||𝑝𝑛| − |𝑝𝑛|| = 0. Take any 𝜀 > 0. By the triangle inequality, 

||𝑝𝑛| − |𝑝𝑛|| ≤ |𝑝𝑛 − 𝑝𝑛| 

Since {𝑝𝑛} and {𝑝𝑛} are both in 𝑟1, they are equivalent and so lim𝑛→∞|𝑝𝑛 − 𝑝𝑛| = 0. So there 

exists an 𝑁 > 0 such that for all 𝑛 > 𝑁, |𝑝𝑛 − 𝑝𝑛| < 𝜀. The above inequality then implies that 

||𝑝𝑛| − |𝑝𝑛|| < 𝜀. So indeed lim𝑛→∞||𝑝𝑛| − |�̃�𝑛|| = 0. 

∎ 

• Theorem (Triangle Inequality for Real Numbers): Suppose that 𝑎 and 𝑏 are real numbers. 

Then 

|𝑎 + 𝑏| ≤ |𝑎| + |𝑏| 

|𝑎 − 𝑏| ≥ ||𝑎| − |𝑏|| 

Proof: Take any Cauchy sequences of rational numbers {𝑝𝑛} ∈ 𝑎 and {𝑞𝑛} ∈ 𝑏. We have by the 

triangle inequality for rational numbers that 

|𝑝𝑛 + 𝑞𝑛| ≤ |𝑝𝑛| + |𝑞𝑛| 

The left-hand side is the Cauchy sequence for |𝑎 + 𝑏| and the right hand-side is the Cauchy 

sequence for |𝑎| + |𝑏|. So this not only “eventually holds,” but always holds. So we conclude 
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that |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| by the above definition (see “Operations on Reals”). The second 

inequality follows similarly. 

Completeness of real numbers 

• Sequences of real numbers have the property that if they “look like” they have a limit, then they 

have a limit. 

o This is called completeness, in other words there are no “holes” in the “fabric” of the real 

numbers. 

• Remark: We define limits of sequences of real numbers and Cauchy sequence of real numbers 

the same way as we did for rational numbers above. The theorem of “uniqueness of limits” and 

“operations on limits” also holds for real numbers with the same proofs. 

• Lemma: If you take any two distinct real numbers 𝑟1 ≠ 𝑟2, then 

o either 𝑟1 < 𝑟2 or 𝑟1 > 𝑟2, 

o there always exists a rational number 𝑞 between them (i.e. 𝑟1 < 𝑞 < 𝑟2 or 𝑟1 > 𝑞 > 𝑟2). 

Proof: Homework or TA discussion section. 

• Now we prove what intuition has been telling us all along: a Cauchy sequence that represents a 

real number actually converges to it. Note that it does not fall directly out of the definition since 

it relies on the nontrivial fact, provided by the above theorem, that for any real number 𝜀 > 0, 

there exists a rational number 𝜀′ ∈ ℚ satisfying 0 < 𝜀′ < 𝜀. 

• Lemma: If {𝑝𝑛} ∈ 𝑟, then 𝑟 = 𝑙𝑖𝑚𝑛→∞ 𝑝𝑛. 

Proof: Take any 𝜀 > 0. By the previous lemma, we know that there exists a rational 𝜀′ > 0 so 

that 0 < 𝜀′ < 𝜀. We have to show that 

(1)                                               ∃𝑁 > 0   ∀𝑛 > 𝑁,   |𝑝𝑛 − 𝑟| ≤ 𝜀
′ < 𝜀. 

By “Operations on Reals” part 4 this inequality will follow if we show that 1 

(2)                                                  ∃𝐾 > 0   ∀𝑘 > 𝐾,   |𝑝𝑛 − 𝑝𝑘| < 𝜀
′. 

Since {𝑝𝑛} is Cauchy, we know that 

∃𝑁′ > 0   ∀𝑛′, 𝑘′ > 𝑁′,   |𝑝𝑛′ − 𝑝𝑘′| < 𝜀
′. 

Notice then that setting 𝑁 = 𝑁′ and 𝐾 = 𝑁′ will make (1) and (2) hold true, proving the 

theorem. 

∎ 

• Theorem (Completeness of Reals): Suppose that {𝑟𝑛} = {𝑟1, 𝑟2, 𝑟3, … } is a Cauchy sequence of 

real numbers. Then this sequence has a limit 𝑟 (i.e. there exists an 𝑟 such that lim𝑛→∞ 𝑟𝑛 = 𝑟). 
 

1 We’re technically using here that 𝜀′ is rational here because then 𝜀′ contains the sequence {𝜀′, 𝜀′, 𝜀′, … }. 
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Proof: Take a Cauchy sequence {𝑟𝑛}𝑛=1
∞  of real numbers. We will construct the limit 𝑟 ∈ ℝ. 

There are many ways to do this proof: here is mine. This is called a “diagonal argument.” 

For any 𝑛 > 0, take any {𝑝𝑛,𝑘}𝑘=1
∞

∈ 𝑟𝑛. Fix any 𝑛 > 0 and consider for the moment 𝜀𝑛 = 1 𝑛⁄ . 

Since each {𝑝𝑛,𝑘}𝑘=1
∞

 is Cauchy there exists 𝐾𝑛 such that for any 𝑘 > 𝐾𝑛, |𝑝𝑛,𝐾𝑛 − 𝑝𝑛,𝑘| < 𝜀𝑛 =

1 𝑛⁄ . Define the sequence of rational numbers {𝑞𝑛}𝑛=1
∞  to be 𝑞𝑛 = 𝑝𝑛,𝐾𝑛. We will show that 

{𝑞𝑛}𝑛=1
∞  is Cauchy and hence there exists an 𝑟 ∈ ℝ containing it (spoiler: this is the 𝑟 we’re 

looking for). 

Take any rational 𝜀 > 0. We’re aiming for |𝑞𝑁 − 𝑞𝑛| < 𝜀. Since {𝑟𝑛}𝑛=1
∞  is Cauchy, there exists 

an 𝑁 > 0 such that for any 𝑛 > 𝑁 

|𝑟𝑁 − 𝑟𝑛| <
𝜀

3
 

By “Operations on Reals” part 4, there exists a 𝐾𝑁,𝑛 such that if 𝑘 > 𝐾𝑁,𝑛 2 

|𝑝𝑁,𝑘 − 𝑝𝑛,𝑘| ≤
𝜀

3
 

Now, we have that for all 𝑘 > 0 

|𝑞𝑁 − 𝑞𝑛| = |𝑝𝑁,𝐾𝑁 − 𝑝𝑛,𝐾𝑛| ≤ |𝑝𝑁,𝐾𝑁 − 𝑝𝑁,𝑘| + |𝑝𝑁,𝑘 − 𝑝𝑛,𝑘| + |𝑝𝑛,𝑘 − 𝑝𝑛,𝐾𝑛| 

Then, if we set 𝐾 = max{𝐾𝑁, 𝐾𝑁,𝑛, 𝐾𝑛}, then for 𝑘 > 𝐾 the right-hand side is bounded from 

above by 

1

𝑁
+
𝜀

3
+
1

𝑛
<
1

𝑁
+
𝜀

3
+
1

𝑁
 

Suppose we made 𝑁 > 0 earlier big enough so that 1 𝑁⁄ < 𝜀′ 3⁄ . Then we get that 

|𝑞𝑁 − 𝑞𝑛| <
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀 

And so indeed {𝑞𝑛}𝑛=1
∞  is Cauchy. Let 𝑟 ∈ ℝ be the real number that contains it. 

We will show that lim𝑛→∞{𝑟𝑛}𝑛=1
∞ = 𝑟. Take any 𝜀 > 0. By a previous lemma, we know that 

there exists a rational 𝜀′ > 0 so that 0 < 𝜀′ < 𝜀. We need to find an 𝑁 > 0 such that for all 𝑛 >

𝑁 

|𝑟 − 𝑟𝑛| ≤ 𝜀
′ < 𝜀 

By “Operations on Reals” part 4 this inequality holds for any 𝑛 if there exists a 𝐾 such that for 

𝑘 > 𝐾 

|𝑞𝑘 − 𝑝𝑛,𝑘| < 𝜀
′. 

 
2 We’re technically using here that 𝜀 3⁄  is rational here because then 𝜀 3⁄  contains the sequence {𝜀 3⁄ , 𝜀 3⁄ , 𝜀 3⁄ , … } 
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We have that 

|𝑞𝑘 − 𝑝𝑛,𝑘| ≤ |𝑞𝑘 − 𝑞𝑁| + |𝑞𝑁 − 𝑞𝑛| + |𝑞𝑛 − 𝑝𝑛,𝑘| = |𝑞𝑘 − 𝑞𝑁| + |𝑞𝑁 − 𝑞𝑛| + |𝑝𝑛,𝐾𝑛 − 𝑝𝑛,𝑘| 

Because {𝑞𝑛} is Cauchy, there exists 𝑁 > 0 be such that for any 𝑛 > 𝑁, |𝑞𝑁 − 𝑞𝑛| < 𝜀
′ 3⁄ . 

Increase 𝑁 if necessary so that 1 𝑁⁄ < 𝜀′ 3⁄ . Take any 𝑛 > 𝑁. Let 𝐾 = max{𝑁, 𝐾𝑛}. Then for 

any 𝑘 > 𝐾, the above is bounded above by 

𝜀′

3
+
𝜀′

3
+
1

𝑛
<
2𝜀′

3
+
1

𝑁
<
2𝜀′

3
+
𝜀′

3
= 𝜀′. 

So |𝑞𝑘 − 𝑝𝑛,𝑘| < 𝜀
′. As discussed above, this shows that indeed lim𝑛→∞{𝑟𝑛}𝑛=1

∞ = 𝑟. 

∎ 

• We can go back to thinking about real numbers normally. 

• Notation: The symbol “∃” means “there exists” and “∀” means “for all.” The symbol “:” (or “|”) 

means “such that.” 

• Definition (Supremum/infimum): Suppose that 𝑆 is a nonempty set of real numbers. If 𝑆 is 

bounded from above, then its supremum is the smallest real number 𝑟 that is ≥ all numbers in 𝑆 

(also called least upper bound (LUB)) and is denoted by 

sup 𝑆. 

If 𝑆 is bounded from below, then its infimum is the biggest real number 𝑟 that is ≤ than all 

numbers in 𝑆 (also called greatest lower bound (GLB)) and is denoted by 

inf 𝑆. 

• Lemma: Suppose that {𝑥𝑛} and {𝑦𝑛} are sequences of numbers with limits 𝑥 and 𝑦 respectively. 

If each 𝑥𝑛 ≤ 𝑦𝑛, then 𝑥 ≤ 𝑦. 

Proof: Either homework problem or TA discussion. 

• Theorem: The above definition is well defined (i.e. the real numbers 𝑠𝑢𝑝 𝑆 and 𝑖𝑛𝑓 𝑆 actually 

exist in the situations described). 

Proof: We’ll do “sup,” “inf” is left as an exercise. We construct the sequences of real numbers 

{𝑟𝑛 ∈ 𝑆}     and     {𝑢𝑛 each is an upper bound for 𝑆} 

as follows. Take any 𝑟1 ∈ 𝑆 and any upper bound 𝑢1 for 𝑆. Let their distance be 𝐿 = |𝑢1 − 𝑟1|. 
Take their center 𝑥 = (𝑟1 + 𝑢1) 2⁄ . 

1. If 𝑥 is an upper bound, set 𝑢2 = 𝑥 and 𝑟2 = 𝑟1. 

2. If 𝑥 is not an upper bound, take any 𝑟2 ∈ 𝑆 such that 𝑟2 > 𝑥 and set 𝑢2 = 𝑢1. 
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Do this again: take the center 𝑥 = (𝑟2 + 𝑢2) 2⁄  and proceed as in 1) and 2) but replace “1” with 

“2” and “2” with “3” to get 𝑟3 and 𝑢3. Repeat iteratively to get the sequences {𝑟𝑛} and {𝑢𝑛}. It’s 

not hard to see by induction that: 

o |𝑢𝑛 − 𝑟𝑛| ≤
𝐿

2𝑛
. 

o {𝑟𝑛} is nondecreasing (i.e. 𝑟1 ≤ 𝑟2 ≤ 𝑟3 ≤ ⋯) and {𝑢𝑛} is nonincreasing (i.e. 𝑢1 ≥ 𝑢2 ≥

𝑢3 ≥ ⋯). 

o Observe that for any 0 < 𝑁 < 𝑛 

|𝑟𝑛 − 𝑟𝑁| = 𝑟𝑛 − 𝑟𝑁 ≤ 𝑢𝑁 − 𝑟𝑁 = |𝑢𝑁 − 𝑟𝑁| < 𝐿/2
𝑁 

which you can quickly use to prove that {𝑟𝑛} is Cauchy. 

o Similarly use that for any 0 < 𝑁 < 𝑛 

|𝑢𝑁 − 𝑢𝑛| = 𝑢𝑁 − 𝑢𝑛 ≥ 𝑢𝑁 − 𝑟𝑁 = |𝑢𝑁 − 𝑟𝑁| < 𝐿/2
𝑁 

to prove that {𝑢𝑛} is Cauchy. 

So by completeness of real numbers, {𝑟𝑛} and {𝑢𝑛} have limits: 

𝑟 = lim
𝑛→∞

𝑟𝑛      and     𝑢 = lim
𝑛→∞

𝑢𝑛. 

Let’s show that 𝑟 = 𝑢. We will show this by showing that ∀𝜀 > 0, |𝑟 − 𝑢| < 𝜀. Playing around 

|𝑟 − 𝑢| < |𝑟 − 𝑟𝑛| + |𝑟𝑛 − 𝑢𝑛| + |𝑢𝑛 − 𝑢|. 

Now, ∃𝑁 > 0 ∶ ∀𝑛 > 𝑁, all three terms on the right are < 𝜀 3⁄  and so |𝑟 − 𝑢| < 𝜀. So indeed 

𝑟 = 𝑢. 

Let’s show that 𝑟 = 𝑢 is sup 𝑆. Let’s show that 𝑢 is bigger than everything in 𝑆. Take any 𝑥 ∈ 𝑆. 

Since each 𝑥 ≤ 𝑢𝑛, by the previous lemma 𝑥 ≤ 𝑢 (you can use the constant sequence {𝑥𝑛 = 𝑥} 

in that lemma if you wish). Next let’s show that 𝑟 is the smallest upper bound. Suppose 𝑦 was 

another upper bound. Since each 𝑟𝑛 ≤ 𝑦, 𝑟 ≤ 𝑦. So indeed 𝑟 = 𝑢 is sup 𝑆. 

∎ 

Proposition: If 𝑆 is nonempty, inf 𝑆 ≤ sup 𝑆. 

Proof: For any 𝑟 ∈ 𝑆, inf 𝑆 ≤ 𝑟 ≤ sup 𝑆. 

∎ 

• Theorem (Monotone Convergence Theorem): Suppose that {𝑥𝑛} is a nondecreasing sequence 

of real numbers (i.e. 𝑥1 ≤ 𝑥2 ≤ 𝑥3 < ⋯) and is bounded from above (i.e. there is a number 𝑢 

bigger than all the 𝑥𝑛’s). Then this sequence has a limit, and in fact 

𝑠𝑢𝑝{𝑥𝑛} = 𝑙𝑖𝑚𝑛→∞ 𝑥𝑛 
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(technical point: on the left-hand side {𝑥𝑛} is thought of as a set, not a sequence). If {𝑥𝑛} is 

nonincreasing, then the same holds but change “sup” to “inf.” 

Proof: Homework or TA discussion session 

Uncountability of the Reals 

• Turns out that there are many types of “infinities:” some are bigger than others. In math we refer 

to this “size of the infinities” as the cardinalities. 

• Definition: Suppose that 𝐴 and 𝐵 are sets. A map 𝑓 ∶ 𝐴 → 𝐵 is a rule that for every element 𝑎 ∈

𝐴 outputs an element in 𝐵 which we denote by 𝑓(𝑎) (draw a picture!). We say that 

o 𝑓 is injective (or “into”) if 𝑓(𝑎) = 𝑓(𝑏) implies that 𝑎 = 𝑏 (i.e. 𝑓 never hits anything twice) 

o 𝑓 is surjective (or “onto”) if you for every 𝑏 ∈ 𝐵, there exists an 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏 

(i.e. 𝑓 hits everything). 

o 𝑓 is bijective (or “one-to-one”) if it is both injective and surjective. 

• Example: Take the maps 𝑓1, 𝑓2, 𝑓3 ∶ ℤ → ℤ given by 

𝑓1(𝑛) = 𝑛 + 1,     𝑓2(𝑛) = 2𝑛,     𝑓3(𝑛) = {
0     if   𝑛 is odd

𝑛 2⁄      if   𝑛 is even
 

Which of these are bijective, injective, and surjective (answer: they are bijective, injective, and 

surjective respectively). 

• Definition: Suppose that 𝐴 and 𝐵 are sets. 

o If there exists a bijective map 𝑓 ∶ 𝐴 → 𝐵, then we say that 𝐴 and 𝐵 have the same 

cardinality. 

o If there exists an injective map 𝑓 ∶ 𝐴 → 𝐵, but there does not exist a surjective map 𝑔 ∶ 𝐴 →
𝐵, then we say that the cardinality of 𝐴 is smaller than the cardinality of 𝐵. 

• Definition: If a set has a bijection with ℤ+ = {1,2,3, … }, it is called countable. If not, then it is 

uncountable. 

• Theorem: The sets ℤ+ and ℚ have the same cardinality (i.e. ℚ is countable). 

Proof: Either TA discussion or homework. 

Theorem: The cardinality of ℤ+ is smaller than that of ℝ (i.e. ℝ is uncountable). 

Proof: The map 𝑓 ∶ ℤ+ → ℝ given by 𝑓(𝑛) = 𝑛 is injective. So let’s show that a surjective map 

𝑔 ∶ ℤ+ → ℝ does not exist. Suppose that it does. Write it out as the following in decimal form 

(the right-hand sides below are just an example for demonstration) but don’t write any number in 

the form where it ends in “9” repeated 

𝑔(0) = 0.163528464 
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𝑔(2) = 34.84757840383 

𝑔(3) = 7.758104731 

𝑔(4) = 4.348710743 

𝑔(5) = 0.0037417209 

𝑔(6) = 9.538753892 

𝑔(7) = 11.00000000000 

⋮ 

Align the right so that the decimal point “.” are on top of each other so that everything is aligned 

as above. Go along the diagonal as above to construct a number, in the above example it is: 

0.858750… 

Now if the digit is not a 5, turn into a 5. If the digit is a 5, turn it into a 4. 

5.545545… 

But this won’t be a number that 𝑔 hits, which contradicts that it’s a surjection. ∎ 

Infinite Limits 

• Definition: Suppose that {𝑥𝑛} is a sequence of numbers. We say that 𝑥𝑛 goes to +∞ 

∀𝐿 ∈ ℝ     ∃𝑁 > 0     ∀𝑛 > 𝑁,     𝑥 > 𝐿 

In this case we can write ∞ = lim𝑛→∞ 𝑥𝑛. We say that 𝑥𝑛 goes to −∞ if 

∀𝐿 ∈ ℝ     ∃𝑁 > 0     ∀𝑛 > 𝑁,     𝑥 < 𝐿. 

In this case we can write −∞ = lim𝑛→∞ 𝑥𝑛. In both cases we still say that {𝑥𝑛} do not converge. 

• Example: {𝑥𝑛 = 𝑛
2} goes to +∞ and {𝑦𝑛 = −𝑛

2} goes to −∞. 

Let’s prove that {𝑥𝑛 = 𝑛
2} goes to +∞, the other is left as an exercise. Take ∀𝐿 ∈ ℝ.  Take any 

𝑁 > 𝐿 such that 𝑁 > 1. Then ∀𝑛 > 𝑁, 

𝑥𝑛 = 𝑛
2 > 𝑁2 > 𝑁 > 𝐿. 

So indeed {𝑥𝑛 = 𝑛
2} goes to +∞. // 

Euclidean space 

• Definition: The space ℝ𝑛 is the set of all 𝑛-tuples of real numbers: 

𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) 

The real numbers 𝑣1, 𝑣2,…, 𝑣𝑛 are called the components of 𝑣. We often call elements of ℝ𝑛 

(such as 𝑣) “points” or “vectors” in ℝ𝑛. 
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• For example, we live in ℝ3 where a position in space could be 𝑣 = (3,4,6). // 

• Example: The real line ℝ is just ℝ1. 

• The reason we call elements of ℝ𝑛 “vectors” is because that’s how we called them in physics. In 

math we call them vectors because ℝ𝑛 is easily shown to be a vector space. 

• We’re going to generalize the “analysis” that we’ve developed on ℝ so far from the real line to 

ℝ𝑛. The basic notion that will get us started is defining distance: 

• Definition: For any vector 𝑣 ∈ ℝ𝑛. We define its length to be 

‖𝑣‖ = √(𝑣1)2 +⋯+ (𝑣𝑛)2. 

We will often not write the double bar “‖ ⋅ ‖” and just write “| ⋅ |.” 

• Theorem: For any vectors 𝑣,𝑤 ∈ ℝ𝑛, the triangle inequalities holds: 

|𝑣 + 𝑤| ≤ |𝑣| + |𝑤|,   |𝑣 − 𝑤| ≥ ||𝑣| − |𝑤|| 

And Cauchy’s inequality holds: 

|𝑣 ⋅ 𝑤| ≤ |𝑣||𝑤| 

Proof: The triangle inequalities are proved exactly the same way as for numbers except interpret 

multiplication as a dot product. We won’t prove Cauchy’s inequality since we won’t really use it, 

and you most likely proved it in a linear algebra course. 

∎ 

• Definition: Suppose that {𝑥𝑘} is a sequence of points in ℝ𝑛 and that 𝑥 ∈ ℝ𝑛. We say that 𝑥 is the 

limit of {𝑥𝑘} if 

∀𝜀 > 0   ∃𝐾 > 0   ∀𝑘 > 𝐾,   |𝑥 − 𝑥𝑘| < 𝜀. 

• Definition: Suppose that 𝑥 ∈ ℝ𝑛 and that 𝑟 > 0 is a real number. The (open) ball of radius 𝒓 

centered at 𝒙 is the set 

𝐵ℝ𝑛(𝑥; 𝑟) = {𝑦 ∈ ℝ
𝑛 ∶ |𝑥 − 𝑦| < 𝑟} 

• In other words, a sequence {𝑥𝑘} in ℝ𝑛 has the limit 𝑥 if for arbitrary small radius 𝜀 > 0, {𝑥𝑘} 

eventually enters the ball of radius 𝜀 centered at 𝑥. 

• Although dealing with limits in multiple variables at the same time looks daunting, fortunately 

we can often deal with it component wise. 

• Proposition: Suppose that {𝑥𝑘} is a sequence in ℝ𝑛. Write each 𝑥𝑘 as 

𝑥𝑘 = ((𝑥𝑘)1, … , (𝑥𝑘)𝑛) 

Suppose that each component sequence has a limit 𝑦𝑗 separately; 
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𝑦1 = 𝑙𝑖𝑚𝑘→∞((𝑥1)𝑘), 

⋮ 

𝑦𝑛 = 𝑙𝑖𝑚𝑘→∞((𝑥𝑛)𝑘). 

Then if we take the point 𝑦 = (𝑦1, … , 𝑦𝑛), then point 𝑦 is the limit of {𝑥𝑘} (i.e. 𝑦 = 𝑙𝑖𝑚𝑘→∞ 𝑥𝑘). 

Proof: Take any 𝜀 > 0. We have that 

|𝑥𝑘 − 𝑦| = √((𝑥1)𝑘 − 𝑦1)2 +⋯+ ((𝑥𝑛)𝑘 − 𝑦𝑛)2. 

Note that all of the “( ⋅ )2” above can be changed to “| ⋅ |.” Because each 𝑦𝑗 = lim𝑘→∞((𝑥1)𝑘), 

for any 𝑗 = 1,… , 𝑛 there exists an 𝐾𝑗 > 0 such that for all 𝑘 > 𝐾𝑗, |(𝑥𝑗)𝑘
− 𝑦𝑗| < 𝜀 √𝑛⁄ . Set 𝐾 =

max{𝐾1, … , 𝐾𝑛} and note that for all 𝑘 > 𝐾 the right-hand side above is less than 

< √(
𝜀

√𝑛
)
2

+⋯+ (
𝜀

√𝑛
)
2

= 𝜀. 

So indeed 𝑦 = lim𝑘→∞ 𝑥𝑘. 

∎ 

Continuity 

• We will now discuss the subject of continuity. Intuitively, a function is called continuous if its 

graph can be drawn without lifting the pencil off the paper. In a calculus course, you may have 

defined mathematically as requiring that for all 𝑎 

𝑓(𝑎) = lim
𝑥→𝑎

𝑓(𝑥). 

To do this, we need to define what it means to write an expression of the form lim𝑥→𝑎 𝑓(𝑥). 

• Often functions are not defined on the whole possible set, but we still want to talk about the 

continuity. An example is 𝑓(𝑥) = 1 𝑥⁄ . That’s why we’ll often talk about functions of the form 

𝑓 ∶ 𝑈 ⊆ ℝ → ℝ. 

• Definition: Suppose that 𝑓 ∶ 𝑈 ⊆ ℝ → ℝ is a function. For any 𝑎 ∈ 𝑈, we say that 𝑦 ∈ ℝ is the 

limit of 𝑓 as 𝑥 goes to 𝑎, which we write as write 𝑦 = 𝑙𝑖𝑚𝑥→𝑎 𝑓(𝑥), if 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿,   |𝑓(𝑥) − 𝑦| < 𝜀. 

We define left and right hand side limits respectively as 

𝑦 = 𝑙𝑖𝑚
𝑥→𝑎−

𝑓(𝑥)    if   ∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎, 𝑥 < 𝑎 and |𝑥 − 𝑎| < 𝛿,   |𝑓(𝑥) − 𝑦| < 𝜀. 

𝑦 = 𝑙𝑖𝑚
𝑥→𝑎+

𝑓(𝑥)    if   ∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎, 𝑥 > 𝑎 and |𝑥 − 𝑎| < 𝛿,   |𝑓(𝑥) − 𝑦| < 𝜀. 
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• Proposition: Suppose that 𝑓 ∶ 𝑈 ⊆ ℝ → ℝ is a function. If 𝑎 ∈ 𝑈, the limit 𝑙𝑖𝑚𝑥→𝑎 𝑓(𝑥) exists if 

and only if its left and right hand side limits exist and are equal: 𝑙𝑖𝑚𝑥→𝑎− 𝑓(𝑥) = 𝑙𝑖𝑚𝑥→𝑎+ 𝑓(𝑥). 

Proof: TA discussion section, homework, or exercise. 

• Most likely up to this point you’ve worked only with functions of the form 𝑓 ∶ ℝ → ℝ. But it 

turns out that the theory of continuity is essentially the same for more general functions of the 

form 𝑓 ∶ ℝ𝑚 → ℝ𝑛, which in turn have much richer applications. So we’ll study the latter. The 

explicit way to write 𝑓 ∶ ℝ𝑚 → ℝ𝑛 is as 

𝑓(𝑥) = (𝑓1(𝑥1, … , 𝑥𝑚),… , 𝑓𝑛(𝑥1, … , 𝑥𝑚)). 

For example, 𝑓 ∶ ℝ2 → ℝ2 takes points in ℝ2 to points in ℝ2. 

• Definition: Suppose that 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 is a function. For any 𝑎 ∈ 𝑈 we say that 𝑦 ∈ ℝ𝑛 is 

the limit of 𝑓 as 𝑥 goes to 𝑎, which we write as write 𝑦 = 𝑙𝑖𝑚𝑥→𝑎 𝑓(𝑥), if 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿,   |𝑓(𝑥) − 𝑦| < 𝜀 

(notice that it’s exactly the same as before!). 

• Definition: Suppose that 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 is a function. We say that 𝑓 is continuous at 𝒂 ∈ 𝑼 

if 

𝑓(𝑎) = lim
𝑥→𝑎

𝑓(𝑥). 

We say that 𝑓 is continuous if it is continuous at every point where it is defined. 

• Remark: If we write out explicitly the condition of 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 being continuous at 𝑎 ∈

𝑈, one gets 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ |𝑥 − 𝑎| < 𝛿,   |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀. 

The reason we don’t need to write the condition “𝑥 ≠ 𝑎” present in the definition of limit is that 

if 𝑥 = 𝑎, then |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀 is automatically satisfied since the left-hand side is zero. 

// 

• Remark: Observe that in the language of open balls, another equivalent way of writing down 𝑓 ∶

𝑈 ⊆ ℝ𝑚 → ℝ𝑛 being continuous at 𝑎 ∈ 𝑈 is 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ∈ 𝐵ℝ𝑛(𝑎; 𝛿),   𝑓(𝑥) ∈ 𝐵ℝ𝑛(𝑓(𝑎); 𝜀). 

This sometimes proves to be a powerful reformulation, in particular when we study topology 

later. 

// 

• Proposition: The following functions are continuous: 

o The function 𝑓(𝑥) = 𝑥 
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o The function 𝑔(𝑥) = 𝑐 where 𝑐 ∈ ℝ is some constant. 

Proof: We’ll prove the first one and leave the second to the reader. Take any 𝑎 ∈ ℝ. We need to 

prove that 𝑓(𝑎) = lim𝑥→𝑎 𝑓(𝑥), or in other words 𝑎 = lim𝑥→𝑎 𝑥. Take any 𝜀 > 0. We consider 

|𝑓(𝑥) − 𝑓(𝑎)| = |𝑥 − 𝑎| 

Letting 𝛿 = 𝜀, we have that for any 𝑥 ∈ ℝ ∶ |𝑥 − 𝑎| < 𝛿 = 𝜀, the above is trivially less than 𝜀. 

So indeed 𝑎 = lim𝑥→𝑎 𝑥 and hence 𝑓(𝑥) = 𝑥 is continuous. 

∎ 

• Now we study how continuity behaves under basic operations. 

• Notation:  

o If 𝑓 and 𝑔 are functions, then 𝑓 ∘ 𝑔 denotes the composition (i.e. 𝑓 ∘ 𝑔(𝑥) = 𝑓(𝑔(𝑥))). 

o If 𝑓 ∶ 𝐴 → 𝐵 is a map, 𝑓[𝐴] = {𝑓(𝑥) ∶ 𝑥 ∈ 𝐴} ⊆ 𝐵 is the range of 𝑓 (i.e. everything 𝑓 

hits). 

• Theorem: Suppose that 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 and 𝑔 ∶ 𝑉 ⊆ ℝ𝑛 → ℝ𝑘 are continuous functions such 

that 𝑓[𝑈] ⊆ 𝑉. Then 𝑔 ∘ 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑘 is continuous. 

Proof: Take any 𝑎 ∈ 𝑈 and take 𝑓(𝑎) ∈ 𝑉. Now, take any 𝜀 > 0. We’re aiming to show that 

∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿,   |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑎))| < 𝜀 

Since 𝑔 is continuous, 

(3)                       ∃𝛿 > 0   ∀𝑦 ∈ 𝑉 ∶ 𝑦 ≠ 𝑓(𝑎) and |𝑦 − 𝑓(𝑎)| < 𝛿,   |𝑔(𝑦) − 𝑔(𝑓(𝑎))| < 𝜀. 

Since 𝑓 is continuous, 

∃𝛿′ > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿′, |𝑓(𝑥) − 𝑓(𝑎)| < 𝛿. 

By setting 𝑦 = 𝑓(𝑥) in (3), we see that setting 𝛿 = 𝛿′ gives us what we want. 

∎ 

• Proposition: The functions ℎ𝐴, ℎ𝑀 ∶ ℝ
2 → ℝ and ℎ𝐷 ∶ ℝ ∖ {0} → ℝ given by 

ℎ𝐴(𝑥, 𝑦) = 𝑥 + 𝑦,   ℎ𝑀(𝑥, 𝑦) = 𝑥𝑦,   ℎ𝐷(𝑥) = 1 𝑥⁄  

are continuous. 

Proof: The proofs are very similar to the proof of the “Operations with Limits” theorem. We’ll 

do the third one, and leave the rest as an exercise. Because ℎ𝐷 is hard to write, let me instead 

write 𝑔 = ℎ𝐷. Take any 𝑎 ∈ ℝ ∖ {0} (i.e. 𝑎 ≠ 0). Take any 𝜀 > 0. We look at 

|𝑔(𝑥) − 𝑔(𝑎)| = |
1

𝑥
−
1

𝑎
| = |

𝑥 − 𝑎

𝑥𝑎
| =

|𝑥 − 𝑎|

|𝑥||𝑎|
. 
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Let 𝛿 = min{𝑎2𝜀 2⁄ , |𝑎| 2⁄ }. Observe for any 𝑥 ≠ 0 ∶ |𝑥 − 𝑎| < 𝛿, 

|𝑥| = |𝑥 − 𝑎 − (−𝑎)| ≥ ||𝑥 − 𝑎| − |−𝑎|| = ||𝑎| − |𝑥 − 𝑎|| ≥ |𝑎| − |𝑥 − 𝑎| >
|𝑎|

2
. 

So for any 𝑥 ≠ 0 ∶ |𝑥 − 𝑎| < 𝛿, 

|𝑥 − 𝑎|

|𝑥||𝑎|
<
𝑎2𝜀 2⁄

|𝑎|
2
|𝑎|

= 𝜀. 

So indeed 𝑔 is continuous. 

∎ 

• The following lemma and its variants are often useful when plugging multiple functions into one 

function. 

• Lemma: Suppose that 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 and 𝑔 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑘, then (𝑓, 𝑔) ∶ 𝑈 → ℝ𝑛+𝑘 is 

also continuous. Explicitly this is the function 

(𝑓, 𝑔)(𝑥) = (𝑓1(𝑥1, … , 𝑥𝑚), … , 𝑓𝑛(𝑥1, … , 𝑥𝑚), 𝑔1(𝑥1, … , 𝑥𝑚),… , 𝑔𝑘(𝑥1, … , 𝑥𝑚)). 

Proof: Take any 𝑎 ∈ 𝑈. We need to show that (𝑓, 𝑔)(𝑎) = lim𝑥→𝑎(𝑓, 𝑔)(𝑥). Pick any 𝜀 > 0. 

∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ |𝑥 − 𝑎| < 𝛿, |𝑓(𝑥) − 𝑓(𝑎)| <
𝜀

√2
 

∃�̂� > 0   ∀𝑥 ∈ 𝑈 ∶ |𝑥 − 𝑎| < 𝛿, |𝑔(𝑥) − 𝑔(𝑎)| <
𝜀

√2
 

Set 𝛿′ = min{𝛿, 𝛿} > 0. Then for 𝑥 ∈ 𝑈 ∶ |𝑥 − 𝑎| < 𝛿′, 

|(𝑓, 𝑔)(𝑥) − (𝑓, 𝑔)(𝑎)| 

= √(𝑓1(𝑥) − 𝑓1(𝑎))
2
+⋯+ (𝑓𝑛(𝑥) − 𝑓𝑛(𝑎))

2
+ (𝑔1(𝑥) − 𝑔1(𝑎))

2
+⋯+ (𝑔𝑘(𝑥) − 𝑔𝑘(𝑎))

2
 

< √(
𝜀

√2
)
2

+ (
𝜀

√2
)
2

= 𝜀. 

So indeed (𝑓, 𝑔)(𝑎) = lim𝑥→𝑎(𝑓, 𝑔)(𝑥). 

∎ 

Remark: The above theorem naturally generalizes when you need to group more functions 

together (e.g. (𝑓, 𝑔, … , ℎ)). // 

• Theorem: Suppose that 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ and 𝑔 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ are continuous functions. Then 

𝑓 + 𝑔, 𝑓 − 𝑔, and 𝑓𝑔 are all continuous on 𝑈. If 𝑆 is the set where 𝑔 is zero (i.e. 𝑆 =
{𝑥 ∈ 𝑑𝑜𝑚𝑔 ∶ 𝑔(𝑥) = 0}), then 𝑓 𝑔⁄  is continuous on 𝑈 ∖ 𝑆. 
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Proof: We’ll prove that 𝑓 − 𝑔 is continuous, the rest are an exercise. Take the function 

ℎ𝐴(𝑥, 𝑦) = 𝑥 + 𝑦 and ℎ𝑀(𝑥, 𝑦) = 𝑥𝑦 from the previous theorem. Consider also the continuous 

function ℎ−1(𝑥) = −1. Then 𝑓 − 𝑔 can be expressed as the composition 

(𝑓 − 𝑔)(𝑥) = ℎ𝐴 (𝑓, ℎ𝑀(ℎ−1(𝑥), 𝑔(𝑥))). 

By the previous theorem, this is indeed continuous. 

∎ 

• Proposition: The projection function 𝑃𝑘 ∶ ℝ
𝑛 → ℝ given by 

𝑃𝑘(𝑥1, … , 𝑥𝑛) = 𝑥𝑘 , 

where 1 ≤ 𝑘 ≤ 𝑛, is continuous. 

Proof: Take any 𝑎 ∈ ℝ𝑛. We need to show that 𝑃𝑘(𝑎) = lim𝑥→𝑎 𝑃𝑘(𝑥). Take any 𝜀 > 0. We need 

to prove that 

∃𝛿 > 0   ∀𝑥 ∈ ℝ𝑛 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿,   |𝑃𝑘(𝑥) − 𝑃𝑘(𝑎)| = |𝑥𝑘 − 𝑎𝑘| < 𝜀. 

We claim that 𝛿 = 𝜀 works. Then for any 𝑥 satisfying the above, 

|𝑥𝑘 − 𝑎𝑘| = √(𝑥𝑘 − 𝑎𝑘)2 ≤ √(𝑥1 − 𝑎1)2 +⋯+ (𝑥𝑛 − 𝑎𝑛)2 = |𝑥 − 𝑎| < 𝛿 = 𝜀. 

∎ 

• Corollary: If 𝑓, 𝑔 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 are continuous functions, then 

𝑓 + 𝑔 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛   and   𝑓 ⋅ 𝑔 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ. 

are continuous functions (here “⋅” is the dot product). If 𝑛 = 3, then 𝑓 × 𝑔 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ3 is 

continuous. 

Proof: They follow directly from our previous theorems. Let us demonstrate this for 𝑓 + 𝑔. 

Letting ℎ𝐴 and 𝑃𝑘 be as in the previous two propositions, using the previous lemma we see that 

𝑓 + 𝑔 is given by the following composition of continuous functions: 

𝑓 + 𝑔 = (𝑓1 + 𝑔1, … , 𝑓𝑛 + 𝑔𝑛) = (ℎ𝐴(𝑃1(𝑓), 𝑃1(𝑔)), … , ℎ𝐴(𝑃𝑛(𝑓), 𝑃𝑛(𝑔))). 

∎ 

• There is another very useful notion of continuity. Which we’ll prove is equivalent to the notion 

of continuity that we proved above.  

• Definition: A function 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 is called sequentially continuous at 𝒂 ∈ 𝑼 if for any 

sequence {𝑥𝑘 ∈ 𝑈} such that 𝑎 = lim𝑘→∞ 𝑥𝑘, 

𝑓(𝑎) = lim
𝑘→∞

𝑓(𝑥𝑘). 

A function is called sequentially continuous if it is sequentially continuous everywhere. 
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• Theorem: A function 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 is continuous at 𝑎 ∈ 𝑈 (in the usual sense we defined 

above) if and only if it is sequentially continuous at 𝑎 ∈ 𝑈. 

Proof: Suppose that 𝑓 is continuous at 𝑎 ∈ 𝑈 . Take any any sequence {𝑥𝑘 ∈ 𝑈} such that 𝑎 =

lim𝑘→∞ 𝑥𝑘. We will show that 𝑓(𝑎) = lim𝑘→∞ 𝑓(𝑥𝑘). Take any 𝜀 > 0. Since 𝑓 is continuous, 

∃𝛿 > 0   ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿,   |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀. 

Since 𝑎 = lim𝑘→∞ 𝑥𝑘 

∃𝐾 > 0   ∀𝑘 > 𝐾,   |𝑥𝑘 − 𝑎| < 𝛿. 

Notice then that for 𝑘 > 𝐾, |𝑓(𝑥𝑘) − 𝑓(𝑎)| < 𝜀. So indeed 𝑓(𝑎) = lim𝑘→∞ 𝑓(𝑥𝑘). 

Now suppose that 𝑓 is sequentially continuous at 𝑎 ∈ 𝑈. We will show that 𝑓 is continuous by 

contradiction. Suppose not! Then 

∃𝜀 > 0   ∀𝛿 > 0   ∃𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿, |𝑓(𝑥) − 𝑓(𝑎)| ≥ 𝜀. 

Fix such an 𝜀 > 0. Construct a sequence {𝑥𝑘 ∈ 𝑈} as follows. For every 𝑘 ≥ 1, consider 𝛿 =

1 𝑘⁄  and so by the above statement there exists 𝑥𝑘 ∈ 𝑈 ∶ 𝑥𝑘 ≠ 𝑎 and |𝑥𝑘 − 𝑎| < 1 𝑘⁄  such that 

|𝑓(𝑥𝑘) − 𝑓(𝑎)| ≥ 𝜀. Consider the sequence {𝑥𝑘}. 

First let’s prove that 𝑎 = lim𝑘→∞ 𝑥𝑘. Take any 𝜀̂ > 0. Let 𝐾 > 0 be so big so that 1 𝐾⁄ < 𝜀̂. Then 

for any 𝑘 > 𝐾, 

|𝑥𝑘 − 𝑎| <
1

𝑘
<
1

𝐾
< 𝜀̂. 

So indeed 𝑎 = lim𝑘→∞ 𝑥𝑘. Next let’s prove that 𝑓(𝑎) is not the limit of {𝑓(𝑥𝑘)}, which will 

contradict that 𝑓 is sequentially continuous. Notice that |𝑓(𝑥𝑘) − 𝑓(𝑎)| ≥ 𝜀 always. So there 

cannot exist 𝐾 > 0 so that for all 𝑘 > 𝐾, |𝑓(𝑥𝑘) − 𝑓(𝑎)| < 𝜀. This contradiction proves the 

theorem. 

∎ 

• Corollary: A function 𝑓 ∶ 𝑈 ⊆ ℝ𝑚 → ℝ𝑛 is continuous everywhere if and only if it is 

sequentially continuous everywhere. 

Proof: Trivially follows from previous theorem. ∎ 

 

Metric Spaces 

• It turns out that generalizing the notion of continuity to more general spaces has proved to 

provide profound implications on other fields of mathematics, such as functional analysis and its 

applications to ODEs and PDEs. The appropriate generalization is the following: 

• Definition: Suppose that 𝑋 is a set. Suppose we also have a metric (or distance function) 𝑑𝑋 ∶

𝑋 × 𝑋 → ℝ, which means that 𝑑𝑋 satisfies 
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o 𝑑𝑋(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋, and 𝑑𝑋(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, 

o 𝑑𝑋(𝑥, 𝑦) = 𝑑𝑋(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋, 

o 𝑑𝑋(𝑥, 𝑧) ≤ 𝑑𝑋(𝑥, 𝑦) + 𝑑𝑋(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 (the triangle inequality!). 

Together (𝑋, 𝑑) is called a metric space. 

• It turns out that most of the theory of sequences and continuity over ℝ𝑛 carry over to metric 

spaces verbatim upon changing ‖𝑥 − 𝑦‖2 to 𝑑(𝑥, 𝑦) because most proofs only use the above 

three properties. We note that the same does not hold for differential and integral calculus, since 

those typically require a bit more structure on 𝑋 such as being a vector space or having what’s 

called a measure. 

• Example: 𝑋 ⊆ ℝ𝑛 with 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ is a metric space. 

o From TA section: it turns out that setting 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖1 or 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖∞ 

also gives a metric space. // 

• Example: Suppose we set 𝑋 to be a curved surface in ℝ3 given as the graph of an infinitely 

differentiable function: 𝑧 = 𝑓(𝑥, 𝑦). For any two points 𝑥, 𝑦 on this surface, set 𝑑(𝑥, 𝑦) to be the 

length of the shortest curve connecting them. It turns out that this is a metric space. 

o You don’t have the tools to rigorously prove that 𝑑 is well-defined or satisfies the above 

properties. There is a way to generalize this to more general curved surfaces as well. // 

• Example: Consider the space of bounded functions 𝑋 = {𝑓 ∶ ℝ → ℝ bounded} and set 𝑑(𝑓, 𝑔) =

sup|𝑓(𝑥) − 𝑔(𝑦)|. This is a metric space. // 

• Note: Until we specify otherwise, (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) represent metric space (we’ll often need 

two). If in some setting we’re only working with one metric space (𝑋, 𝑑𝑋), we sometimes just 

write “𝑑” instead of “𝑑𝑋.” // 

• Notation: For any point 𝑥 ∈ 𝑋 and any radius 𝑟 > 0, we denote the (open) ball centered at 𝒙 

with radius 𝒓 as 

𝐵𝑋(𝑥; 𝑟) = {𝑥
′ ∈ 𝑋 ∶ 𝑑𝑋(𝑥

′, 𝑥) < 𝑟}. 

• Remark: Observe that trivially 𝐵𝑋(𝑥; 𝑟1) ⊆ 𝐵𝑋(𝑥; 𝑟2) if 𝑟1 ≤ 𝑟2. 

• The “𝑋” in 𝐵𝑋(𝑥; 𝑟) is to remind us that this is a ball in the metric space 𝑋 in case there are other 

metric spaces involved (e.g. 𝑌). If in some setting we’re only working with one metric space 

(𝑋, 𝑑𝑋), we sometimes just write “𝐵” instead of “𝐵𝑋.” 

• Definition: Suppose that {𝑥𝑘} is a sequence of points in 𝑋. We say that 𝑥 ∈ 𝑋 is the limit of {𝑥𝑘} 
if 

∀𝜀 > 0   ∀𝐾 > 0   ∀𝑘 > 𝐾,   𝑑𝑋(𝑥𝑘, 𝑥) < 𝜀. 
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• Definition: Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a function between metric spaces. We say that 𝑦 =

𝑙𝑖𝑚𝑥→𝑎 𝑓(𝑥) if 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑋 ∶ 𝑥 ≠ 𝑎 𝑎𝑛𝑑 𝑑𝑋(𝑥, 𝑎) < 𝛿,   𝑑𝑌(𝑓(𝑥), 𝑓(𝑎)) < 𝜀 

(note that 𝑦 ∈ 𝑌). 

• Definition: We say a function 𝑓 ∶ 𝑋 → 𝑌 is continuous at 𝒂 ∈ 𝑿 if 

𝑓(𝑎) = lim𝑥→𝑎 𝑓(𝑥) 

We say that 𝑓 is continuous if it is continuous everywhere. 

• Remark: Notice that the condition of 𝑓 ∶ 𝑋 → 𝑌 being continuous at 𝑎 ∈ 𝑋 can be equivalently 

written in the following two ways: 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑋 ∶ 𝑑𝑋(𝑥, 𝑎) < 𝛿,   𝑑𝑌(𝑓(𝑥), 𝑓(𝑎)) < 𝜀. 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝐵(𝑎; 𝛿),   𝑓(𝑥) ∈ 𝐵𝜀(𝑓(𝑎); 𝜀). 

The reason we don’t need to write the condition “𝑥 ≠ 𝑎” in the first line is that if 𝑥 = 𝑎, then 

𝑑𝑌(𝑓(𝑥), 𝑓(𝑎)) < 𝜀 is automatically satisfied since 𝑓(𝑥) = 𝑓(𝑎) and so the left-hand side is 

zero. 

// 

• Definition: A function 𝑓 ∶ 𝑋 → 𝑌 is called sequentially continuous at 𝑎 ∈ 𝑋 if for any sequence 

{𝑥𝑘} in 𝑋 such that 𝑎 = 𝑙𝑖𝑚𝑘→∞ 𝑥𝑘, 

𝑓(𝑎) = lim
𝑘→∞

𝑓(𝑥𝑘). 

We say that 𝑓 is sequentially continuous if it is sequentially continuous everywhere. 

• Theorem: 

o Suppose that 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuous. Then 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 is 

continuous. 

o 𝑓 ∶ 𝑋 → 𝑌 is continuous at 𝑎 ∈ 𝑋 if and only if it is sequentially continuous at 𝑎. 

o 𝑓 ∶ 𝑋 → 𝑌 is continuous if and only if it is sequentially continuous. 

o If 𝑓 ∶ 𝑋 → ℝ𝑛 and 𝑔 ∶ 𝑋 → ℝ𝑘 are continuous, then (𝑓, 𝑔) ∶ 𝑋 → ℝ𝑛+𝑘 is continuous. 

o If 𝑓 ∶ 𝑋 → ℝ and 𝑔 ∶ 𝑋 → ℝ are continuous, then 𝑓 + 𝑔, 𝑓 − 𝑔, 𝑓𝑔, are continuous, and 

𝑓/𝑔 is continuous on 𝑋 ∖ 𝑆 where 𝑆 = {𝑥 ∈ 𝑋 ∶ 𝑔(𝑥) = 0}. 

o If 𝑓 ∶ 𝑋 → ℝ𝑛 and 𝑔 ∶ 𝑋 → ℝ𝑛 are continuous, then 𝑓 + 𝑔, 𝑓 ⋅ 𝑔 and 𝑓 × 𝑔 are 

continuous (latter only makes sense in case of 𝑛 = 3). 
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Proof: Proofs are the same as the previous analogous theorems, except replace “‖ ⋅ ‖” with “𝑑𝑋” 

or “𝑑𝑌.” 

∎ 

• Metric Topology 

• Now we begin studying a type of geometry one could call “topological geometry” (not an actual 

name). The difference with other types of geometry, such as high school geometry, is that this 

type of geometry cares only about properties of shapes that are unchanged by continuous 

deformations. This is a beautiful field of its own and surprisingly has essential applications to 

analysis. 

• Definition: For any set 𝑆, the complement of 𝑺 is everything not contained in 𝑆 (as a technical 

point: we think of 𝑆 as sitting in another bigger set). We denote the complement of 𝑆 by 𝑆𝑐 (the 

little “c” stands for “complement”).  

• Definition: Consider a subset 𝑈 ⊆ 𝑋 of a metric space. 

o A point 𝑥 ∈ 𝑋 is called an interior point of 𝑈 if 

∃𝑟 > 0,   𝐵𝑋(𝑥; 𝑟) ⊆ 𝑈. 

Note that this automatically implies that 𝑥 ∈ 𝑈. 

o A point 𝑥 ∈ 𝑋 is called a boundary point of 𝑈 if 

∀𝑟 > 0,   𝐵𝑋(𝑥; 𝑟) ∩ 𝑈 ≠ ∅   and   𝐵𝑋(𝑥; 𝑟) ∩ 𝑈
𝑐 ≠ ∅. 

o A point 𝑥 ∈ 𝑋 is called an exterior point of 𝑈 if 

∃𝑟 > 0,   𝐵𝑋(𝑥; 𝑟) ⊆ 𝑈
𝑐. 

• Remark: Simply using logic, one can reason that the above definition classifies all points of 𝑥 ∈

𝑋 (i.e. all points 𝑥 ∈ 𝑋 are either interior, boundary, or exterior points of 𝑈 - they cannot be two 

or three of the types, just one). 

Furthermore, it immediately follows form the definition that an interior point of 𝑈 is an exterior 

point of 𝑈𝑐 and vice versa: an interior point of 𝑈𝑐 is an exterior point of 𝑈. 

• Definition: For any subset 𝑈 ⊆ 𝑋, the set of boundary points is called the boundary of 𝑼 and is 

denote by 𝜕𝑈. 

• Remark: Since the definition of boundary point is symmetric with respect to 𝑈 and 𝑈𝑐, a point 

𝑥 ∈ 𝑋 is a boundary point of 𝑈 if and only if it is a boundary point of 𝑈𝑐. So we get the equation: 

𝜕𝑈 = 𝜕(𝑈𝑐). 

// 

• Example: In ℝ𝑛 (i.e. the metric space 𝑋 = ℝ𝑛, 𝑑𝑋(𝑥, 𝑦) = ‖𝑥 − 𝑦‖), consider the (open) ball 
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𝐵ℝ𝑛(𝑥; 𝑟) = {𝑦 ∈ ℝ
𝑛 ∶ ‖𝑥 − 𝑦‖ < 𝑟} 

o Every point 𝑦 ∈ 𝐵ℝ𝑛(𝑥; 𝑟) is an interior point of 𝐵ℝ𝑛(𝑥; 𝑟). 

o Every point 𝑦 ∈ ℝ𝑛 such that ‖𝑥 − 𝑦‖ = 𝑟 is a boundary point of 𝐵ℝ𝑛(𝑥; 𝑟). More 

precisely 

𝜕𝐵ℝ𝑛(𝑥; 𝑟) = {𝑦 ∈ ℝ
𝑛 ∶ ‖𝑥 − 𝑦‖ = 𝑟}. 

o Every point 𝑦 ∈ ℝ𝑛 such that ‖𝑥 − 𝑦‖ > 𝑟 is an exterior point of 𝐵ℝ𝑛(𝑥; 𝑟). 

Let’s prove the first one, the rest are exercises. Take any 𝑥′ ∈ 𝐵ℝ𝑛(𝑥; 𝑟). We need to show that 

exists 𝑟′ > 0 such that 𝐵ℝ𝑛(𝑥
′; 𝑟′) ⊆ 𝐵ℝ𝑛(𝑥; 𝑟). Take any 𝑟′ > 0 ∶ 𝑟′ < 𝑟 − ‖𝑥 − 𝑥′‖. Then for 

any point 𝑦′ ∈ 𝐵ℝ𝑛(𝑥
′; 𝑟′) 

‖𝑥 − 𝑦′‖2 ≤ ‖𝑥 − 𝑥
′‖ + ‖𝑥′ − 𝑦′‖ < ‖𝑥 − 𝑥′‖ + 𝑟′ < ‖𝑥 − 𝑥′‖ + 𝑟 − ‖𝑥 − 𝑥′‖ = 𝑟. 

So indeed 𝐵ℝ𝑛(𝑥
′; 𝑟′) ⊆ 𝐵ℝ𝑛(𝑥; 𝑟). // 

• Repeating the reasoning verbatim involved in the above example but replacing “‖ ⋅ ‖2” with 

“𝑑𝑋” gives: 

• Lemma: Consider an (open) ball 𝐵𝑋(𝑥; 𝑟) in a metric space 𝑋. 

o Every point 𝑥′ ∈ 𝐵𝑋(𝑥; 𝑟) is an interior point of 𝐵𝑋(𝑥; 𝑟). 

o Every point 𝑥′ ∈ 𝑋 ∶ 𝑑𝑋(𝑥
′, 𝑥) > 𝑟 is an exterior point of 𝐵𝑋(𝑥; 𝑟). 

• The reason points 𝑥′ ∈ 𝑋 ∶ 𝑑𝑋(𝑥
′, 𝑥) = 𝑟 are not necessarily boundary points can be seen by the 

example of the subset ℤ ⊆ ℝ1. 

• Definition: A sequence {𝑥𝑛} in 𝑋 is called Cauchy if for any (the following are two equivalent 

statements) 

∀𝜀 > 0   ∃𝑁 > 0   ∀𝑛 > 𝑁,   𝑑𝑋(𝑥𝑛, 𝑥𝑁) < 𝜀. 

∀𝜀 > 0   ∃𝑁 > 0   ∀𝑚, 𝑛 > 𝑁,   𝑑𝑋(𝑥𝑚, 𝑥𝑛) < 𝜀. 

• Definition: A metric space (𝑋, 𝑑) is called complete if every Cauchy sequence {𝑥𝑘} in 𝑋 has a 

limit: 𝑥 = 𝑙𝑖𝑚𝑘→∞ 𝑥𝑘 where 𝑥 ∈ 𝑋. 

• Theorem: ℝ𝑛 with the usual metric is complete. 

• Proof: Homework assignment. ∎ 

• Definition:  

o A subset 𝑈 ⊆ 𝑋 is called open if all of its points are interior points. 

o A subset 𝐴 ⊆ 𝑋 is called closed if it contains all of its boundary points (note that a set 

automatically contains its interior points and never contains its exterior points). 
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• Lemma: A (open) ball 𝐵𝑋(𝑥, 𝑟) in a metric space 𝑋 is open (that’s why we call it an “open” 

ball). 

Proof: By the previous lemma, every point in 𝐵𝑋(𝑥; 𝑟) is an interior point. ∎ 

• It’s sometime awkward to rigorously prove that sets other than the balls are open, such as the set 

of all points strictly above the parabola 𝑦 = 𝑥2. We’ll develop tools later that make this easier. 

• Riddle: What’s the difference between a set and a door. Answer: A door is either open or closed, 

while a set can be either or both. 

• Theorem: 

o A subset 𝑈 ⊆ 𝑋 is open if and only if 𝑈𝑐 is closed. 

o A subset 𝐴 ⊆ 𝑋 is closed if and only if 𝐴𝑐 is open. 

Proof: To prove the first point, take any 𝑥 ∈ 𝜕(𝑈𝑐) (i.e. a boundary point of 𝑈𝑐). We have to 

show that 𝑥 ∈ 𝑈𝑐. Earlier we observed that 𝜕𝑈 = 𝜕(𝑈𝑐). So 𝑥 ∈ 𝜕𝑈. Since 𝑈 contains only 

interior points, 𝑥 ∉ 𝑈 or equivalently 𝑥 ∈ 𝑈𝑐. So indeed 𝑈𝑐 is closed. 

Now suppose that 𝑈𝑐 is closed. Take any 𝑥 ∈ 𝑈. Since 𝑈𝑐 contains all of its boundary points and 

interior points, we have that 𝑥 is an exterior point of 𝑈𝑐, which means that it is an interior point 

of 𝑈. Hence indeed 𝑈 is open. 

The second point of the theorem is logically equivalent to the first point since 𝐴 = (𝐴𝑐)𝑐. 

∎ 

• If you really want to make a set closed, fret not! There is an operation to help you: 

• Definition: For any set 𝐴 ⊆ 𝑋 (not necessarily open/closed). We define its closure by 

�̅� = 𝐴 ∪ {all boundary points of 𝐴}. 

• Lemma: For any set 𝐴 ⊆ 𝑋, it’s closure �̅� is closed (hence “closure” was a good name) 

Proof: We will prove that �̅� is closed by showing that (�̅�)𝑐 is open. Take any point in 𝑥 ∈ (�̅�)𝑐 

(i.e. 𝑥 ∉ �̅�). We need to show that there exists 𝑟 > 0 such that 𝐵𝑋(𝑥; 𝑟) ⊆ (�̅�)
𝑐. We know that 𝑥 

is not an interior point of 𝐴 since 𝑥 ∉ 𝐴. Similarly, 𝑥 is not a boundary point of 𝐴 since 𝑥 ∉ �̅�. So 

𝑥 is an exterior point of 𝐴. So there exists 𝑟 > 0 such that 𝐵𝑋(𝑥; 𝑟) ⊆ 𝐴
𝑐. Every point 𝑦 ∈

𝐵𝑋(𝑥, 𝑟) is also an exterior point of 𝐴 because the fact that 𝐵𝑋(𝑥; 𝑟) is open implies that there 

exists 𝑟′ > 0 such that 

𝐵𝑋(𝑦, 𝑟
′) ⊆ 𝐵𝑋(𝑥, 𝑟) ⊆ 𝐴

𝑐. 

So every point 𝑦 ∈ 𝐵𝑋(𝑥, 𝑟) is not in �̅�. Hence 𝐵𝑋(𝑥, 𝑟) ⊆ (�̅�)
𝑐. 

∎ 

• Example: By a previous example we get that 
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𝐵ℝ𝑛(𝑥; 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = {𝑥′ ∈ ℝ𝑛 ∶ ‖𝑥′ − 𝑥‖ ≤ 𝑟}. 

Note, this is not true in a general metric space! 

// 

• Theorem: Suppose that {𝑈1, … , 𝑈𝑚} is a finite set of open sets in 𝑋. Then 

⋂ 𝑈𝑗
𝑗∈{1,…,𝑚}

= 𝑈1 ∩ …∩ 𝑈𝑚   is also open. 

Suppose that {𝑈𝛾}𝛾∈𝛤 is a (possibly infinite) set of open sets in 𝑋. Then 

⋃𝑈𝛾
𝛾∈𝛤

   is also open. 

Proof: Let’s begin with the first part. Take any point 𝑥 ∈ 𝑈1 ∩ …∩ 𝑈𝑚. Because it’s an interior 

point of every 𝑈𝑗, for any 𝑗 = 1,… ,𝑚 there exists 𝑟𝑗 > 0 such that 𝐵𝑋(𝑥, 𝑟𝑗) ⊆ 𝑈. Let 𝑟 =

min{𝑟𝑗 ∶ 𝑗 = 1,… ,𝑚}. Then observe that for each 𝑗 = 1,… , 𝑛, 

𝐵𝑋(𝑥, 𝑟) ⊆ 𝐵𝑋(𝑥, 𝑟𝑗) ⊆ 𝑈𝑗 

And so 

𝐵𝑋(𝑥, 𝑟) ⊆ 𝑈1 ∩ …∩ 𝑈𝑚. 

Hence 𝑥 is an interior point of 𝑈1 ∩ …∩ 𝑈𝑚. So 𝑈1 ∩ …∩ 𝑈𝑚 is open. 

Let’s prove the second part. Take any 𝑥 ∈ ⋃ 𝑈𝛾𝛾∈Γ . Then there exists 𝛾0 ∈ Γ such that 𝑥 ∈ 𝑈𝛾0. 

Since 𝑈𝛾0 is open, there exists 𝑟 > 0 such that 

𝐵𝑋(𝑥, 𝑟) ⊆ 𝑈𝛾0 ⊆⋃𝑈𝛾
𝛾∈Γ

. 

So 𝑥 is an interior point of ⋃ 𝑈𝛾𝛾∈Γ , and hence ⋃ 𝑈𝛾𝛾∈Γ  is open. 

∎ 

Example and nonexample: An example of the above theorem is: 

{𝑈𝑗}𝑗∈{1,…,10} = {𝐵ℝ
𝑛 (𝑥,

1

𝑗
)}
𝑗∈{1,…,10}

   and   {𝑈𝑟}𝑟∈{𝑏≥0∶𝑏<1} = {𝐵ℝ𝑛(𝑥, 𝑟)}𝑟∈{𝑏≥0∶𝑏<1}. 

Then 

𝑈1 ∩ …∩ 𝑈10 = 𝐵ℝ𝑛 (𝑥,
1

10
) ,     which is open! 
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⋃ 𝑈𝑟
𝑟∈{𝑏≥0∶𝑏<1}

= 𝐵ℝ𝑛 (𝑥,
1

10
) ,     which is open! 

Example of when the theorem doesn’t apply is 

⋂ 𝑈𝑟
𝑟∈{𝑏≥0∶𝑏<1}

= {0},     which is not open! 

// 
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• In point set topology - a more advanced course - the above theorem is in fact taken to be the 

definition of open sets since in which case you don’t need the presence of a metric. Closed sets 

are defined to be the compliments of open sets. A rich theory can be constructed out of this, 

despite not having a metric! 

• Theorem: Suppose that {𝐴1, … , 𝐴𝑚} is a finite set of closed sets in 𝑋. Then 

⋃ 𝐴𝑗
𝑗∈{1,…,𝑛}

= 𝐴1 ∪ …∪ 𝐴𝑗    is also closed. 

Suppose that {𝐴𝛾}𝛾∈𝛤 is a (possibly infinite) set of closed sets in 𝑋. Then 

⋂𝐴𝛾
𝛾∈𝛤

   is also closed. 

Proof: You can do a similar argument as for the previous theorem. Alternatively, observe that 

(𝐴1 ∪ …∪ 𝐴𝑗)
𝑐
= 𝐴1

𝑐 ∩ …∩ 𝐴𝑗
𝑐 

which is open since each 𝐴𝑗
𝑐 open and by the previous theorem. So 𝐴1 ∪ …∪ 𝐴𝑗 is closed. The 

second part is proven similarly using 

(⋂𝐴𝛾
𝛾∈Γ

)

𝑐

=⋃𝐴𝛾
𝑐

𝛾∈Γ

. 

∎ 

• Example and nonexample: Examples of the above theorem are: 

𝐵ℝ𝑛(𝑥, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∪ …𝐵ℝ𝑛(𝑥, 10)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐵ℝ𝑛(𝑥, 10)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      which is closed! 

⋂ 𝐵ℝ𝑛(𝑥, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑟∈{𝑏≥0∶𝑏<1}

= {0}     which is closed! 

An example of where the theorem does not apply: 

⋃ 𝐵ℝ𝑛(𝑥, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑟∈{𝑏≥0∶𝑏<1}

= 𝐵1(𝑥, 1),     which is not closed! 

// 

Theorem: A function 𝑓 ∶ 𝑋 → 𝑌 between metric spaces is continuous if and only if for any open 

set 𝑈 ⊆ 𝑌, 

𝑓−1[𝑈] = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ∈ 𝑈} 

is open. 
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Proof: Suppose that 𝑓 is continuous. Take any open set 𝑈 ⊆ 𝑌. Take any point 𝑎 ∈ 𝑓−1[𝑈]. We 

have to show that there exists an 𝑟 > 0 such that 𝐵𝑋(𝑎; 𝑟) ⊆ 𝑓
−1[𝑈]. Take 𝑓(𝑎) ∈ 𝑈. Since 𝑈 is 

open, there exists 𝜀 > 0 such that 𝐵𝑌(𝑓(𝑎); 𝜀) ⊆ 𝑈. Since 𝑓 is continuous, 

∃𝛿 > 0   ∀𝑥 ∈ 𝑋 ∶ 𝑑𝑋(𝑥, 𝑎) < 𝛿,   𝑑𝑌(𝑓(𝑥), 𝑓(𝑎)) < 𝜀. 

Equivalently: 

∃𝛿 > 0   ∀𝑥 ∈ 𝐵𝑋(𝑎; 𝛿),   𝑓(𝑥) ∈ 𝐵𝑌(𝑓(𝑎); 𝜀) ⊆ 𝑈. 

Fix such a 𝛿 > 0. Observe that the above statement says that any point in 𝐵𝑋(𝑎; 𝛿) get mapped 

into 𝑈 by 𝑓. Hence 𝐵𝑋(𝑎; 𝛿) ⊆ 𝑓
−1[𝑈]. Setting 𝑟 = 𝛿, we see that 𝑎 is an interior point of 

𝑓−1[𝑈]. 

Now suppose that for any open set 𝑈 ⊆ 𝑌, 𝑓−1[𝑈] is open. Take any 𝑎 ∈ 𝑋. We will show that 𝑓 

is continuous at 𝑎. Take any 𝜀 > 0. Consider 𝑓(𝑎) ∈ 𝑈. Since 𝑈 is open, there exists an 𝜀′ > 0 ∶

𝜀′ < 𝜀 such that 𝐵𝑌(𝑓(𝑎), 𝜀
′) ⊆ 𝑈. Since 𝐵𝑌(𝑓(𝑎), 𝜀

′) is open, 𝑓−1[𝐵𝑌(𝑓(𝑎), 𝜀
′)] is open by 

assumption. Since trivially 𝑎 ∈ 𝑓−1[𝐵𝑌(𝑓(𝑎), 𝜀
′)], we have that (here the “⇒” applies to the part 

indicated by “ ⋅ ⏟”). 

∃𝛿 > 0 ∶ 𝐵𝑋(𝑎, 𝛿) ⊆ 𝑓
−1[𝐵𝑌(𝑓(𝑎), 𝜀

′)]⏟                   

⟹ ∀𝑥 ∈ 𝑋 ∶ 𝑑𝑋(𝑥, 𝑎) < 𝛿, 𝑓(𝑥) ∈ 𝐵𝑌(𝑓(𝑎), 𝜀
′)⏟             

⟹ 𝑑𝑌(𝑓(𝑥), 𝑓(𝑎)) < 𝜀
′ < 𝜀. 

So 

∀𝑥 ∈ 𝑋 ∶ 𝑑𝑋(𝑥, 𝑎) < 𝛿,   𝑑𝑌(𝑓(𝑥), 𝑓(𝑎)) < 𝜀 

and hence 𝑓 is indeed continuous. 

∎ 

• In point set topology the above theorem is in fact taken to be the definition of continuous 

functions. 

• Definition: A continuous function 𝑓 ∶ 𝑋 → 𝑌 that has a continuous inverse 𝑓−1 ∶ 𝑌 → 𝑋 is called 

a homeomorphism (in particular, it is a bijection because the inverse exists). 
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• Intuitively speaking, if there is a homeomorphism between two metric spaces 𝑋 and 𝑌, then their 

topologies (i.e. phenomenon surrounding open sets, boundary points, etc.) are equivalent. This is 

analogous to the fact that if there is an isomorphism between vector spaces 𝑉 and 𝑊, then 

they’re linear structures are equivalent (for example: their dimension). The following theorem 

describes what we said rigorously: 

• Theorem: Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphism. Take a subset 𝑈 ⊆ 𝑋 and consider its 

image under 𝑓: 

𝑉 = 𝑓[𝑈] = {𝑓(𝑥) ∶ 𝑥 ∈ 𝑈} ⊆ 𝑌. 

Then 

1. A point 𝑥 ∈ 𝑈 is an interior point of 𝑈 if and only if 𝑓(𝑥) is an interior point of 𝑉. 

2. A point 𝑥 ∈ 𝑈 is a boundary point of 𝑈 if and only if 𝑓(𝑥) is a boundary point of 𝑉. 

3. A point 𝑥 ∈ 𝑈 is an exterior point of 𝑈 if and only if 𝑓(𝑥) is an exterior point of 𝑉. 

Proof: Quiz section or homework assignment. ∎ 

• If you’re in ℝ𝑛, intuitively speaking two shapes are homeomorphic if one of the shapes can be 

bent and stretched continuously (i.e. without creating rips) to transform into the other. You can’t 

use this for rigorous arguments, but it is the idea behind why we chose homeomorphisms to 

describe such phenomenon. 

Connected Sets 

• Definition: Suppose that 𝐸 ⊆ 𝑋 is a subset of a metric space 𝑋. We say that 𝐸 is disconnected if 

there exist nonempty subsets 𝐴, 𝐵 ⊆ 𝐸 such that 𝐸 = 𝐴 ∪ 𝐵 and 

�̅� ∩ 𝐵 = ∅     and     𝐴 ∩ �̅� = ∅. 

In this case we call 𝐴 and 𝐵 a disconnection of 𝑆. If no such disconnection exists, then we say 

that 𝐸 is connected. 

• Examples: Examples of disconnected sets include (draw these out!) 

𝐸 = 𝐵ℝ2 (0;
1

2
) ∪ 𝐵ℝ2 (2;

1

2
) 

and less trivially: 

𝐸 = 𝐵ℝ2(−1; 1) ∪ 𝐵ℝ2(1; 1)     or     𝐸 = Graph of 1 𝑥2⁄  (set value at 𝑥 = 0 to be anything) 

An interval is an example of a connected set, as we will prove further below. 

• Notation: If 𝑎 < 𝑏 are real numbers, we let 

o (𝑎, 𝑏) denote the interval from 𝑎 to 𝑏 not including the endpoints 𝑎 and 𝑏, 

o [𝑎, 𝑏) denote the interval from 𝑎 to 𝑏 including 𝑎 but not 𝑏, 
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o (𝑎, 𝑏] denote the interval from 𝑎 to 𝑏 not including 𝑎 but including 𝑏, 

o [𝑎, 𝑏] denote the interval from 𝑎 to 𝑏 including both 𝑎 and 𝑏. 

Similarly: 

o (−∞, 𝑏) denote the interval of all numbers < 𝑏 

o (𝑎,∞) denote the interval of all numbers > 𝑎 

o (−∞, 𝑏] denote the interval of all numbers ≤ 𝑏 

o [𝑎,∞) denote the interval of all numbers ≥ 𝑎 

• In other words, we write “(” or “)” if do not want to include the endpoint, and “[” or “]” if we do 

want to include the endpoint. 

• Note: Recall that in the homework you will show that a point 𝑥 ∈ 𝑋 is in the closure of a set 𝐴 if 

you can find a sequence {𝑥𝑘} in 𝑋 with each 𝑥𝑘 ∈ 𝐴 such that 𝑥 = lim𝑘→∞ 𝑥𝑘. This gives a good 

geometric way of thinking about closure. 

• Theorem: The only connected subsets of ℝ are the intervals. 

Proof: Take a set 𝑆 ⊆ ℝ. We show that it is connected if and only if it is an interval. First, 

suppose that 𝑆 is not an interval. We will show that 𝑆 is disconnected. Then there exist points 

𝑎, 𝑏 ∈ 𝑆 and 𝑐 ∉ 𝑆 such that 𝑎 < 𝑐 < 𝑏. Define 

𝐴 = 𝑆 ∩ (−∞, 𝑐)     and     𝐵 = 𝑆 ∩ (𝑐,∞). 

Notice that 𝑆 = 𝐴 ∪ 𝐵 and that 𝐴 ⊆ (−∞, 𝑐) and 𝐵 ⊆ (𝑐,∞). Next, the closure of 𝐴 is contained 

in (−∞, 𝑐] because for any point 𝑥 > 𝑐 you can’t find a sequence {𝑥𝑘} in 𝐴 such that 𝑥 =

lim𝑘→∞ 𝑥𝑘 since each 𝑥𝑘 ≤ 𝑐, and so any point 𝑥 > 𝑐 is not in the closure of 𝐴. For similar 

reasons, the closure of 𝐵 is contained in [𝑐,∞). Hence both 

�̅� ∩ 𝐵 ⊆ (−∞, 𝑐] ∩ (𝑐,∞) = ∅   and   𝐴 ∩ �̅� ⊆ (−∞, 𝑐) ∩ [𝑐,∞) = ∅ 

Thus 𝐴 and 𝐵 are a disconnection of 𝑆, and so 𝑆 is indeed disconnected. 

Now suppose that 𝑆 is an interval. We will show that it is connected by contradiction. Suppose 

that it isn’t connected. Then there exists a disconnection 𝐴 and 𝐵 of 𝑆. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, and 

relabeling 𝐴 and 𝐵 if necessary, assume 𝑎 < 𝑏. Observe that the whole interval [𝑎, 𝑏] must be 

contained in 𝑆 because both 𝑎, 𝑏 ∈ 𝑆 and 𝑆 is an interval and hence contains everything in 

between 𝑎 and 𝑏. Consider the number 

𝑐 = sup{𝑥 ∈ 𝐴 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏}. 

Since 𝑎 ≤ 𝑐 ≤ 𝑏, we have that 𝑐 ∈ 𝑆 and hence 𝑐 either belong to 𝐴 or 𝐵. Now we ask: does 𝑐 ∈
𝐴 or 𝑐 ∈ 𝐵? We try both cases: 

1. Suppose 𝑐 belongs to 𝐴. We cannot have 𝑐 = 𝑏 or else 𝐴 ∩ 𝐵 ≠ ∅ and thus �̅� ∩ 𝐵 ≠ ∅ 

(and 𝐴 ∩ �̅� ≠ ∅). So we must have that 𝑐 < 𝑏. So we can choose a sequence {𝑥𝑘} such 
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that each 𝑥𝑘 ∈ (𝑐, 𝑏) (and hence 𝑥𝑘 ∈ 𝑆) where 𝑥𝑘 decreases to 𝑐 from above with 𝑐 =

lim𝑘→∞ 𝑥𝑘. Each 𝑥𝑘 ∈ 𝐵 because otherwise 𝑥𝑘 ∈ 𝐴 along with 𝑥𝑘 > 𝑐 would contradict 

the above supremum property of 𝑐. Thus 𝑐 is in the closure of 𝐵. But then we get that 𝐴 ∩

�̅� ≠ ∅, contradiction! 

2. Suppose 𝑐 is in 𝐵. Because of 𝑐’s supremum property, we can choose a sequence 𝑥𝑘 ∈ 𝐴 

increasing from below such that 𝑐 = lim𝑘→∞ 𝑥𝑘. Thus 𝑐 is in the closure of 𝐴. But then 

we get that �̅� ∩ 𝐵 ≠ ∅, contradiction! 

So 𝑐 can’t belong to 𝐴 nor 𝐵, while we observed that it has to belong to at least one of them. So 

𝑆 must indeed be connected. 

∎ 

• The next theorem says that continuous functions take connected sets to connected sets. 

• Theorem: Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a continuous function and that 𝑈 ⊆ 𝑋 is a connected set. 

Then the image of 𝑈 under 𝑓: 

𝑓[𝑈] = {𝑓(𝑥) ∶ 𝑥 ∈ 𝑈} 

is also connected. 

Proof: We prove this by contradiction: suppose 𝑓[𝑈] is not connected. Then there exists a 

disconnection 𝐴 and 𝐵 of 𝑓[𝑈]: 

𝑓[𝑈] = 𝐴 ∪ 𝐵,     �̅� ∩ 𝐵 = ∅,     𝐴 ∩ �̅� = ∅. 

Consider the preimages 

𝑓−1[𝐴] = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ∈ 𝐴}     and     𝑓−1[𝐵] = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ∈ 𝐵}. 

Notice that 𝑈 ⊆ 𝑓−1[𝐴] ∪ 𝑓−1[𝐵] because everything in 𝑈 maps into 𝑓[𝑈] and hence must map 

into either 𝐴 or 𝐵 since 𝑓[𝑈] = 𝐴 ∪ 𝐵. We can then write 

𝑈 = (𝑈 ∩ 𝑓−1[𝐴]) ∪ (𝑈 ∩ 𝑓−1[𝐵]) 

Since 𝑈 is connected, 𝑈 ∩ 𝑓−1[𝐴] and 𝑈 ∩ 𝑓−1[𝐵] cannot be a disconnection of it. So either 

(𝑈 ∩ 𝑓−1[𝐴])̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ (𝑈 ∩ 𝑓−1[𝐵]) ≠ ∅     or     (𝑈 ∩ 𝑓−1[𝐴]) ∩ (𝑈 ∩ 𝑓−1[𝐵])̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ ∅. 

By relabeling 𝐴 and 𝐵 if necessary, suppose that the first one holds. Then there exists 

point 𝑥 ∈ 𝑈 ∩ 𝑓−1[𝐵]   and a 

sequence {𝑥𝑘},   each 𝑥𝑘 ∈ 𝑈 ∩ 𝑓
−1[𝐴],   and   𝑥 = lim

𝑘→∞
𝑥𝑘. 

Then 𝑓(𝑥) ∈ 𝐵 and {𝑓(𝑥𝑘)} is a sequence of points in 𝐴. Since 𝑓 is continuous, 𝑓(𝑥) =

lim𝑘→∞ 𝑓(𝑥𝑘). Hence 𝑓(𝑥) ∈ �̅�. But then �̅� ∩ 𝐵 ≠ ∅, contradiction! 

∎ 
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• Theorem (Intermediate Value Theorem): Suppose that 𝑓 ∶ 𝑋 → ℝ is a continuous function 

where 𝐸 ⊆ 𝑋 is a connected set. Suppose that 𝑎, 𝑏 ∈ 𝐸 are such that 𝑓(𝑎) < 𝑓(𝑏). Then for 

every value 𝑦 satisfying 𝑓(𝑎) < 𝑦 < 𝑓(𝑏), there exists an 𝑥 ∈ 𝐸 such that 𝑓(𝑥) = 𝑦. 

Proof: Take any 𝑦 satisfying 𝑓(𝑎) < 𝑦 < 𝑓(𝑏). Since 𝐸 is connected, by the previous theorem 

the image 𝑓[𝐸] is also connected. Since 𝑓[𝐸] is a subset of ℝ, it must be an interval. Since 

𝑓(𝑎), 𝑓(𝑏) ∈ 𝑓[𝐸], 𝑓[𝐸] must contain every value in between 𝑓(𝑎) and 𝑓(𝑏), in particular it 

contains 𝑦. Hence there exists an 𝑥 ∈ 𝐸 such that 𝑓(𝑥) = 𝑦. 

∎ 

• Next we discuss another notion of connectedness. 

• Definition: A continuous curve (or path) is a continuous function of the form 𝛾 ∶ [𝑎, 𝑏] → 𝑋. 

Such a curve is also sometimes, but not very often, referred to as an arc. 

• Definition: A set 𝐸 ⊆ 𝑋 is called arcwise connected (or path connected) if for any points 

𝑥, 𝑦 ∈ 𝐸, there exists a continuous curve 𝛾 ∶ [𝑎, 𝑏] → 𝑋 such that ran(𝛾) ⊆ 𝐸 and 

𝛾(𝑎) = 𝑥     and     𝛾(𝑏) = 𝑦. 

• Intuitively a set being “arcwise connected” means that every two points can be connected by a 

continuous curve that stays inside that set. As we’ll prove below, all arcwise connected sets are 

connected. However the other direction is not true and hence arcwise connected is a slightly 

weaker notion of connectedness (look up the “topological sine curve”). Nevertheless it does 

provide a powerful way to prove that something is connected because in many cases it’s easy to 

demonstrate that there is a continuous curve connecting any two points inside the set. 

• Theorem: If a set 𝐸 ⊆ 𝑋 is arcwise connected then it is connected. 

Proof: Suppose 𝐸 is arcwise connected. We prove that it is connected by contradiction. Suppose 

not! Then there exists a disconnection 𝐴 and 𝐵 of 𝐸: 

𝐸 = 𝐴 ∪ 𝐵,     �̅� ∩ 𝐵 = ∅,     𝐴 ∩ �̅� = ∅. 

Take 𝛼 ∈ 𝐴 and 𝛽 ∈ 𝐵. Because 𝐸 is arcwise connected, there exists a continuous curve 𝛾 ∶
[𝑎, 𝑏] → 𝑀 such that 𝛾(𝑎) = 𝛼 and 𝛾(𝑏) = 𝛽. Consider the sets 𝛾−1[𝐴] and 𝛾−1[𝐵]. Because 

every time 𝑡 ∈ [𝑎, 𝑏] gets mapped into 𝐸 = 𝐴 ∪ 𝐵 and hence into either 𝐴 or 𝐵, we have that 

[𝑎, 𝑏] = 𝛾−1[𝐴] ∪ 𝛾−1[𝐵]. Since [𝑎, 𝑏] is connected, 𝛾−1[𝐴] and 𝛾−1[𝐵] cannot be a 

disconnection of [𝑎, 𝑏] and so either 

𝛾−1[𝐴]̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ 𝛾−1[𝐵] ≠ ∅     or     𝛾−1[𝐴] ∩ 𝛾−1[𝐵]̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ ∅. 

By relabeling 𝐴 and 𝐵 if necessary, we can assume that the first one holds. Then there exists a 

𝑥 ∈ 𝛾−1[𝐵] such that 𝑥 ∈ 𝛾−1[𝐴]̅̅ ̅̅ ̅̅ ̅̅ ̅ as well. The latter implies that there exists a sequence {𝑥𝑘 ∈

𝛾−1[𝐴]} so that 𝑥 = lim𝑘→∞ 𝑥𝑘. Observe then that 𝛾(𝑥) ∈ 𝐵 and each 𝛾(𝑥𝑘) ∈ 𝐴, and that 𝛾’s 

continuity implies that 
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𝛾(𝑥) = lim
𝑘→∞

𝛾(𝑥𝑘). 

So 𝛾(𝑥) ∈ �̅� as well. So �̅� ∩ 𝐵 ≠ ∅. But that contradicts that 𝐴 and 𝐵 are a disconnection. So 𝐸 

is indeed connected. 

∎ 

• Although connectedness does not imply path connectedness, there is a theorem in ℝ𝑛 that sort of 

gives something along these lines. We won’t make use of the following theorem, so we won’t 

cover the proof. We include a reference for the interested reader. 

• Theorem: If a subset 𝑈 ⊆ ℝ𝑛 is both open and connected, then it is path connected. 

Proof: Theorem 1.30 in Advanced Calculus 2nd Ed by Gerald Folland: 

https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf  

Compactness 

• Compactness, intuitively speaking, is an attribute of sets that plays at least two important roles in 

analysis: controlling the behavior of continuous maps and giving the ability to identify a point 

around which a subset seems to accumulate/cluster at. We start with the latter idea to define a 

type of compactness: 

• Definition: A subset 𝐾 ⊆ 𝑋 is called sequentially compact if for any sequence {𝑥𝑘 ∈ 𝐾} in 𝐾, 

there exists a subsequence {�̃�𝑛} of {𝑥𝑘} such that has {�̃�𝑛} has a limit 𝑥 ∈ 𝐾: 𝑥 = lim𝑛→∞ �̃�𝑛. 

Remark: {�̃�𝑛} being a subsequence of {𝑥𝑘} means that {𝑥𝑛} is an infinite subset of {𝑥𝑘} (i.e. 

{�̃�𝑛} ⊆ {𝑥𝑘}) that preserves the order of the elements. 

• The main definition of compactness is the following: 

• Definition: A subset 𝐾 ⊆ 𝑋 is called compact if the following holds. Suppose that {𝑈𝛾}𝛾∈Γ is an 

open cover of 𝐾, which means that each 𝑈𝛾 is an open set and they cover 𝐾: 

𝐾 ⊆⋃𝑈𝛾
𝛾∈Γ

. 

Then there is a finite subcover {𝑈𝑘}𝑘=1
𝑚 ⊆ {𝑈𝛾}𝛾∈Γ of 𝐾: 

𝐾 ⊆ ⋃ 𝑈𝑘
𝑘∈{1,…,𝑚}

= 𝑈1 ∪ …∪ 𝑈𝑚 

• In general topologies (which we don’t study), compactness and sequential compactness are not 

necessarily the same thing. However, metric spaces are special in that the two notions are in fact 

equivalent. As we will prove, in ℝ𝑛 it turns out that being compact is equivalent to being both 

closed and bounded. To prove the first theorem, we need two important lemmas 

https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf
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• Definition: Suppose that {𝑥𝑘} is a sequence in 𝑋. We say that 𝑥 ∈ 𝑋 is an accumulation point 

(or cluster point) if for any 𝑟 > 0 there exists infinitely many 𝑥𝑘’s in 𝐵𝑋(𝑥, 𝑟). 

• Lemma: Suppose that {𝑥𝑘 ∈ 𝐾} is a sequence in 𝐾 ⊆ 𝑋. Then it has a subsequence with a limit 

𝑥 ∈ 𝐾 if and only if it has an accumulation point �̃� ∈ 𝐾. 

Proof: Homework. 

• Lemma: Suppose that 𝐾 ⊆ 𝑋 is compact and that 𝐴 ⊆ 𝐾 is closed. Then 𝐴 is also compact. 

Proof: Suppose that {𝑈𝛾}𝛾∈Γ is an open cover of 𝐴. We have to show that there exists a finite 

subcover {𝑈𝑘}𝑘=1
𝑚 ⊆ {𝑈𝛾}𝛾∈Γ of 𝐴. Add on the open set 𝐴𝑐 to this collection of open sets to get 

{𝑈𝛾}𝛾∈Γ ∪
{𝐴𝑐} and notice that this is now an open cover of 𝐾 since 

𝐾 ⊆ 𝐴 ∪ 𝐴𝑐 ⊆ (⋃𝑈𝛾
𝛾∈Γ

) ∪ 𝐴𝑐. 

Since 𝐾 is compact, we can choose a finite subcover {𝑈𝑘}𝑘=1
𝑚 ∪ {𝐴𝑐} ⊆ {𝑈𝛾}𝛾∈Γ ∪

{𝐴𝑐} of 𝐾 

where we “threw in” {𝐴𝑐} into this finite subcover just in case. Since 𝐴 ⊆ 𝐾, this finite subcover 

of 𝐾 also covers 𝐴: 

𝐴 ⊆ 𝐾 ⊆ ( ⋃ 𝑈𝑘
𝑘∈{1,…,𝑚}

) ∪ 𝐴𝑐 = 𝑈1 ∪ …∪ 𝑈𝑚 ∪ 𝐴
𝑐 . 

Since 𝐴 does not intersect 𝐴𝑐, you can throw {𝐴𝑐} out of this finite subcover of 𝐴 to get that 

simply {𝑈𝑘}𝑘=1
𝑚  is a finite subcover of 𝐴. Hence 𝐴 is indeed compact. 

∎ 

• Theorem: A subset 𝐾 ⊆ 𝑋 is compact if and only if it is sequentially compact (this is only true 

because 𝑋 is a metric space). 

Proof: First suppose that 𝐾 is compact. Take any sequence {𝑥𝑘 ∈ 𝐾} in 𝐾. We will show that it 

has a subsequence {�̃�𝑛} that has a limit 𝑥 ∈ 𝐾. Suppose not! Then by the second to last lemma, 

{𝑥𝑘} has no accumulation point 𝑥 ∈ 𝐾, which means that 

(∃𝑥 ∈ 𝐾     ∀𝑟 > 0     𝐵𝑋(𝑥, 𝑟𝑥) only has finitely many 𝑥𝑘 's)   is not true 

⟺     ∀𝑥 ∈ 𝐾     ∃𝑟𝑥 > 0     𝐵𝑋(𝑥, 𝑟𝑥) only has finitely many 𝑥𝑘 's 

Consider the open cover 

{𝐵𝑋(𝑥, 𝑟𝑥)}𝑥∈𝐾    of   𝐾. 
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(i.e. 𝐾 ⊆ ⋃ 𝐵𝑋(𝑥, 𝑟𝑥)𝑥∈𝐾 , which is true because every 𝑥 ∈ 𝐾 is contained in 𝐵𝑋(𝑥, 𝑟𝑥)). Because 

𝐾 is compact, we can choose a finite subcover {𝐵 (𝑥𝑗 , 𝑟𝑥𝑗)}𝑗∈{1,…,𝑚}
⊆ {𝐵(𝑥, 𝑟𝑥)}𝑥∈𝐾 of 𝐾. But 

then since each 𝐵𝑋 (𝑥𝑗 , 𝑟𝑥𝑗) has finitely many 𝑥𝑘’s and the 𝐵𝑋 (𝑥𝑗 , 𝑟𝑥𝑗)’s cover 𝐾, this implies 

that there are a finite number of 𝑥𝑘’s: contradiction! 

Now suppose that 𝐾 is sequentially compact. Take any open cover {𝑈𝛾}𝛾∈Γ of 𝐾. We prove the 

following claim which is called the Lebesgue number lemma in the theory of compact subsets of 

metric spaces. 

Claim: 

∃𝛿 > 0   ∀𝑥 ∈ 𝐾   ∃𝛾 ∈ Γ,   𝐵𝑋(𝑥; 𝛿) ⊆ 𝑈𝛾 

(the 𝛿 > 0 is called a Lebesgue number of the open cover {𝑈𝛾}𝛾∈Γ). 

Proof of claim: Suppose not! Then 

∀𝛿 > 0   ∃𝑥 ∈ 𝐾   ∀𝛾 ∈ Γ,   𝐵𝑋(𝑥; 𝛿 ) ⊈ 𝑈𝛾 

Thus for any integer 𝑘 > 0 there exists an 𝑥𝑘 such that 𝐵𝑋(𝑥𝑘, 1 𝑘⁄ ) is not contain in any 𝑈𝛾. 

Since 𝐾 is sequentially compact, there is a subsequence {�̃�𝑛} of {𝑥𝑘} with limit 𝑥 ∈ 𝐾: 𝑥 =

lim𝑛→∞ �̃�𝑛. Let 1 𝑘𝑛⁄  denote the radius of the ball 𝐵𝑋(�̃�𝑛, 1 𝑘𝑛⁄ ) associated to �̃�𝑛. Since {𝑈𝛾}𝛾∈Γ 

covers 𝐾, 𝑥 is contained in some 𝑈𝛾0. Since 𝑈𝛾0 is open, there exists an 𝑟 > 0 such that 

𝐵𝑋(𝑥, 𝑟) ⊆ 𝑈𝛾0. Now choose 𝑁 big enough so that 

∀𝑛 > 𝑁   �̃�𝑛 is within 𝑟 2⁄  of 𝑥 

∀𝑛 > 𝑁    1 𝑘𝑛⁄ < 𝑟 2⁄ . 

By an argument we’ve done many times (which we leave to the reader), it follows from the 

triangle inequality that for any 𝑛 > 𝑁, 

𝐵𝑋(�̃�𝑛, 1 𝑘𝑛⁄ ) ⊆ 𝐵𝑋(𝑥, 𝑟) ⊆ 𝑈𝛾0 . 

But this contradicts that by construction we said that none of the 𝐵𝑋(�̃�𝑛, 1 𝑘⁄ 𝑛) are contain in 

any of the 𝑈𝛾’s. 

End of proof of claim 

We want to show that there is a finite subcover {𝑈𝑘}𝑘=1
𝑚 ⊆ {𝑈𝛾}𝛾∈Γ of 𝐾. We prove this by 

contradiction: suppose not! Let 𝛿 > 0 be as in the above claim (i.e. a Lebesgue number of 

{𝑈𝛾}𝛾∈Γ). Take any 𝑥1 ∈ 𝐾. By the above claim, there exists 𝛾1 ∈ Γ such that 

𝐵𝑋(𝑥1; 𝛿) ⊆ 𝑈𝛾1 . 
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Since we assumed that there is no finite subcover of 𝐾, 𝑈𝛾1 cannot cover 𝐾 and so there exists 

𝑥2 ∈ 𝐾 outside of 𝑈𝛾1 (and hence outside of 𝐵𝑋(𝑥1; 𝛿)). By the above claim we again have that 

there exists 𝛾2 ∈ Γ so that 𝐵𝑋(𝑥2; 𝛿) ⊆ 𝑈𝛾2 and so 

𝐵𝑋(𝑥1; 𝛿) ∪ 𝐵𝑋(𝑥2; 𝛿) ⊆ 𝑈𝛾1 ∪ 𝑈𝛾2 

By reasoning as before, there exists an 𝑥3 ∈ 𝐾 outside of 𝑈𝛾1 ∪ 𝑈𝛾2 (and hence outside of 

𝐵𝑋(𝑥1; 𝛿) ∪ 𝐵𝑋(𝑥2; 𝛿)). Proceed inductively to get a sequence {𝑥𝑘 ∈ 𝐾} in 𝐾 which satisfies 

𝐵𝑋(𝑥1; 𝛿) ∪ …∪ 𝐵𝑋(𝑥𝑗; 𝛿) ⊆ 𝑈𝛾1 ∪ …∪ 𝑈𝑗 

and 𝑥𝑗+1 is outside of 𝑈𝛾1 ∪ …∪ 𝑈𝛾𝑗 (and hence outside of 𝐵𝑋(𝑥1; 𝛿) ∪ …∪ 𝐵𝑋(𝑥𝑗, 𝛿)). Notice 

that by construction each 𝑥𝑘 is at least a distance of 𝛿 from all of the other 𝑥𝑘’s. 

Now, since we assumed that 𝐾 is sequentially compact. The sequence {𝑥𝑘} has a subsequence 

{�̃�𝑛} that has a limit 𝑥 ∈ 𝐾 : 𝑥 = lim𝑛→∞ �̃�𝑛. But by construction, each �̃�𝑛 is at least a distance of 

𝛿 from each other, and hence can’t by Cauchy, and hence can’t have a limit. Contradiction! 

∎ 

• We now prove the theorem that justifies the intuition that compact sets are used to control 

continuous functions. It says that continuous functions take compact sets to compact sets. 

• Theorem: If 𝑓 ∶ 𝑋 → 𝑌 is a continuous function and 𝐾 ⊆ 𝑋 is compact, then the image of 𝐾 

under 𝑓: 

𝑓[𝐾] = {𝑓(𝑥) ∶ 𝑥 ∈ 𝐾} 

is also compact. 

Proof: We will prove that 𝑓[𝐾] is sequentially compact. Take any sequence {𝑦𝑘 ∈ 𝑓[𝐾]} in 

𝑓[𝐾]. We must show that it has a subsequence {�̃�𝑛 ∈ 𝑓[𝐾]} with a limit 𝑦 ∈ 𝑓[𝐾]. For each 𝑦𝑘 

there exists 𝑥𝑘 ∈ 𝐾 such that 𝑦𝑘 = 𝑓(𝑥𝑘). Consider the sequence {𝑥𝑘 ∈ 𝐾} in 𝐾. Since 𝐾 is 

sequentially compact, there is a subsequence {�̃�𝑛 ∈ 𝐾} in 𝐾 with limit 𝑥 ∈ 𝐾 : 𝑥 = lim𝑛→∞ �̃�𝑛. 

Since 𝑓 is continuous 𝑓(𝑥) = lim𝑛→∞ 𝑓(�̃�𝑛). So set {�̃�𝑛 = 𝑓(�̃�𝑛)} and 𝑦 = 𝑓(𝑥), which is a 

subsequence of {𝑦𝑘} and limit in 𝐾 that we were looking for. 

∎ 

• Next we classify compact subsets of ℝ𝑛. We need a few preliminary lemmas: 

• Lemma: A set 𝐴 ⊆ 𝑋 is closed if and only if 𝐴 = �̅�. 

Proof: Was proved in discussion section, or follows from Problem 3 on HW 8. ∎ 

• Lemma: If {𝑥𝑘} has a limit 𝑥, then any subsequence will have the same limit. 

• Proof: Homework. ∎ 

• The following is the famous Heine-Borel Theorem that classifies compact subsets of ℝ𝑛. 
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• Theorem: A nonempty subset 𝐾 ⊆ ℝ𝑛 is compact if and only if it is bounded and closed. 

Rigorously, “bounded” means that 𝐾 is contained in some big ball centered at zero: ∃𝑅 > 0, 𝐾 ⊆

𝐵ℝ𝑛(0; 𝑅). 

Proof: Suppose 𝐾 is compact. First we show that it is bounded. Suppose not! Then 

∀𝑅 > 0   ∃𝑥 ∈ 𝐾   |𝑥| ≥ 𝑅. 

Construct the sequence {𝑥𝑘 ∈ 𝐾} in 𝐾 as follows. Pick any 𝑥1 ∈ 𝐾. By the above, there is 𝑥2 ∈ 𝐾 

such that |𝑥2| ≥ |𝑥1| + 1.3 Then there exists 𝑥3 ∈ 𝐾 such that |𝑥3| > |𝑥2| + 1. Proceed 

inductively to get {𝑥𝑘} which satisfies |𝑥𝑘+1| > |𝑥𝑘| + 1. Note that if 𝑘 < 𝑗 

|𝑥𝑗 − 𝑥𝑘| ≥ |𝑥𝑗| − |𝑥𝑘| ≥ |𝑥𝑘+1| − |𝑥𝑘| ≥ 1. 

So each 𝑥𝑘 is at least a distance of 1 away from the other 𝑥𝑘’s. Since 𝐾 is sequentially complete, 

there exists a subsequence {�̃�𝑛} with limit 𝑥 ∈ 𝐾: 𝑥 = lim𝑛→∞ �̃�𝑛. But that is impossible since 

the above shows that each �̃�𝑛 is at least a distance of 1 away from the other �̃�𝑛’s, and hence isn’t 

Cauchy, and hence can’t have a limit. Hence 𝐾 must be bounded. 

Next we show that 𝐾 is closed. We will prove that 𝐾 = �̅�. The inclusion 𝐾 ⊆ �̅� is immediate, so 

we’ll prove 𝐾 ⊇ �̅�. Take any 𝑥 ∈ 𝜕𝐾. We need to show that 𝑥 ∈ 𝐾. Since 𝑥 is in the closure �̅�, 

there exists a sequence {𝑥𝑘 ∈ 𝐾} in 𝐾 so that 𝑥 = lim𝑘→∞ 𝑥𝑘. Since 𝐾 is sequentially compact, 

there exists a subsequence {�̃�𝑛} which has a limit �̃� ∈ 𝐾: �̃� = lim𝑛→∞ �̃�𝑛. But by the previous 

lemma, 𝑥 = �̃� and so 𝑥 ∈ 𝐾. 

Now suppose that 𝐾 is closed and bounded. We will prove that it is sequentially compact (and 

hence compact). Take any sequence {𝑧𝑘} in 𝐾, we will show that there is a subsequence {�̃�𝑛} that 

has a limit 𝑧 ∈ 𝐾. We will do this in ℝ2 for simplicity, from which it should be clear how to do 

this in ℝ𝑛. We use the following notation for a box: 

[𝑎, 𝑏] × [𝑐, 𝑑] = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑} 

Because 𝐾 is bounded, we can take a large enough box 𝐵1 

𝐵1 = [−𝑅, 𝑅] × [−𝑅, 𝑅] = {(𝑥, 𝑦) ∈ ℝ
2 ∶ −𝑅 ≤ 𝑥 ≤ 𝑅,−𝑅 ≤ 𝑦 ≤ 𝑅} 

so that it will contain 𝐾 (i.e. make 𝑅 large enough). Break this box up into four equal pieces, 

which are also boxes: 

[−𝑅, 0] × [−𝑅, 0], [0, 𝑅] × [−𝑅, 0], [−𝑅, 0] × [0, 𝑅], [0, 𝑅] × [0, 𝑅] 

Since there are infinitely many 𝑧𝑘’s in 𝐾 and hence in 𝐵1, at least one of these smaller boxes will 

necessarily also have infinitely many 𝑧𝑘’s. Let 𝐵2 be such a box. Then proceed similarly, break 

𝐵2 into four equal boxes/pieces as above, and let 𝐵3 be one of these boxes that also has infinitely 

many 𝑧𝑘’s. Proceed inductively. This way you get a sequence of boxes 𝐵1 ⊇ 𝐵2 ⊇ 𝐵3 ⊇ ⋯ 

where the size of each box is getting smaller and smaller, precisely 𝐵𝑘 is 𝑅 2𝑘−2⁄  by 𝑅 2𝑘−2⁄ . 

 
3 “1” here is an arbitrary choice. Any number bigger than zero would work. 
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Since each 𝐵𝑘 has infinitely many 𝑧𝑘’s, we can inductively choose a subsequence {�̃�𝑛} of {𝑧𝑘} so 

that �̃�1 ∈ 𝐵1, then �̃�2 ∈ 𝐵2, then �̃�3 ∈ 𝐵3, etc. The subsequence is Cauchy because for any 𝜀 > 0 

let 𝑁 be so that 𝑅 2𝑁−1⁄ < 𝜀 2⁄  and so for any 𝑛 > 𝑁 

both 𝑧𝑁 , 𝑧𝑛 ∈ 𝐵𝑁 and so |𝑧𝑁 − 𝑧𝑛| = √((𝑧𝑁)𝑥 − (𝑧𝑛)𝑥)2 + ((𝑧𝑁)𝑦 − (𝑧𝑛)𝑦)
2
≤ √(

𝜀

2
)
2

+ (
𝜀

2
)
2

= 𝜀 

Since ℝ2 is complete, {�̃�𝑛} has a limit 𝑥. Since each �̃�𝑛 ∈ 𝐾, we have that 𝑥 ∈ �̅�. Since 𝐾 is 

closed and hence 𝐾 = �̅�, we have that 𝑥 ∈ 𝐾. Hence this is the {�̃�𝑛} and 𝑥 that we were seeking. 

∎ 

• Now we can prove the Extreme Value Theorem which provides the theoretical justification for 

finding maximums and minimums of continuous functions over compact sets, such as what you 

did for closed and bounded intervals in calculus. 

• Theorem: Suppose that 𝑓 ∶ 𝑋 → ℝ is continuous and that 𝐾 ⊆ 𝑋 is compact. Then there exists 

points 𝑥max ∈ 𝐾 and 𝑥min ∈ 𝐾 such that 

𝑓(𝑥max) = sup{𝑓(𝑥) ∶ 𝑥 ∈ 𝐾}    and   𝑓(𝑥min) = inf{𝑓(𝑥) ∶ 𝑥 ∈ 𝐾}. 

Proof: We’ll start with proving that 𝑥max exists. By a previous theorem, we know that the image 

𝑓[𝐾] is a compact subset of ℝ. By the previous theorem, this means that 𝑓[𝐾] is closed and 

bounded. Bounded implies that the supremum 

sup{𝑓[𝐾]} = sup{𝑓(𝑥) ∶ 𝑥 ∈ 𝐾} 

exists. 

Now, we claim that sup{𝑓[𝐾]} ∈ 𝜕(𝑓[𝐾]). Take any 𝑟 > 0, we will show that 

𝐵ℝ(sup{𝑓[𝐾]} ; 𝑟) = (sup{𝑓[𝐾]} − 𝑟, sup{𝑓[𝐾]} + 𝑟) contains points inside and outside of 

𝑓[𝐾]. Points between sup{𝑓[𝐾]} and sup{𝑓[𝐾]} + 𝑟 cannot be in 𝑓[𝐾] because sup{𝑓[𝐾]} is an 

upper bound. Next, there must be points in 𝑓[𝐾] between sup{𝑓[𝐾]} − 𝑟 and sup{𝑓[𝐾]} or else 

sup{𝑓[𝐾]} − 𝑟 would be a small upper bound, while sup{𝑓[𝐾]} is supposed to be the smallest 

upper bound. So indeed sup{𝑓[𝐾]} ∈ 𝜕(𝑓[𝐾]). 

Since we said that 𝑓[𝐾] is closed, 𝜕(𝑓[𝐾]) ⊆ 𝑓[𝐾]̅̅ ̅̅ ̅̅ = 𝑓[𝐾] and so sup{𝑓[𝐾]} ∈ 𝑓[𝐾]. So there 

exists 𝑥 ∈ 𝐾 so that 𝑓(𝑥) = sup{𝑓[𝐾]}. Hence 𝑥 is the 𝑥max that we wanted. 

You can do a similar argument to prove that 𝑥min exists. Or you can observe that 𝑥min of 𝑓 is 𝑥max 

of −𝑓. Choose your favorite approach! 

∎ 

• It turns out that one can generalize the classification of compact sets in ℝ𝑛 (i.e. being closed and 

bounded) to more general metric spaces, but one has to be careful. The following theorem 



Haim Grebnev Last Modified: February 18, 2025 

37 

 

provides the precise details. We won’t cover it in detail and you’re not allowed to use it on the 

homework or tests. 

• Theorem: Suppose that (𝑋, 𝑑𝑋) is a complete metric space and that 𝐾 ⊆ 𝑋. Then 𝐾 is compact if 

and only if it is closed and totally bounded (“totally bounded” means that for any radius 𝑟 > 0, 

you can cover 𝐾 by a finite number of balls of the form 𝐵𝑋(𝑥, 𝑟)). 

• Remark: The proof of the above theorem is essentially the same as the classification of compact 

sets ℝ𝑛, where the balls play the role of the boxes. Note the crucial assumption that 𝑋 is a 

complete metric space. One way to see that this is necessary assumption is that the square 

(−𝜋, 𝜋) × (−𝜋, 𝜋) is both closed and bounded in ℚ2, but is not compact (this is not hard to 

show: it’s on the level of an exercise). 

Differentiation 

• For a quantity that depends on time, the average rate of change is defined as 

change in the quantity

time elapsed
. 

This is powerful, because if for instance the quantity in question is distance, knowing the average 

rate of change and the time elapsed allows you to compute the distance traveled. This, however, 

doesn’t give you insight on what happens on smaller scales. The major contribution of 

differential calculus is to use the notion of limit to put the concept of “change” on the 

instantaneous level, which gives rise to the well-known concept of “instantaneous rate of 

change.” This concept, turns out, also plays a central role in other subjects such as differential 

geometry. 

• Definition: Suppose that 𝑈 ⊆ ℝ is an open subset and that 𝑓 ∶ 𝑈 → ℝ is a function. For any 

point 𝑎 ∈ 𝑈, the derivative of 𝒇 at 𝒂 is defined as either of the following equivalent statements 

𝑓′(𝑎) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
, 

𝑓′(𝑎) = lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
, 

if the limit exists. If the limit exists, we say that “𝑓 is differentiable at 𝑎.” If 𝑓 is differentiable at 

every point in 𝑈, we say that “𝑓 is differentiable (everywhere)” and we denote its derivative as a 

new function 𝑓′ ∶ 𝑈 → ℝ. 

• Remark: The reason we require 𝑈 to be open is that if we take 𝑎 ∈ 𝑈, we have a full interval 

around 𝑎 where we can freely move right and left to take values of 𝑓. This helps with the 

interpretation from calculus that the derivative gives the slope of the tangent line to the graph of 

𝑓. 

• Remark: The second derivative is the derivative of the first derivative, the third derivative is the 

derivative of the second derivative, and so on… For instance, we say that 𝑓 is three-times 
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differentiable if its third derivative exists everywhere. We denote the 𝑛th derivative of 𝑓 by 𝑓(𝑛). 

If all of the derivatives of 𝑓 exists, we say it’s “infinitely differentiable.” // 

• Remark: One can also define left-hand derivative 𝑓−
′ and right-hand derivative 𝑓+

′  as 

𝑓±
′(𝑎) = lim

𝑥→𝑎±

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= lim
𝑥→𝑎±

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
. 

It follows from a previous result that 𝑓 is differentiable at 𝑎 if and only if both 𝑓±
′(𝑎) exist and 

are equal, in which case 𝑓′(𝑎) = 𝑓+
′(𝑎) = 𝑓−

′(𝑎). The usefulness of this left and right derivatives 

is that you can extend the notion of derivative to closed intervals [𝛼, 𝛽] by defining the derivative 

of 𝑓 at 𝛼 as the right-hand derivative and the derivative of 𝑓 at 𝛽 as the left-hand derivative. // 

• Proposition: Suppose that 𝑈 ⊆ ℝ is open and consider the functions 𝑓, 𝑔 ∶ ℝ → ℝ where 

𝑓(𝑥) = 𝑥 and 𝑔 is the constant function 𝑔(𝑥) = 𝑐 (i.e. 𝑐 ∈ ℝ is some real number). Then both 𝑓 

and 𝑔 are differentiable and 𝑓′(𝑥) = 1 and 𝑔′(𝑥) = 0. 

Proof: 

𝑓′(𝑎) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= lim
𝑥→𝑎

𝑥 − 𝑎

𝑥 − 𝑎
= lim
𝑥→𝑎

1 = 1. 

𝑔′(𝑎) = lim
𝑥→𝑎

𝑔(𝑥) − 𝑔(𝑎)

𝑥 − 𝑎
= lim
𝑥→𝑎

𝑐 − 𝑐

𝑥 − 𝑎
= lim
𝑥→𝑎

0 = 0. 

∎ 

• Example: The function 𝑓(𝑥) = |𝑥| is not differentiable at zero because the limit from the two 

sides are not equal: 

𝑓+
′(𝑎) = lim

𝑥→0+

𝑓(𝑥) − 𝑓(0)

𝑥 − 0
= lim
𝑥→0+

|𝑥| − 0

𝑥 − 0
= lim
𝑥→0+

1 = 1, 

𝑓−
′(𝑎) = lim

𝑥→0−

𝑓(𝑥) − 𝑓(0)

𝑥 − 0
= lim
𝑥→0−

|𝑥| − 0

𝑥 − 0
= lim
𝑥→0−

−1 = −1. 

// 

• We mention a lemma on limits. 

• Lemma: Suppose that 𝑓, 𝑔 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ functions such that both lim𝑥→𝑎 𝑓(𝑥) and 

lim𝑥→𝑎 𝑔(𝑥) exist. Then 

lim
𝑥→𝑎

[𝑓(𝑥) ± 𝑔(𝑥)] = lim
𝑥→𝑎

[𝑓(𝑥)] + lim
𝑥→𝑎

[𝑔(𝑥)],          lim
𝑥→𝑎

[𝑓(𝑥)𝑔(𝑥)] = lim
𝑥→𝑎

[𝑓(𝑥)] lim
𝑥→𝑎

[𝑔(𝑥)], 

lim
𝑥→𝑎

[𝑓(𝑥) 𝑔(𝑥)⁄ ] = lim
𝑥→𝑎

[𝑓(𝑥)] lim
𝑥→𝑎

[𝑔(𝑥)]⁄ , 

where in the last statement we in addition require that lim𝑥→𝑎 𝑔(𝑥) ≠ 0. 
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• Proof: Its proof is exactly the same as the analog version for limits of sequences that we 

discussed earlier (this lemma and proof also holds if you change “𝑈 ⊆ ℝ𝑛” to a metric space 

(𝑋, 𝑑𝑋)).  

∎ 

• Theorem: Suppose that 𝑈 ⊆ ℝ is open and that 𝑓 ∶ 𝑈 → ℝ is differentiable at 𝑎 ∈ 𝑈. Then 𝑓 is 

continuous at 𝑎 ∈ 𝑈. Obviously if it is differentiable everywhere (i.e. at all 𝑎 ∈ 𝑈), then it is 

continuous everywhere. 

Proof: We will show that 𝑓(𝑎) = lim𝑥→𝑎 𝑓(𝑥) by showing that lim𝑥→𝑎[𝑓(𝑥) − 𝑓(𝑎)] = 0: 

lim
𝑥→𝑎

[𝑓(𝑥) − 𝑓(𝑎)] = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
(𝑥 − 𝑎) = lim

𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
lim
𝑥→𝑎

(𝑥 − 𝑎) = 𝑓′(𝑎) ⋅ 0 = 0. 

∎ 

• Remark: The above theorem and proof work if 𝑈 = [𝑎, 𝑏] is a closed interval and you use one-

sided derivatives. // 

• Remark: It follows immediately from the above theorem that if 𝑈 ⊆ ℝ is open and 𝑓 ∶ 𝑈 → ℝ is 

𝑛 times differentiable, then 𝑓, 𝑓′,…, 𝑓(𝑛−1) ∶ 𝑈 → ℝ are continuous because the continuity of 

𝑓(𝑛) implies the continuity of 𝑓(𝑛−1), continuity of 𝑓(𝑛−1) implies the continuity of 𝑓(𝑛−2), etc. // 

• Next we prove the usual calculus rules surrounding derivatives (i.e. product rule, chain rule, etc.) 

• Theorem (Sum/Product Rule): Suppose that 𝑈 ⊆ ℝ is open and that 𝑓, 𝑔 ∶ 𝑈 → ℝ are 

differentiable at 𝑎 ∈ 𝑈. Then 𝑓 + 𝑔 and 𝑓 ⋅ 𝑔 are differentiable at 𝑎 and 

(𝑓 + 𝑔)′(𝑎) = 𝑓′(𝑎) + 𝑔′(𝑎)         and          (𝑓 ⋅ 𝑔)′(𝑎) = 𝑓′(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔′(𝑎). 

Obviously if they are differentiable everywhere (i.e. at all 𝑎 ∈ 𝑈), then this holds everywhere. 

Proof: We will do 𝑓 ⋅ 𝑔, the proof for 𝑓 + 𝑔 is left as an exercise. We have that 

lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑎)𝑔(𝑎)

𝑥 − 𝑎
= lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑎)𝑔(𝑥) + 𝑓(𝑎)𝑔(𝑥) − 𝑓(𝑎)𝑔(𝑎)

𝑥 − 𝑎
 

= lim
𝑥→𝑎

[𝑓(𝑥) − 𝑓(𝑎)]𝑔(𝑥) + 𝑓(𝑎)[𝑔(𝑥) − 𝑔(𝑎)]

𝑥 − 𝑎
 

= lim
𝑥→𝑎

[
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
𝑔(𝑥)] + lim

𝑥→𝑎
[𝑓(𝑥)

𝑔(𝑥) − 𝑔(𝑎)

𝑥 − 𝑎
] 

Since 𝑓 and 𝑔 are continuous at 𝑎 by the previous theorem, 𝑓(𝑎) = lim𝑥→𝑎 𝑓(𝑥) and 𝑔(𝑎) =

lim𝑥→𝑎 𝑔(𝑥). So breaking up the above two limits and taking limits gives 

= lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
lim
𝑥→𝑎

𝑔(𝑥) + lim
𝑥→𝑎

𝑓(𝑥) lim
𝑥→𝑎

𝑔(𝑥) − 𝑔(𝑎)

𝑥 − 𝑎
= 𝑓′(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔′(𝑎). 

∎ 
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• To prove the chain rule, we need a few lemmas which you’ll prove on the homework. 

• Lemma: Suppose that 𝑓 ∶ 𝑈 → ℝ and 𝑔 ∶ 𝑉 → ℝ are such that range 𝑓 ⊆ dom𝑔 (so it always 

makes sense to write 𝑔(𝑓(𝑥))). If both lim𝑥→𝑎 𝑓(𝑥) and lim𝑦→lim𝑥→𝑎 𝑓(𝑥) 𝑔(𝑦) exist, then 

lim
𝑥→𝑎

𝑔(𝑓(𝑥)) = lim𝑦→lim𝑥→𝑎 𝑓(𝑥) 𝑔(𝑥) 

• Lemma: Suppose we have 𝑔 ∶ 𝑉 → ℝ and a sequence {𝑦𝑘} in 𝑉. Suppose that 𝑏 = lim𝑘→∞ 𝑦𝑘 

exists, 𝑏 is in 𝑉, and that each 𝑦𝑘 ≠ 𝑏. Suppose also that lim𝑦→lim𝑘→∞ 𝑦𝑘 𝑔(𝑦) also exists. Then 

lim
𝑘→∞

𝑔(𝑦𝑘) = lim𝑦→lim𝑘→∞ 𝑦𝑘 𝑔(𝑦). 

• Theorem (Chain Rule): Suppose that 𝑈, 𝑉 ⊆ ℝ are open and that 𝑓 ∶ 𝑈 → ℝ and 𝑔 ∶ 𝑉 → ℝ are 

such that range 𝑓 ⊆ dom𝑔. Suppose 𝑓 is differentiable at 𝑎 ∈ 𝑈 and that 𝑔 is differentiable at 

𝑓(𝑎). Then the composition 𝑔 ∘ 𝑓 = 𝑔(𝑓( ⋅ )) ∶ 𝑈 → ℝ is differentiable at 𝑎 and 

(𝑔 ∘ 𝑓)′(𝑎) = 𝑔′(𝑓(𝑎))𝑓′(𝑎). 

Proof: Suppose first that there exists a small interval (𝑎 − 𝛿, 𝑎 + 𝛿) around 𝑎 contained in 𝑈 

such that 𝑓(𝑥) ≠ 𝑓(𝑎) for 𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) and 𝑥 ≠ 𝑎. Then 

(4)                    lim
𝑥→𝑎

𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑎))

𝑥 − 𝑎
= lim
𝑥→𝑎

𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑎))

𝑓(𝑥) − 𝑓(𝑎)
⋅
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

= lim
𝑥→𝑎

Plug in 𝑓(𝑥) into 𝑦 in 
𝑔(𝑦) − 𝑔(𝑎)

𝑦 − 𝑎
lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= 𝑔′(𝑓(𝑎))𝑓′(𝑎) 

(we used the second to last lemma for the blue items). Next suppose such a small interval 

(𝑎 − 𝛿, 𝑎 + 𝛿) around 𝑎 does not exist. In other words 

∀𝛿 > 0   ∃𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) ∶ 𝑥 ≠ 𝑎,   𝑓(𝑥) = 𝑓(𝑎). 

By a technique we’ve done many times before (e.g. setting 𝛿 = 1 𝑘⁄ ), we can construct a 

sequence {𝑥𝑘} in 𝑈 so that 𝑎 = lim𝑥→∞ 𝑥𝑘, each 𝑓(𝑥𝑘) = 𝑓(𝑎), and each 𝑥𝑘 ≠ 𝑎. By the 

previous lemma 

𝑓′(𝑎) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= lim
𝑘→∞

𝑓(𝑥𝑘) − 𝑓(𝑎)

𝑥𝑘 − 𝑎
= lim
𝑥→𝑎

0 = 0. 

So we just have to show that (𝑔 ∘ 𝑓)′(𝑎) = 0. We will show this by showing that the quantity 

inside the first limit in (4) is arbitrarily small. Take any 𝜀 > 0. There exists 𝛿1, 𝛿2, 𝛿3 > 0 such 

that 

(5)                               ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿1 ,   |
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
| < 𝜀 

(6)         ∀𝑦 ∈ 𝑉 ∶ 𝑦 ≠ 𝑓(𝑎) and |𝑦 − 𝑓(𝑎)| < 𝛿2 ,   |
𝑔(𝑦) − 𝑔(𝑓(𝑎))

𝑦 − 𝑎
− 𝑔′(𝑓(𝑎))| < 1 
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(7)                                ∀𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑎 and |𝑥 − 𝑎| < 𝛿3,   |𝑓(𝑥) − 𝑓(𝑎)| < 𝛿2 

Note that the last item in (6) and the triangle inequality imply that 

|
𝑔(𝑦) − 𝑔(𝑓(𝑎))

𝑦 − 𝑎
| ≤ |

𝑔(𝑦) − 𝑔(𝑓(𝑎))

𝑦 − 𝑎
− 𝑔′(𝑓(𝑎))| + |𝑔′(𝑓(𝑎))| < 1 + |𝑔′(𝑓(𝑎))|. 

Then for any 𝑥 ∈ 𝑈 ∶ 𝑥 ≠ 𝑓(𝑎) and |𝑥 − 𝑎| < min{𝛿1, 𝛿3} 

|
𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑎))

𝑥 − 𝑎
− 0| = {

𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑎))

𝑓(𝑥) − 𝑓(𝑎)
⋅
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
     if   𝑓(𝑥) ≠ 𝑓(𝑎)

0                                                                   if   𝑓(𝑥) = 𝑓(𝑎)

 

≤ {
[1 + |𝑔′(𝑓(𝑎))|]𝜀     if   𝑓(𝑥) ≠ 𝑓(𝑎)

[1 + |𝑔′(𝑓(𝑎))|]𝜀     if   𝑓(𝑥) = 𝑓(𝑎)
= [1 + |𝑔′(𝑓(𝑎))|]𝜀. 

Oops… from here we see that had we divided our original 𝜀 by [1 + |𝑔′(𝑓(𝑎))|], we would get 

that this is less than 𝜀. Hence, as mentioned above, this proves the theorem. 

∎ 

• Lemma: The derivative of the function 1 𝑥⁄  (defined over ℝ ∖ {0}) is −1 𝑥2⁄ . 

Proof: Homework. ∎ 

• Theorem: Suppose that 𝑈 ⊆ ℝ is open and that 𝑓, 𝑔 ∶ 𝑈 → ℝ are differentiable at 𝑎 ∈ 𝑈 and 

𝑔(𝑎) ≠ 0. Then 𝑓 𝑔⁄  is differentiable at 𝑎 and 

(
𝑓

𝑔
)
′

(𝑎) =
𝑓′(𝑎)𝑔(𝑎) − 𝑓(𝑎)𝑔′(𝑎)

(𝑔(𝑎))
2 . 

Proof: Let ℎ𝐷 ∶ ℝ ∖ {0} → ℝ be the function ℎ𝐷(𝑥) = 1 𝑥⁄ . Then by the product rule, chain rule, 

and the previous lemma (here I omit writing “(𝑎)”) 

(
𝑓

𝑔
)
′

= 𝑓 ⋅ (ℎ𝐷 ∘ 𝑔) = 𝑓
′ ⋅ (ℎ𝐷 ∘ 𝑔) + 𝑓 ⋅ (ℎ𝐷 ∘ 𝑔)

′ =
𝑓′

𝑔
+ 𝑓 ⋅ (−

1

𝑔2
⋅ 𝑔′) =

𝑓′𝑔 − 𝑓𝑔′

𝑔2
. 

∎ 

• Next we prove a theorem that justifies finding maximums and minimums by taking the 

derivative of a function and setting it to zero. 

• Definition: Suppose that 𝑈 is open and that 𝑓 ∶ 𝑈 → ℝ is differentiable. We say that 𝑎 is a local 

maximum of 𝑓 if there exists a small interval (𝑎 − 𝛿, 𝑎 + 𝛿) contained in 𝑈 so that 

𝑓(𝑥) ≤ 𝑓(𝑎)     ∀𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) 
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The point 𝑎 being a local minimum is defined similarly but change “≤” to “≥.” 

Similarly, 𝑎 is called a global maximum if 

𝑓(𝑥) ≤ 𝑓(𝑎)     ∀𝑥 ∈ 𝑈 

The point 𝑎 being a global minimum is defined similarly but change “≤” to “≥.” 

Obviously a global maximum/minimum is a local maximum/minimum, but the other direction is 

not true. 

• Lemma: If 𝑓, 𝑔 ∶ 𝑈 → ℝ are such that 𝑓 ≤ 𝑔 and both lim𝑥→𝑎± 𝑓(𝑥) and lim𝑥→𝑎± 𝑔(𝑥) exist, 

then lim𝑥→𝑎± 𝑓(𝑥) ≤ lim𝑥→𝑎± 𝑔(𝑥) (you can remove the “±” as well). 

Proof: Similar to the proof of the analogous theorem you proved on the homework for 

sequences. ∎ 

• Lemma: Suppose that 𝑈 is open and that 𝑓 ∶ 𝑈 → ℝ is a function. Suppose that 𝑓 is 

differentiable at 𝑎 ∈ 𝑈 and that 𝑎 is a local maximum or local minimum. Then 𝑓′(𝑎) = 0. Since 

global maximums/minimums are also local maximums/minimums, this also works for global 

maximums/minimums. 

Proof: We’ll do the local maximum case: the other case is done similarly. We have that 

𝑓+
′(𝑎) = lim

𝑥→𝑎+

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= lim
𝑥→𝑎+

(something smaller than 𝑓(𝑎)) − 𝑓(𝑎)

something positive
≤ lim
𝑥→𝑎+

0 = 0, 

𝑓−
′(𝑎) = lim

𝑥→𝑎−

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= lim
𝑥→𝑎−

(something smaller than 𝑓(𝑎)) − 𝑓(𝑎)

something negative
≥ lim
𝑥→𝑎−

0 = 0. 

Since 𝑓′(𝑎) = 𝑓±
′(𝑎), we have that 𝑓′(𝑎) = 0. 

∎ 

• Now we build towards the Mean Value Theorem. 

• Rolle’s Theorem: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is continuous, differentiable on (𝑎, 𝑏) and 𝑓(𝑎) =

𝑓(𝑏). Then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑓′(𝑐) = 0. 

Proof: By the extreme value theorem, 𝑓 has a global maximum and global minimum. If 𝑓(𝑎) =

𝑓(𝑏) is both the global maximum and minimum, then 𝑓 is constant and so 𝑓′(𝑐) = 0 for all 𝑐 ∈
(𝑎, 𝑏). Otherwise, there exists a global maximum or minimum 𝑐 ∈ (𝑎, 𝑏). By the previous 

lemma, 𝑓′(𝑐) = 0. 

∎ 

• Mean Value Theorem I: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is continuous and differentiable on (𝑎, 𝑏). 

Then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 
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𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

Proof: Let 𝑙 ∶ [𝑎, 𝑏] → ℝ be the line 

𝑙(𝑥) = 𝑓(𝑎) +
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
(𝑥 − 𝑎). 

Observe that 

𝑙(𝑎) = 𝑓(𝑎)    and    𝑙(𝑏) = 𝑓(𝑎) +
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
(𝑏 − 𝑎) = 𝑓(𝑏)    and    𝑙′(𝑥) =

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
. 

Consider the function ℎ ∶ [𝑎, 𝑏] → ℝ given by ℎ(𝑥) = 𝑓(𝑥) − 𝑙(𝑥). Then 

ℎ(𝑎) = 𝑓(𝑎) − 𝑙(𝑎) = 𝑓(𝑎) − 𝑓(𝑎) = 0     and     ℎ(𝑏) = 𝑓(𝑏) − 𝑙(𝑏) = 𝑓(𝑏) − 𝑓(𝑏) = 0 

and thus ℎ(𝑎) = ℎ(𝑏). So by Rolle’s Theorem there exists 𝑐 ∈ (𝑎, 𝑏) such that 

0 = ℎ′(𝑐) = 𝑓′(𝑐) − 𝑙′(𝑐) = 𝑓′(𝑐) −
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

and so 

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
. 

∎ 

• Lemma: Suppose that 𝑔 ∶ (𝑎, 𝑏) → ℝ is differentiable and 𝑔′ > 0. Then 𝑔 is strictly increasing 

(i.e. 𝑥1 < 𝑥2 implies 𝑔(𝑥1) < 𝑔(𝑥2)). Same thing holds if you change the assumption to “𝑔′ <
0” and the conclusion to “𝑔 is strictly decreasing.” 

Proof: We’ll do the case 𝑔′ > 0, the other case 𝑔′ < 0 is proved very similarly. Suppose not! 

Then there exists 𝑥1 < 𝑥2 such that 𝑔(𝑥1) ≥ 𝑔(𝑥2). By the Mean Value Theorem I, there exists 

𝑐 ∈ (𝑎, 𝑏) such that 

𝑔′(𝑐) =
𝑔(𝑥2) − 𝑔(𝑥1)

𝑥2 − 𝑥1
≤ 0, 

contradiction! 

∎ 

• Mean Value Theorem II: Suppose that 𝑓, 𝑔 ∶ [𝑎, 𝑏] → ℝ is continuous and differentiable on 

(𝑎, 𝑏) and that 𝑔′ is not zero on (𝑎, 𝑏). Then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 

𝑓′(𝑐)

𝑔′(𝑐)
=
𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
. 
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Proof: Homework to read: Theorem 2.9 in Advanced Calculus Second Edition by Gerald B. 

Folland (click on the link to see the book on the author’s website) It should be an easy read: so 

you are responsible for it. ∎ 

• L’Hôpital’s Rule I: Suppose 𝑈 ⊆ ℝ is open and that 𝑓, 𝑔 ∶ 𝑈 → ℝ are differentiable. Suppose 

that for some 𝑎 ∈ 𝑈 

lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

𝑔(𝑥) = 0 

Suppose also that 𝑔′ is not zero on some small interval (𝑎 − 𝛿, 𝑎 + 𝛿) ⊆ 𝑈 except possibly at 

𝑥 = 𝑎 and that the limit 

lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
 

exists. Then 𝑔 is also not zero on (𝑎 − 𝛿, 𝑎 + 𝛿) except at 𝑥 = 𝑎 and 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
 

Proof: Since 𝑓 and 𝑔 are differentiable, they are continuous and so 

𝑓(𝑎) = lim
𝑥→𝑎

𝑓(𝑥) = 0     and     𝑔(𝑎) = lim
𝑥→𝑎

𝑔(𝑥) = 0. 

We now focus only on 𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿). For such 𝑥, we cannot have 𝑔(𝑥) = 0 or else by 

Rolles’ theorem there would be a 𝑐 between 𝑎 and 𝑥 such that 𝑔′(𝑐) = 0 and we said that 𝑔′ is 

not zero on (𝑎 − 𝛿, 𝑎 + 𝛿) except possibly at 𝑥 = 𝑎. So indeed 𝑔 is also not zero on (𝑎 − 𝛿, 𝑎 +
𝛿) except at 𝑥 = 𝑎. We will show that 

lim
𝑥→𝑎±

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎±

𝑓′(𝑥)

𝑔′(𝑥)
 

from which the theorem will follow by the equality of the limits from both sides. Let’s start with 

𝑥 → 𝑎+. Take any 𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) such that 𝑥 > 𝑎. Then there exists some 𝑐𝑥 ∈ (𝑎, 𝑥) such 

that 

𝑓(𝑥)

𝑔(𝑥)
=
𝑓(𝑥) − 𝑓(𝑎)

𝑔(𝑥) − 𝑔(𝑎)
=
𝑓′(𝑐𝑥)

𝑔′(𝑐𝑥)
. 

Notice that since 𝑐𝑥 is stuck in between 𝑎 and 𝑥, 𝑐𝑥 → 𝑎+ as 𝑥 → 𝑎+ and so this will force 

lim
𝑥→𝑎+

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎+

𝑓′(𝑐𝑥)

𝑔′(𝑐𝑥)
= lim
𝑥→𝑎+

𝑓′(𝑥)

𝑔′(𝑥)
. 

The case 𝑥 → 𝑎− is done similarly. 

∎ 

https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf
https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf
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• Homework: Read the statements of Theorem 2.10 and Theorem 2.11 in Advanced Calculus 

Second Edition by Gerald B. Folland (click on the link to see the book on the author’s website). 

If you wish, you may read the proofs, but you are not responsible for the proofs. 

  

https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf
https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf
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Integration 

• Notation: Suppose that {𝑦𝑘}𝑘=1
𝑚  is a set of numbers. We define the sum notation Σ: 

∑𝑦𝑘

𝑚

𝑘=1

= 𝑦1 + 𝑦2 +⋯+ 𝑦𝑚. 

Of course, this can be done for other objects as well that come with the addition operation, such 

as when 𝑦𝑘 are vectors, functions, etc. 

• Examples: If we take {𝑦𝑘}𝑘=1
5  where each 𝑦𝑘 = 𝑘

2, then 

∑𝑦𝑘

5

𝑘=1

= 𝑦1 + 𝑦2 +⋯+ 𝑦5 = 1
2 + 22 + 32 + 42 + 52 = 55 

People often don’t make any mention of 𝑦𝑘 and simply write 

∑𝑘2
5

𝑘=1

= 12 + 22 + 32 + 42 + 52 = 55. 

• We now embark on constructing the integral. Intuitively it is an infinite sum of objects that are 

defined on the instantaneous scale. One use of this is to invert differentiation, such as computing 

total distance traveled from knowledge of instantaneous rate of change. Recall from calculus that 

integrals also give areas under curves and hence have application in geometry (or in higher 

dimensions they give volumes). In fact, areas under curves is the idea behind how we will define 

integrals. 

We will define the Riemann integral, which integrates bounded function 𝑓 ∶ [𝑎, 𝑏] → ℝ defined 

over a compact interval [𝑎, 𝑏]. Integration is computed by approximations obtained by breaking 

up the axis of the independent variable (i.e. [𝑎, 𝑏]) into small intervals and then making the 

length of the intervals smaller and smaller. The following definition is the starting point for this. 

• Definition: A partition of an interval [𝑎, 𝑏] ⊆ ℝ is a collection of points 

𝑃 = {𝑥0, 𝑥1, … , 𝑥𝐽} 

that have the property that 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝐽 = 𝑏. Another partition 𝑃′ is called a 

refinement of 𝑃 if 𝑃 ⊆ 𝑃′ (i.e. 𝑃′ = {𝑥0
′ , 𝑥1

′ , … , 𝑥𝐽′
′ } is a set of points that contains the points of 

𝑃 = {𝑥0, 𝑥1, … , 𝑥𝐽} and has even more points in it!) 

• Now we define upper and lower Riemann sums which approximate the true integral from above 

and below respectively. 

• Definition: Suppose 𝑓 ∶ [𝑎, 𝑏] → ℝ is bounded and that 𝑃 is a partition of [𝑎, 𝑏]. The upper 

Riemann sum of 𝑓 with partition 𝑃 = {𝑥0, … , 𝑥𝐽} is defined as 
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(8)                                               𝑆𝑃𝑓 =∑ sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

 

= sup
𝑥∈[𝑥0,𝑥1]

{𝑓(𝑥)} (𝑥1 − 𝑥0) + sup
𝑥∈[𝑥1,𝑥2]

{𝑓(𝑥)} (𝑥2 − 𝑥1) + ⋯+ sup
𝑥∈[𝑥𝐽−1,𝑥𝐽]

{𝑓(𝑥)} (𝑥𝐽 − 𝑥𝐽−1). 

The lower Riemann sum of 𝑓 with partition 𝑃 is defined similarly but using the infimum: 

(9)                                              𝑠𝑃𝑓 =∑ inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

. 

Observe that since each 

inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} ≤ sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)}, 

we immediately get that the lower Riemann sum is smaller than the upper Riemann sum: 𝑠𝑃𝑓 ≤
𝑆𝑃𝑓. 

• Intuitively speaking, the following lemma says that taking smaller intervals in the partition 

improves the approximation of the upper and lower Riemann sums to the true integral. 

• Lemma: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is bounded. Suppose that 𝑃 is a partition of [𝑎, 𝑏] and that 

𝑃′ is a refinement of it (i.e. 𝑃 ⊆ 𝑃′). Then 

𝑆𝑃𝑓 ≥ 𝑆𝑃′𝑓          and          𝑠𝑃𝑓 ≤ 𝑠𝑃′𝑓. 

Proof: We will do 𝑆𝑃𝑓 ≥ 𝑆𝑃′𝑓, the proof for 𝑠𝑃𝑓 ≤ 𝑠𝑃′𝑓 is very similar. Let 𝑃 = {𝑥0, … , 𝑥𝐽} and 

𝑃′ = {𝑥1
′ , … 𝑥𝐽′

′ }. Take any interval [𝑥𝑗 , 𝑥𝑗+1] in the partition 𝑃. Take all of the 𝑥𝑘
′ , … , 𝑥𝑚

′  in 𝑃′ 

such that 

𝑥𝑗 = 𝑥𝑘
′ < 𝑥𝑘+1

′ < ⋯ < 𝑥𝑚−1
′ < 𝑥𝑚

′ = 𝑥𝑗+1. 

Intuitively, we broke up [𝑥𝑗 , 𝑥𝑗+1] into subintervals of the form [𝑥𝑟
′ , 𝑥𝑟+1

′ ]. We now analyze every 

term in the sum (8): 

sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑗+1 − 𝑥𝑗) = sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑚
′ − 𝑥𝑘

′ ) 

= sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} [(𝑥𝑚
′ − 𝑥𝑚−1

′ ) + (𝑥𝑚−1
′ − 𝑥𝑚−2

′ ) + ⋯+ (𝑥𝑘+1
′ − 𝑥𝑘

′ )] 

= sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑚
′ − 𝑥𝑚−1

′ ) +⋯+ sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑘+1
′ − 𝑥𝑘

′ ). 

Since each [𝑥𝑟
′ , 𝑥𝑟+1

′ ] subinterval considered here is contained in [𝑥𝑗 , 𝑥𝑗+1], we have that 

sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} ≥ sup
𝑥∈[𝑥𝑟

′ ,𝑥𝑟+1
′ ]

{𝑓(𝑥)}. 
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Hence from the previous calculation we get that 

sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑗+1 − 𝑥𝑗) 

≥ sup
𝑥∈[𝑥𝑚−1

′ ,𝑥𝑚
′ ]

{𝑓(𝑥)} (𝑥𝑚
′ − 𝑥𝑚−1

′ ) + ⋯+ sup
𝑥∈[𝑥𝑘

′ ,𝑥𝑘+1
′ ]

{𝑓(𝑥)} (𝑥𝑘+1
′ − 𝑥𝑘

′ ). 

Observe that adding up the left-side for all 𝑗 ∈ {0,… , 𝐽 − 1} gives 𝑆𝑃𝑓 while the right-hand side 

will add up to 𝑆𝑃′𝑓. Hence indeed 𝑆𝑃𝑓 ≥ 𝑆𝑃′𝑓. 

∎ 

• The next lemma says that lower Riemann sums are smaller than upper Riemann sums regardless 

of the partition you choose for either. 

• Lemma: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is bounded and that 𝑃 and 𝑄 are partitions of [𝑎, 𝑏]. Then 

𝑠𝑃𝑓 ≤ 𝑆𝑄𝑓. 

Proof: Consider the partition 𝑃 ∪ 𝑄 of [𝑎, 𝑏]. Then by the previous lemma, 

𝑠𝑃𝑓 ≤ 𝑠𝑃∪𝑄𝑓 ≤ 𝑆𝑃∪𝑄𝑓 ≤ 𝑆𝑄𝑓. 

∎ 

• Definition: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is bounded. The upper and lower Riemann integrals 

are defined as 

𝐼𝑎
𝑏𝑓 = sup

𝑃
{𝑠𝑃𝑓}           and          𝐼𝑎

𝑏
𝑓 = inf

𝑄
{𝑆𝑄𝑓}. 

Note that since 𝑠𝑃𝑓 ≤ 𝑆𝑄𝑓 by the previous lemma and “sup” and “inf” preserve “≤” (this takes a 

little thought to see why), we get that 𝐼𝑎
𝑏𝑓 ≤ 𝐼𝑎

𝑏
𝑓 always. If 𝐼𝑎

𝑏
𝑓 = 𝐼𝑎

𝑏𝑓, then we say that 𝑓 is 

Riemann integrable (on [𝑎, 𝑏]) and we define the Riemann integral of 𝑓 as 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝐼𝑎
𝑏
𝑓 = 𝐼𝑎

𝑏𝑓. 

Since we don’t consider other types of integrals in this course for a while (e.g. the Lebesgue 

integral), for now we sometimes don’t write “Riemann” in “Riemann integral.” 

• The idea behind the above definition is that intuitively speaking the area under the graph of 𝑓 

(i.e. the integral ∫ 𝑓
𝑏

𝑎
) must be less than or equal to all upper Riemann sums and bigger than or 

equal to all lower Riemann sums. Thus the integral ∫ 𝑓
𝑏

𝑎
 must be stuck between 𝐼𝑎

𝑏𝑓 and 𝐼𝑎
𝑏
𝑓. If 

the two are not equal: 𝐼𝑎
𝑏𝑓 < 𝐼𝑎

𝑏
𝑓, then we don’t know what ∫ 𝑓

𝑏

𝑎
 should be and so we can’t 

define it. If the two are equal: 𝐼𝑎
𝑏𝑓 = 𝐼𝑎

𝑏
𝑓, then we define ∫ 𝑓

𝑏

𝑎
 to be that number. 
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• Notation: If 𝑏 < 𝑎, then we define 

∫𝑓(𝑥)𝑑𝑥

𝑎

𝑏

= −∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

. 

This is simply a convention, that has proved to be useful. 

• Next we explore standard properties of integrals. 

• Theorem:  

a) Suppose that 𝑎 < 𝑏 < 𝑐 and that 𝑓 ∶ [𝑎, 𝑐] → ℝ is Riemann integrable on [𝑎, 𝑏] and [𝑏, 𝑐] 

separately. Then 𝑓 is integrable on all of [𝑎, 𝑐] and 

∫𝑓(𝑥)𝑑𝑥

𝑐

𝑎

= ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+∫𝑓(𝑥)𝑑𝑥

𝑐

𝑏

. 

b) Suppose that 𝑓, 𝑔 ∶ [𝑎, 𝑏] → ℝ are Riemann integrable. Then 𝑓 + 𝑔 ∶ [𝑎, 𝑏] → ℝ is 

Riemann integrable and 

∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥

𝑏

𝑎

= ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+∫𝑔(𝑥)𝑑𝑥

𝑏

𝑎

. 

Proof: We begin with a). In our proof of a), let 𝑃’s denote partitions of [𝑎, 𝑏], 𝑄’s denote 

partitions of [𝑏, 𝑐], and 𝑅’s denote partitions of [𝑎, 𝑐]. Observe that for any 𝑃 and 𝑄, 𝑃 ∪ 𝑄 is a 

partition of [𝑎, 𝑐] and 

(10)                                                   𝑠𝑃𝑓 + 𝑠𝑄𝑓 = 𝑠𝑃∪𝑄𝑓 ≤ sup
𝑅
𝑠𝑅𝑓. 

We claim that this implies that 

(11)                                                   sup
𝑃
𝑠𝑃𝑓 + sup

𝑄
𝑠𝑄𝑓 ≤ sup

𝑅
𝑠𝑅𝑓. 

Essentially we threw sup𝑃  and sup𝑄  onto 𝑠𝑃𝑓 and 𝑠𝑄𝑓 respectively in (10). Let’s show how to 

justify this. From (10) we have that 

𝑠𝑃𝑓 ≤ sup
𝑅
𝑠𝑅𝑓 − 𝑠𝑄𝑓. 

So the right-hand side is an upper bound of the left-hand side for all 𝑃. Since sup𝑃 𝑠𝑃𝑓 is the 

least such upper bound we get that sup𝑃 𝑠𝑃𝑓 ≤ sup
𝑅
𝑠𝑅𝑓 − 𝑠𝑄𝑓 and so 

sup
𝑃
𝑠𝑃𝑓 + 𝑠𝑄𝑓 ≤ sup

𝑅
𝑠𝑅𝑓. 
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Throwing on sup𝑄  onto 𝑠𝑄𝑓 is done similarly, and hence we indeed get (11). Note that (11) is 

another way of writing 

𝐼𝑎
𝑏𝑓 + 𝐼𝑏

𝑐𝑓 ≤ 𝐼𝑎
𝑐𝑓. 

This same argument but using upper Riemann sums and infimums gives 𝐼𝑎
𝑐
𝑓 ≤ 𝐼𝑎

𝑏
𝑓 + 𝐼𝑏

𝑐
𝑓. Thus, 

since 𝐼𝑎
𝑐𝑓 ≤ 𝐼𝑎

𝑐
𝑓 we get that 

(12)                                             𝐼𝑎
𝑏𝑓 + 𝐼𝑏

𝑐𝑓 ≤ 𝐼𝑎
𝑐𝑓 ≤ 𝐼𝑎

𝑐
𝑓 ≤ 𝐼𝑎

𝑏
𝑓 + 𝐼𝑏

𝑐
𝑓. 

Since we said that 𝑓 is Riemann integrable on [𝑎, 𝑏] and [𝑏, 𝑐], we have that 

𝐼𝑎
𝑏𝑓 = 𝐼𝑎

𝑏
𝑓 = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

     and     𝐼𝑏
𝑐𝑓 = 𝐼𝑏

𝑐
𝑓 = ∫𝑓(𝑥)𝑑𝑥

𝑐

𝑏

 

which by (12) forces 

(13)                                             𝐼𝑎
𝑐𝑓 = 𝐼𝑎

𝑐
𝑓 = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+∫𝑓(𝑥)𝑑𝑥

𝑐

𝑏

. 

Hence indeed 𝑓 is Riemann integrable on [𝑎, 𝑐] and ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
 is equal to (13). 

Next let’s prove b). Take any partition 𝑃 of [𝑎, 𝑏]. Let 𝑃 = {𝑥0, … , 𝑥𝐽}. Consider one of the 

intervals [𝑥𝑗 , 𝑥𝑗+1]. Observe that for any �̃� ∈ [𝑥𝑗 , 𝑥𝑗+1] 

inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} + inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑔(𝑥)} ≤ 𝑓(�̃�) + 𝑔(�̃�). 

Thus the left-hand side is a lower bound for all values of the form on the right-hand side, and so 

inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} + inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑔(𝑥)} ≤ inf
�̃�∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(�̃�) + 𝑔(�̃�)}. 

We can replace �̃� with 𝑥 on the right-hand side since it doesn’t matter what letter we use. Thus 

∑[ inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} + inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑔(𝑥)}] (𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

≤∑ inf
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥) + 𝑔(𝑥)} (𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

 

which is the same thing as 

𝑠𝑃𝑓 + 𝑠𝑃𝑔 ≤ 𝑠𝑃(𝑓 + 𝑔). 

We can’t simply throw sup𝑃  onto both sides because it’s not clear how sup𝑃  breaks over the “+” 

sign on the left-hand side. So consider another partition 𝑄 of [𝑎, 𝑏] and observe that the above 

proves that (here 𝑅 is any partition of [𝑎, 𝑏]) 
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𝑠𝑃𝑓 + 𝑠𝑄𝑔 ≤ 𝑠𝑃∪𝑄𝑓 + 𝑠𝑃∪𝑄𝑔 ≤ 𝑠𝑃∪𝑄 (𝑓 + 𝑔) ≤ sup
𝑅
𝑠𝑅(𝑓 + 𝑔). 

Now we can throw on sup𝑃   and sup𝑄  onto the left-hand side as before to get 

sup
𝑃
𝑠𝑃𝑓 + sup

𝑄
𝑠𝑄𝑔 ≤ sup

𝑅
𝑠𝑅(𝑓 + 𝑔), 

which is equivalent to 

𝐼𝑎
𝑏𝑓 + 𝐼𝑎

𝑏𝑔 ≤ 𝐼𝑎
𝑏(𝑓 + 𝑔). 

Repeating the above arguments but with upper Riemann sums and using “inf”, one similarly gets 

𝐼𝑎
𝑏
(𝑓 + 𝑔) ≤ 𝐼𝑎

𝑏
𝑓 + 𝐼𝑏

𝑏
𝑔. Since 𝐼𝑎

𝑏(𝑓 + 𝑔) ≤ 𝐼𝑎
𝑏
(𝑓 + 𝑔) we have that 

𝐼𝑎
𝑏𝑓 + 𝐼𝑎

𝑏𝑔 ≤ 𝐼𝑎
𝑏(𝑓 + 𝑔) ≤ 𝐼𝑎

𝑏
(𝑓 + 𝑔) ≤ 𝐼𝑎

𝑏
𝑓 + 𝐼𝑏

𝑏
𝑔. 

As before, since 𝑓 and 𝑔 are Riemann integrable on [𝑎, 𝑏] we have that 

𝐼𝑎
𝑏𝑓 = 𝐼𝑎

𝑏
𝑓 = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

     and     𝐼𝑎
𝑏𝑔 = 𝐼𝑎

𝑏
𝑔 = ∫𝑔(𝑥)𝑑𝑥

𝑏

𝑎

 

which by the previous inequality forces  

(14)                                 𝐼𝑎
𝑏(𝑓 + 𝑔) = 𝐼𝑎

𝑏
(𝑓 + 𝑔) = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+∫𝑓(𝑥)𝑑𝑥

𝑐

𝑏

. 

Thus indeed 𝑓 + 𝑔 is Riemann integrable on [𝑎, 𝑏] and ∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
 is equal to (14). 

∎ 

• Remark: There are a few more standard properties of integrals that you should already know 

from calculus, and I will most likely ask you to prove in the homework. The are written out in 

Theorem 4.9 in Advanced Calculus 2nd Ed by Gerald Folland: 

https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf  

You are responsible for reading the statement of the theorem. 

• Remark: Using the convention that ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= −∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑏
, it’s easy to see that part a) of the 

above theorem holds for any triple of numbers 𝑎, 𝑏, 𝑐 (i.e. not necessarily 𝑎 < 𝑏 < 𝑐). This is 

why this convention was chosen. 

• We’ve defined Riemann integrable functions, but we haven’t given any examples of such 

functions. To do this, we will show that all continuous functions are Riemann integrable. To 

prove this, we need a stronger notion of continuity: 

https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf
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• Definition: Suppose (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) are metric spaces. We say that 𝑓 ∶ 𝑋 → 𝑌 is uniformly 

continuous if 

∀𝜀 > 0   ∃𝛿 > 0   ∀𝑥 ∈ 𝑋   ∀𝑦 ∈ 𝑋 ∶ 𝑑𝑋(𝑥, 𝑦) < 𝛿,   𝑑𝑌(𝑓(𝑥), 𝑓(𝑦)) < 𝜀. 

Theorem: Suppose (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) are metric spaces and that 𝑋 is furthermore compact. 

Then any continuous function 𝑓 ∶ 𝑋 → 𝑌 is also uniformly continuous. 

Proof: Take any continuous 𝑓 ∶ 𝑋 → 𝑌. We need to show that it is uniformly continuous. 

Suppose not! Then 

∃𝜀 > 0   ∀𝛿 > 0   ∃𝑥 ∈ 𝑋   ∃𝑦 ∈ 𝑌 ∶ 𝑑𝑋(𝑥, 𝑦) < 𝛿,   𝑑𝑌(𝑓(𝑥), 𝑓(𝑦)) ≥ 𝜀. 

Fix such a 𝜀 > 0, and for each 𝛿𝑘 = 1 𝑘⁄  let 𝑥𝑘, 𝑦𝑘 ∈ 𝑋 be such that 𝑑𝑋(𝑥𝑘, 𝑦𝑘) < 𝛿𝑘 = 1 𝑘⁄  and 

𝑑𝑌(𝑓(𝑥), 𝑓(𝑦)) ≥ 𝜀. Since 𝑋 is compact, there exists a subsequence {�̃�𝑛} of {𝑥𝑘} that converges 

to some point 𝑥 ∈ 𝑋. Take the corresponding subsequence {�̃�𝑛} of {𝑦𝑘} that uses the same sub-

indexing as {�̃�𝑛}. We claim that 𝑥 is also the limit of {�̃�𝑛}. To see why, let 𝑘𝑛 be the 

corresponding integer such that 𝑑𝑋(�̃�𝑛 − �̃�𝑛) < 1 𝑘𝑛⁄  and observe that 

𝑑𝑋(𝑥, �̃�𝑛) ≤ 𝑑𝑋(𝑥, �̃�𝑛) + 𝑑𝑋(�̃�𝑛, �̃�𝑛) ≤ 𝑑𝑋(𝑥, �̃�𝑛) +
1

𝑘𝑛
→ 0     as   𝑛 → ∞. 

So indeed 𝑥 = lim𝑛→∞ �̃�𝑛 as well. Now, we have by the (sequential) continuity of 𝑑𝑌 and 𝑓 

lim
𝑛→∞

𝑑𝑌(𝑓(�̃�𝑛), 𝑓(�̃�𝑛)) = 𝑑𝑌(𝑓(𝑥), 𝑓(𝑥)) = 0 

But at the same time each 𝑑𝑌(𝑓(�̃�𝑛), 𝑓(�̃�𝑛)) ≥ 𝜀 by construction. Hence contradiction! 

∎ 

• We finally prove the existence of integrable functions: 

• Theorem: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is continuous. Then 𝑓 is Riemann integrable. 

Proof: The function 𝑓 if bounded by the extreme value theorem. Next, we will show that  

𝐼𝑎
𝑏
𝑓 = inf

𝑃
𝑆𝑃𝑓 = sup

𝑄
𝑠𝑄𝑓 = 𝐼𝑎

𝑏𝑓 

by showing that for any 𝜀 > 0 

|inf
𝑃
𝑆𝑃𝑓 − sup

𝑄
𝑠𝑄𝑓| ≤ 𝜀. 

Note that we can remove the absolute values here since inf𝑃 𝑆𝑃𝑓 ≥ sup𝑄 𝑠𝑄𝑓 automatically. By 

the previous theorem, 𝑓 is uniformly continuous and so 

∃𝛿 > 0   ∀𝑥 ∈ [𝑎, 𝑏]   ∀𝑦 ∈ [𝑎, 𝑏] ∶ |𝑥 − 𝑦| < 𝛿,   |𝑓(𝑥) − 𝑓(𝑦)| <
𝜀

𝑏 − 𝑎
. 
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Let 𝑃 = {𝑥0, … , 𝑥𝐽} be a partition of [𝑎, 𝑏] so that the length of each [𝑥𝑗 , 𝑥𝑗+1] subinterval is less 

than 𝛿. Fix a subinterval [𝑥𝑗 , 𝑥𝑗+1]. For any 𝑥, 𝑦 ∈ [𝑥𝑗 , 𝑥𝑗+1] we have that |𝑥 − 𝑦| < 𝛿 by 

construction and so 

𝑓(𝑥) − 𝑓(𝑦) < |𝑓(𝑥) − 𝑓(𝑦)| <
𝜀

𝑏 − 𝑎
. 

Let’s rewrite this as 

𝑓(𝑥) + (−𝑓(𝑦)) <
𝜀

𝑏 − 𝑎
 

As we did in the second to last theorem, we can throw sup𝑥∈[𝑥𝑗,𝑥𝑗+1]
 and sup𝑦∈[𝑥𝑗,𝑥𝑗+1]

 onto the 

two quantities on the left-hand side to get 

sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} + sup
𝑦∈[𝑥𝑗,𝑥𝑗+1]

{−𝑓(𝑦)} ≤
𝜀

𝑏 − 𝑎
 

Using the homework result that sup{− ⋅} = − inf{ ⋅ }, we get that 

sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} − inf
𝑦∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑦)} ≤
𝜀

𝑏 − 𝑎
. 

Multiplying this equation through by (𝑥𝑗+1 − 𝑥𝑗) and then summing in 𝑗 gives 

∑ sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

−∑ inf
𝑦∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑦)} (𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

≤∑
𝜀

𝑏 − 𝑎
(𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

, 

⟹     𝑆𝑃𝑓 − 𝑠𝑃𝑓 ≤
𝜀

𝑏 − 𝑎
(𝑏 − 𝑎) = 𝜀. 

Now, we have that 

(15)                                         inf
𝑄
𝑆𝑄𝑓 ≤ 𝑆𝑃𝑓     and     sup

𝑄
𝑠𝑄𝑓 ≥ 𝑠𝑃𝑓   (hence − sup

𝑄
𝑠𝑄𝑓 ≤ −𝑠𝑃𝑓). 

So the previous inequality gives 

inf
𝑄
𝑆𝑄𝑓 − sup

𝑄
𝑠𝑄𝑓 ≤ 𝜀. 

As argued before, this proves the theorem. 

∎ 

• An important corollary is the following. 

• Corollary: Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is bounded and continuous except at finitely many 

points. Then 𝑓 is Riemann integrable. 
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Proof: Let 𝐵 > 0 be such that |𝑓| < 𝐵 everywhere, which exists since 𝑓 is bounded. Like in the 

previous proof, we will show that for any 𝜀 > 0 

inf
𝑃
𝑆𝑃𝑓 − sup

𝑄
𝑠𝑄𝑓 ≤ 𝜀. 

Let {𝑦1, … , 𝑦𝑚} be the points where 𝑓 is discontinuous. Take any 𝛿 < 𝜀 (this 𝛿 has nothing to do 

with the 𝛿 in the previous proof). If we make 𝛿 > 0 small enough, we can write 

[𝑎, 𝑏] ∖⋃(𝑦𝑘 − 𝛿, 𝑦𝑘 + 𝛿)

𝑚

𝑘=1

= [𝑥0, 𝑥0
′ ] ∪ [𝑥1, 𝑥1

′ ] ∪ …∪ [𝑥𝑚, 𝑥𝑚
′ ] 

for some disjoint intervals [𝑥𝑗 , 𝑥𝑗
′] (i.e. they don’t intersect). The function 𝑓 is continuous on each 

[𝑥𝑗 , 𝑥𝑗
′], hence integrable, and hence we can choose partitions 𝑃𝑗 and 𝑄𝑗 of [𝑥𝑗 , 𝑥𝑗

′] so that 

𝑆𝑃𝑗𝑓 < ∫ 𝑓

𝑥𝑗
′

𝑥𝑗

+ 𝜀        and       𝑠𝑄𝑗𝑓 > ∫ 𝑓

𝑥𝑗
′

𝑥𝑗

− 𝜀. 

Since 𝑃𝑗 ∪ 𝑄𝑗 are a refinement of both 𝑃𝑗 and 𝑄𝑗, by a previous lemma 𝑆𝑃𝑗∪𝑄𝑗𝑓 ≤ 𝑆𝑃𝑗𝑓 and 

𝑠𝑃𝑗∪𝑄𝑗𝑓 ≥ 𝑆𝑄𝑗𝑓 and so furthermore 

𝑆𝑃𝑗∪𝑄𝑗𝑓 < ∫ 𝑓

𝑥𝑗
′

𝑥𝑗

+ 𝜀        and       𝑠𝑃𝑗∪𝑄𝑗𝑓 > ∫ 𝑓

𝑥𝑗
′

𝑥𝑗

− 𝜀. 

Consider the partition 𝑅 = 𝑃0 ∪ …∪ 𝑃𝑚 ∪ 𝑄0 ∪ …∪ 𝑄𝑚 of [𝑎, 𝑏] whose upper Riemann sum of 

𝑓 will satisfy 

𝑆𝑅𝑓 = 𝑆𝑃0∪𝑄0𝑓 +⋯+ 𝑆𝑃𝑚∪𝑄𝑚𝑓 + sup
𝑥∈[𝑦1−𝛿,𝑦1+𝛿]

{𝑓} 2𝛿 +⋯+ sup
𝑥∈[𝑦𝑚−𝛿,𝑦𝑚+𝛿]

{𝑓} 2𝛿 

< (∫ 𝑓

𝑥0
′

𝑥0

+ 𝜀) +⋯( ∫ 𝑓

𝑥𝑚
′

𝑥𝑚

+ 𝜀) + 𝐵2𝜀 +⋯+ 𝐵2𝜀 

= ∫ 𝑓

𝑥0
′

𝑥0

+⋯+ ∫ 𝑓

𝑥𝑚
′

𝑥𝑚

+ [(𝑚 + 1) + 𝑚2𝐵]𝜀. 

One can similarly show that 

𝑠𝑅𝑓 > ∫ 𝑓

𝑥0
′

𝑥0

+⋯+ ∫ 𝑓

𝑥𝑚
′

𝑥𝑚

− [(𝑚 + 1) + 𝑚2𝐵]𝜀. 
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Hence 

𝑆𝑅𝑓 − 𝑠𝑅𝑓 < 2[(𝑚 + 1) + 𝑚2𝐵]𝜀 

As near the end of the previous proof, using (15) we get that 

(16)                                        inf
𝑄
𝑆𝑄𝑓 − sup

𝑄
𝑠𝑄𝑓 ≤ 2[(𝑚 + 1) + 𝑚2𝐵]𝜀. 

Oh no: we didn’t get the right-hand side to be 𝜀! To fix this, go back in this proof and divide the 

𝜀’s in the right places by 2[(𝑚 + 1) + 𝑚2𝐵] to get the right-hand side of (16) to be 𝜀. As argued 

above, this proves the theorem. 

∎ 

• Now we get to the theorem with the dramatic name! To prove it we need the following lemma: 

• Lemma: Take the constant function ℎ ∶ [𝑎, 𝑏] → ℝ given by ℎ(𝑥) = 𝑐. Then ∫ ℎ(𝑥)𝑑𝑥
𝑏

𝑎
=

𝑐(𝑏 − 𝑎) (this should be obvious from calculus, we are simply proving this rigorously). 

Proof: Since ℎ is constantly 𝑐, for any partition 𝑃 = {𝑥0, … , 𝑥𝐽} of [𝑎, 𝑏] the infimum and 

supremum of ℎ over any interval [𝑥𝑗 , 𝑥𝑗+1] is also 𝑐. Hence both 𝑆𝑃𝑓 and 𝑠𝑃𝑓 are equal to 

∑𝑐(𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

= 𝑐∑(𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

= 𝑐(𝑏 − 𝑎). 

Thus both 𝐼𝑎
𝑏ℎ = 𝐼𝑎

𝑏
ℎ = 𝑐(𝑏 − 𝑎), proving the lemma. 

• Fundamental Theorem of Calculus: 

1. Suppose 𝑓 ∶ [𝑎, 𝑏] → ℝ is an integrable function. Then the function 𝐹 ∶ [𝑎, 𝑏] → ℝ 

defined by 

𝐹(𝑥) = ∫𝑓(𝑦)𝑑𝑦

𝑥

𝑎

 

is continuous. Furthermore 

(17)                                𝐹′(𝑥) = 𝑓(𝑥)     for 𝑥 ∈ [𝑎, 𝑏] where 𝑓 is continuous 

(if 𝑥 = 𝑎 or 𝑥 = 𝑏, use 𝐹+
′ (𝑥) and 𝐹−

′(𝑥) respectively instead). 

2. Suppose 𝐹 ∶ [𝑎, 𝑏] → ℝ is continuous and 𝑓 = 𝐹′ exists except possibly at finitely many 

points 𝑦1, … , 𝑦𝑚. Suppose also that 𝑓 ∶ [𝑎, 𝑏] → ℝ is integrable (define 𝑓 at the 𝑦𝑖’s to be 

anything – it doesn’t matter). Then 
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∫𝑓(𝑦)𝑑𝑦

𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎). 

Remark: Think of the derivative statements in part 1) and part 2) respectively as: 

𝑑

𝑑𝑥
(∫𝑓(𝑦)𝑑𝑦

𝑥

𝑎

) = 𝑓(𝑥)          and          𝐹(𝑏) − 𝐹(𝑎) = ∫𝐹′(𝑦)𝑑𝑦

𝑏

𝑎

 

under the conditions stated in the theorem. 

Proof: We start with 1). Let’s first show that 𝐹 is continuous. Fix any 𝑥 ∈ [𝑎, 𝑏]. We will show 

that 

(18)                                                             𝐹(𝑥) = lim𝑦→𝑥 𝐹(𝑦) 

(use 𝑦 → 𝑥± if 𝑥 is an endpoint). Since 𝑓 is integrable, it is bounded and so there exists a 

constant 𝐵 > 0 such that −𝐵 < 𝑓 < 𝐵 everywhere. For 𝑦 ≥ 𝑥 we have that 

−𝐵 ⋅ (𝑦 − 𝑥) = ∫−𝐵𝑑𝑧

𝑦

𝑥

≤ ∫𝑓(𝑧)𝑑𝑧

𝑦

𝑥⏟      
𝐹(𝑦)−𝐹(𝑥)

≤ ∫𝐵𝑑𝑧

𝑦

𝑥

= 𝐵 ⋅ (𝑦 − 𝑥) 

By the squeeze theorem lim𝑦→𝑥+[𝐹(𝑦) − 𝐹(𝑥)] = 0. One similarly shows lim𝑦→𝑥−[𝐹(𝑦) −

𝐹(𝑥)] = 0 and hence (18) holds. 

Next let’s show (17). Fix 𝑥 ∈ [𝑎, 𝑏] where 𝑓 is continuous. Let us assume that 𝑥 ∈ (𝑎, 𝑏) since 

𝑥 = 𝑎 and 𝑥 = 𝑏 are handled similarly using the right- and left-hand derivatives. First consider 

only ℎ > 0. We have that 

inf
𝑦∈[𝑥,𝑥+ℎ]

{𝑓(𝑦)} =
1

ℎ
inf

𝑦∈[𝑥,𝑥+ℎ]
{𝑓(𝑦)} ℎ =

1

ℎ
∫ inf

𝑦∈[𝑥,𝑥+ℎ]
{𝑓(𝑦)} 𝑑𝑧

𝑥+ℎ

𝑥

 

≤
1

ℎ
∫ 𝑓(𝑧)𝑑𝑧

𝑥+ℎ

𝑥⏟        
1
ℎ
(𝐹(𝑥+ℎ)−𝐹(𝑥))

 

≤
1

ℎ
∫ sup

𝑦∈[𝑥,𝑥+ℎ]
{𝑓(𝑦)} 𝑑𝑧

𝑥+ℎ

𝑥

=
1

ℎ
sup

𝑦∈[𝑥,𝑥+ℎ]
{𝑓(𝑦)} ℎ = sup

𝑦∈[𝑥,𝑥+ℎ]
{𝑓(𝑦)} 

It’s not hard to show (I plan to assign it as homework – it’s not a hard exercise) that 𝑓 being 

continuous at 𝑥 implies 
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𝑓(𝑥) = lim
ℎ→0+

inf
𝑦∈[𝑥,𝑥+ℎ]

{𝑓(𝑦)} = lim
ℎ→0+

sup
𝑦∈[𝑥,𝑥+ℎ]

{𝑓(𝑦)}. 

Hence by the previous inequality and the squeeze theorem 

𝑓(𝑥) = lim
ℎ→0+

1

ℎ
(𝐹(𝑥 + ℎ) − 𝐹(𝑥)) = 𝐹′(𝑥). 

The limit with ℎ → 0− is proved similarly, and hence we’ve proved (17). 

Next let’s prove 2). Let 𝑃 be a partition of [𝑎, 𝑏]. Let 𝑃′ = 𝑃 ∪ {𝑦1, … , 𝑦𝑚}. Let’s write out 𝑃′ =

{𝑥0, … , 𝑥𝐽}. Then 𝐹 is differentiable over each subinterval (𝑥𝑗 , 𝑥𝑗+1) and continuous over 

[𝑥𝑗 , 𝑥𝑗+1] (since we assumed that 𝐹 is continuous everywhere). So by the mean-value theorem 

there exists 𝑐𝑗 ∈ [𝑥𝑗 , 𝑥𝑗+1] such that 

𝐹(𝑥𝑗+1) − 𝐹(𝑥𝑗)

𝑥𝑗+1 − 𝑥𝑗
= 𝑓(𝑐𝑗) 

⟹     [𝐹(𝑥𝑗+1) − 𝐹(𝑥𝑗)] = 𝑓(𝑐𝑗)(𝑥𝑗+1 − 𝑥𝑗) ≤ sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑗+1 − 𝑥𝑗). 

Summing in 𝑗 gives 

[𝐹(𝑥1) − 𝐹(𝑥0)] + [𝐹(𝑥2) − 𝐹(𝑥1)] + ⋯+ [𝐹(𝑥𝐽) − 𝐹(𝑥𝐽−1)] 

=∑ sup
𝑥∈[𝑥𝑗,𝑥𝑗+1]

{𝑓(𝑥)} (𝑥𝑗+1 − 𝑥𝑗)

𝐽−1

𝑗=0

 

⟹      𝐹(𝑏) − 𝐹(𝑎) = 𝑆𝑃′𝑓 ≤ 𝑆𝑃𝑓. 

Since 𝑃 was chosen arbitrarily, this shows that 

𝐹(𝑏) − 𝐹(𝑎) ≤ inf
𝑃
𝑆𝑃𝑓 = ∫𝑓(𝑧)𝑑𝑧

𝑏

𝑎

. 

Using infimums, one similarly shows that 

∫𝑓(𝑧)𝑑𝑧

𝑏

𝑎

= sup
𝑃
𝑠𝑃𝑓 ≤ 𝐹(𝑏) − 𝐹(𝑎). 

Hence indeed 𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝑓(𝑧)𝑑𝑧
𝑏

𝑎
. 

∎ 

Taylor’s Theorem 
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• Differentiation shows that a function is well approximated by a tangent line. But a parabola will 

approximate the function even better because it can take into account the function’s curvature. A 

cubic polynomial gives an even better approximation, and so on. Quantitively this is given by 

Taylor’s theorem, which we now discuss. It is of fundamental importance because it allows to 

numerically compute standard functions such as the exponential and trigonometric functions. 

First we need a standard piece of notation. 

• Notation: Suppose 𝑈 ⊆ ℝ is open. For 𝑘 ≥ 0, 𝐶𝑘(𝑈) denotes the set of function 𝑓 ∶ 𝑈 → ℝ that 

have 𝑘 derivatives and all 𝑘 derivatives are continuous (note that since differentiable implies 

continuous, it’s sufficient to simply check that the 𝑘th derivative is continuous). By convention 

the zeroth derivative of 𝑓 is simply 𝑓 itself (i.e. 𝑓(0) = 𝑓). 𝐶∞(𝑈) denotes the set of functions 

with infinitely many derivatives. 

• Taylor’s Theorem: Suppose that 𝐼 ⊆ ℝ is an open interval and that 𝑓 ∈ 𝐶𝑘+1(𝐼). Fix any point 

𝑎 ∈ 𝐼. Then 

(19)                                              𝑓(𝑥) =∑
𝑓(𝑗)(𝑎)

𝑗!
(𝑥 − 𝑎)𝑗

𝑘

𝑗=0

+ 𝐸𝑘(𝑥) 

where the “error function” 

(20)                         𝐸𝑘(𝑥) = [
1

𝑘!
∫(1 − 𝑡)𝑘𝑓(𝑘+1)(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

] (𝑥 − 𝑎)𝑘+1 

⟹     |𝐸𝑘(𝑥)| ≤

sup
𝑦 between 𝑎 and 𝑥

|𝑓(𝑘+1)(𝑦)|

(𝑘 + 1)!
|𝑥 − 𝑎|𝑘+1. 

Proof: We start with (in the second equality we use the “𝑢-substitution” 𝑧 = 𝑎 + 𝑡(𝑥 − 𝑎)) 

𝑓(𝑥) − 𝑓(𝑎) = ∫𝑓′(𝑧)𝑑𝑧

𝑥

𝑎

= ∫𝑓′(𝑎 + 𝑡(𝑥 − 𝑎))(𝑥 − 𝑎)𝑑𝑡

1

0

. 

⟹      𝑓(𝑥) = 𝑓(𝑎) + [∫𝑓′(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

] (𝑥 − 𝑎) 

This proves the 𝑘 = 1 case. Next, notice that −(1 − 𝑡) is an antiderivative of 1. So integration 

by parts gives 

∫1 ⋅ 𝑓′(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0
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= −(1 − 𝑡)𝑓′(𝑎 + 𝑡(𝑥 − 𝑎))|
𝑡=0

𝑡=1
−∫−(1 − 𝑡)𝑓′′(𝑎 + 𝑡(𝑥 − 𝑎))(𝑥 − 𝑎)𝑑𝑡

1

0

 

= 𝑓′(𝑎) + [∫(1 − 𝑡)𝑓′′(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

] (𝑥 − 𝑎) 

Plugging this into the equation before gives 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) + [∫(1 − 𝑡)𝑓′′(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

] (𝑥 − 𝑎)2. 

This proves the 𝑘 = 2 case. A similar integration by parts calculation gives 

∫(1 − 𝑡)𝑓′′(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

= 𝑓′′(𝑎) +
1

2
∫(1 − 𝑡)2𝑓′′(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

 

which if we plug into the previous equation gives 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
1

2
𝑓′′(𝑎)(𝑥 − 𝑎)2

+
1

2
[∫(1 − 𝑡)2𝑓′′′(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

] (𝑥 − 𝑎)3. 

This proves the 𝑘 = 3 case. Continuing like this inductively will prove (19) where the error 

function is explicitly given by (20) (we leave it to the reader to try out the proof by induction, 

which is carried out as illustrated above). 

Next let’s prove the bound on 𝐸𝑘(𝑥). We have that 

|∫(1 − 𝑡)𝑘𝑓(𝑘+1)(𝑎 + 𝑡(𝑥 − 𝑎))𝑑𝑡

1

0

| ≤ ∫|(1 − 𝑡)𝑘𝑓(𝑘+1)(𝑎 + 𝑡(𝑥 − 𝑎))|𝑑𝑡

1

0

 

≤ sup
𝑦∈[𝑎,𝑥]

|𝑓(𝑘+1)(𝑦)|∫(1 − 𝑡)𝑘𝑑𝑡

1

0

= sup
𝑦∈[𝑎,𝑥]

|𝑓(𝑘+1)(𝑦)|
1

𝑘 + 1
. 

Plugging this into the equation for 𝐸𝑘(𝑥) proves the theorem. 

∎ 

• Homework: Please read page 85 of Advanced Calculus 2nd Ed (not the exercises on top) by 

Gerald Folland: 
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https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf  

It should be an easy read since we did everything there above. Please also read the statements of 

Theorem 2.58 and Theorem 2.63. You are not responsible for the proofs of the latter two 

theorems. 

 

Series 

• Definition: Suppose we have an infinite (countable) sequence of numbers {𝑦0, 𝑦1, 𝑦2, … }. We 

define the (infinite) series as the formal expression 

∑𝑦𝑗

∞

𝑗=0

= 𝑦0 + 𝑦1 +⋯ 

If the limit on the right-hand side of (21) below exists, then we say that the series converges (or 

“is convergent”), and we define the value of the series ∑ 𝑦𝑗
∞
𝑗=0  to be equal to that limit: 

(21)                                                              ∑𝑦𝑗

∞

𝑗=0

= lim
𝑘→∞

∑𝑦𝑗

𝑘

𝑗=0

. 

If this limit does not exist, we say that the series diverges (or “is divergent”), and we don’t 

define a value for the series ∑ 𝑦𝑘
∞
𝑗=0 . A special case of when ∑ 𝑦𝑘

∞
𝑗=0  diverges is when the above 

limit is ±∞ in which case we write ∑ 𝑦𝑘
∞
𝑗=0 = ±∞.The 𝑦𝑗’s are called the terms of the series 

and ∑ 𝑦𝑗
𝑘
𝑗=0  are called the partial sums. 

• Remark: A few remarks about the above definition 

1. The series doesn’t necessarily have to start at 𝑗 = 0 but could start at any other value (e.g. 

𝑗 = −3). We simply chose 𝑗 = 0 for illustration. 

2. The 𝑦𝑗’s don’t necessarily have to be numbers, but could also be vectors, matrices, etc. 

• In the following theorem, we illustrate the power of Taylor’s theorem for computing the 

exponential, sine, and cosine. For the proof we will assume derivative rules for these mentioned 

functions. 

• Theorem: 

𝑒𝑥 =∑
1

𝑗!
𝑥𝑗

∞

𝑗=0

,     cos(𝑥) =∑
(−1)𝑗

(2𝑗)!
𝑥2𝑗

∞

𝑗=0

,    sin(𝑥) = ∑
(−1)𝑗

(2𝑗 + 1)!
𝑥2𝑗+1

∞

𝑘=0

. 

Proof: We will prove the formula for 𝑒𝑥 since the proof for the other two are essentially the 

same. Fix 𝑏 ≥ 0, we will prove that 𝑒𝑥 = ∑ (1 𝑗!⁄ )𝑥𝑗∞
𝑘=0  on [−𝑏, 𝑏] from which the theorem will 

https://sites.math.washington.edu/~folland/Homepage/AdvCalc24.pdf
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follow since 𝑏 ≥ 0 is chosen arbitrarily. Since the derivative of 𝑒𝑥 is 𝑒𝑥 and 𝑒0 = 1, if we set 

𝑎 = 0 and 𝑓(𝑥) = 𝑒𝑥 in Taylor’s theorem we get that all 𝑓(𝑗)(𝑎) = 1 and 

𝑒𝑥 =∑
1

𝑗!
𝑥𝑗

𝑘

𝑗=0

+ 𝐸𝑘(𝑥) 

where 𝐸𝑘(𝑥) is as in Taylor’s Theorem. To prove the theorem, it will suffice to show that 

lim
𝑘→∞

|𝑒𝑥 − ∑ (1 𝑗!⁄ )𝑥𝑗𝑘
𝑗=0 | = 0 for 𝑥 ∈ [−𝑏, 𝑏]. Notice that this limit is equal to 

lim
𝑘→∞

|𝐸𝑘(𝑥)| ≤ lim
𝑘→∞

sup
𝑦 between 𝑎 and 𝑥

|𝑒𝑦|⏞

|𝑓(𝑘+1)(𝑦)|

(𝑘 + 1)!
𝑥𝑘+1 ≤ lim

𝑘→∞

sup
𝑦∈[−𝑏,𝑏]

|𝑒𝑦|

(𝑘 + 1)!
𝑥𝑘+1 ≤ lim

𝑘→∞

𝑒𝑏

(𝑘 + 1)!
𝑏𝑘+1

= 0 

where in the last step we’ve used that lim𝑘→∞ 𝑏
𝑘+1 (𝑘 + 1)!⁄ = 0 which, although is not 

immediate, is a quick exercise to show. 

∎ 

• Example: An example of a famous function 𝑓 ∈ 𝐶∞(ℝ) that is not equal to its Taylor series is 

𝑓 = {𝑒
−1 𝑥⁄      if   𝑥 > 0
0             if   𝑥 ≤ 0

. 

It’s on the level of a homework problem to show that all derivatives of this function at zero are 

zero (you’ll have to use L’Hôpital’s rule), and hence its Taylor series is ∑ (0 𝑘!⁄ )𝑥𝑘∞
𝑘=0 = 0. But 

obviously this Taylor series cannot be equal to 𝑓 since 𝑓 is not zero for 𝑥 > 0. 

 

Improper integrals 

• We’ve only defined integrals for bounded functions on bounded intervals [𝑎, 𝑏]. But very often 

we need to define integrals for functions with asymptotes or on infinitely long intervals. Such 

integrals are called improper integrals and are defined, naturally, using limits. 

• Improper Integrals of Type I: Suppose that 𝑓 ∶ [𝑎,∞) → ℝ is such that 𝑓 is integrable on [𝑎, 𝑏] 

for all 𝑏 > 𝑎. Then we define the improper integral 

∫ 𝑓(𝑥)𝑑𝑥

∞

0

= lim
𝑏→∞

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

More precisely, if the limit on the right-hand side exists then we say that ∫ 𝑓(𝑥)𝑑𝑥
∞

0
 converges 

(or “is convergent”) and we set it equal to that limit. If the limit does not exist, then we say that 

∫ 𝑓(𝑥)𝑑𝑥
∞

0
 diverges (or “is divergent”) and we don’t assign it a numerical value. A special case 
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of when ∫ 𝑓(𝑥)𝑑𝑥
∞

0
 diverges is when the above limit is ±∞ in which case we write 

∫ 𝑓(𝑥)𝑑𝑥
∞

0
= ±∞. 

• Improper Integrals of Type II: Suppose that 𝑓 ∶ (𝑎, 𝑏] → ℝ is such that 𝑓 is integrable on [𝑐, 𝑏] 

for all 𝑐 > 𝑎. Then we define the improper integral 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= lim
𝑐→𝑎+

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑐

 

More precisely, if the limit on the right-hand side exists then we say that ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 converges 

(or “is convergent”) and we set it equal to that limit. If the limit does not exist, then we say that 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 diverges (or “is divergent”) and we don’t assign it a numerical value. A special case 

of when ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 diverges is when the above limit is ±∞ in which case we write ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
=

±∞. 

• Remark: One can analogously define improper integrals on intervals of the form (−∞, 𝑎] and 

[𝑎, 𝑏). A few more straightforward generalizations: 

1. Let us illustrate what to do if you need to take improper integrals at two places. Suppose 

𝑓 ∶ (𝑎,∞) is integrable on every interval [𝑏, 𝑐] where 𝑎 < 𝑏 < 𝑐 < ∞. Fix an 𝑎0 such 

that 𝑎 < 𝑎0 < ∞ and we define 

∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎

= lim
𝑐→𝑎+

∫ 𝑓(𝑥)𝑑𝑥

𝑎0

𝑐

+ lim
𝑐→∞

∫𝑓(𝑥)𝑑𝑥

𝑐

𝑎0

 

where we require both limits to exist separately. It’s a quick exercise to show that this 

does not depend on the choice of 𝑎0. Integrals on intervals of the form (−∞, 𝑎), (𝑎, 𝑏), 

and (−∞,∞) are defined similarly. 

2. Next we illustrate what happens if you need to take an improper integral at a point in the 

middle of an interval. In other words, suppose 𝑎 < 𝑏 < 𝑐 and that 𝑓 ∶ [𝑎, 𝑐] ∖ {𝑏} → ℝ is 

integrable on any closed interval contained in [𝑎, 𝑐] ∖ {𝑏}. Then we define 

∫𝑓(𝑥)𝑑𝑥

𝑐

𝑎

= ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+∫𝑓(𝑥)𝑑𝑥

𝑐

𝑏

. 

In other words, we require both improper integrals ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 and ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑏
 to exist 

separately. You cannot simply integrate through the bad point “𝑏” in one go! 

 

Inverse Function Theorem 
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• We go back and prove a few tail ends that we have left. 

• Note: In the following theorem only, 𝑎, 𝑏, 𝑐, and/or 𝑑 can be ±∞. 

• Inverse Function Theorem: Suppose that 𝑓 ∶ (𝑎, 𝑏) → ℝ is differentiable, which implies that 𝑓 

is in fact of the form 𝑓 ∶ (𝑎, 𝑏) → (𝑐, 𝑑) and is surjective. Suppose furthermore that 𝑓′ > 0 or 

𝑓′ < 0 everywhere. Then 𝑓 has an inverse 𝑓−1 ∶ (𝑐, 𝑑) → (𝑎, 𝑏) and this inverse is differentiable 

with derivative: 

(22)                                                        (𝑓−1)′(𝑦) =
1

𝑓′(𝑓−1(𝑦))
. 

Proof: Let’s assume that 𝑓′ > 0 since the proof is very similar in the case 𝑓′ < 0. Observe that 

𝑓′ > 0 implies that 𝑓 is strictly increasing. We have that 𝑓 maps surjectively 𝑓 ∶ (𝑎, 𝑏) →

"Interval" because it is continuous and hence maps connected sets to connected sets, and hence 

its image is also an interval. That “interval” can be either of the form (𝑐, 𝑑), [𝑐, 𝑑), (𝑐, 𝑑], or 

[𝑐, 𝑑]. We claim that it must be of the form (𝑐, 𝑑). We show why 𝑐 can’t be in the image of 𝑓, the 

case for 𝑑 is similar. If 𝑐 was in the image, then there would be an 𝑥 ∈ (𝑎, 𝑏) such that 𝑓(𝑥) = 𝑐. 

Then if we take any 𝑥′ ∈ (𝑎, 𝑏) smaller than 𝑥, then 𝑓(𝑥′) < 𝑐 since 𝑓 is strictly increasing. But 

we just said that the image of 𝑓 cannot go below 𝑐. So 𝑐 indeed can’t be in the image of 𝑓. As 

mentioned, the argument for 𝑑 is similar, and so we get that 𝑓 is of the form 𝑓 ∶ (𝑎, 𝑏) → (𝑐, 𝑑) 
and is surjective. 

Since 𝑓 is strictly increasing, we have that the inverse exists: for every 𝑦 ∈ (𝑐, 𝑑) define 𝑓−1(𝑦) 

as 𝑥 = 𝑓−1(𝑦) where 𝑥 is the unique 𝑥 ∈ (𝑎, 𝑏) such that 𝑦 = 𝑓(𝑥) (i.e. 𝑥 exists since 𝑓 is 

surjective onto (𝑐, 𝑑) and is unique since 𝑓 is strictly increasing). So let us prove (22) above. 

Pick any 𝑥0 ∈ (𝑎, 𝑏) and let 𝑦0 = 𝑓(𝑥0) ∈ (𝑐, 𝑑). We need to show that 

(𝑓−1)′(𝑦0) =
1

𝑓′(𝑥0)
 

In other words, we need to show that 

lim
𝑦→𝑦0

𝑓−1(𝑦) − 𝑓−1(𝑦0)

𝑦 − 𝑦0
=

1

𝑓′(𝑥0)
 

⟺ ∀𝜀 > 0   ∃𝛿 > 0   ∀𝑦 ∈ (𝑐, 𝑑) ∶ |𝑦 − 𝑦0| < 𝛿 and 𝑦 ≠ 𝑦0, |
𝑓−1(𝑦) − 𝑓−1(𝑦0)

𝑦 − 𝑦0
−

1

𝑓′(𝑥0)
| < 𝜀. 

Take any 𝜀 > 0, we will show that such a 𝛿 > 0 exists. Since 𝑓′(𝑥0) = lim𝑥→𝑥0
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≠ 0, 

we have that 

1

𝑓′(𝑥0)
= lim
𝑥→𝑥0

1

𝑓(𝑥) − 𝑓(𝑥0)
𝑥 − 𝑥0

= lim
𝑥→𝑥0

𝑥 − 𝑥0
𝑓(𝑥) − 𝑓(𝑥0)

. 
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This means that 

∃𝛿′ > 0   ∀𝑥 ∈ (𝑎, 𝑏) ∶ |𝑥 − 𝑥0| < 𝛿
′ and 𝑥 ≠ 𝑥0 ,   |

𝑥 − 𝑥0
𝑓(𝑥) − 𝑓(𝑥0)

−
1

𝑓′(𝑥0)
| < 𝜀 

For reasons as before, 𝑓 maps the interval (𝑥0 − 𝛿
′, 𝑥0 + 𝛿

′) surjectively onto an interval of the 

form (𝑦0 − 𝛿, 𝑦0 + 𝛿), and we claim that this is the 𝛿 > 0 that we’re seeking. 

Indeed, take any 𝑦 ∈ (𝑐, 𝑑) ∶ |𝑦 − 𝑦0| < 𝛿 and 𝑦 ≠ 𝑦0 (which means 𝑦 ∈ (𝑦0 − 𝛿, 𝑦0 + 𝛿)). Let 

𝑥 ∈ (𝑥0 − 𝛿
′, 𝑥0 + 𝛿

′) be such that 𝑦 = 𝑓(𝑥). Then 

|
𝑓−1(𝑦) − 𝑓−1(𝑦0)

𝑦 − 𝑦0
−

1

𝑓′(𝑥0)
| = |

𝑥 − 𝑥0
𝑓(𝑥) − 𝑓(𝑥0)

−
1

𝑓′(𝑥0)
| < 𝜀. 

So we’re done! 

∎ 

• Corollary: Suppose 𝐼 ⊆ ℝ is an open interval, that 𝑓 ∈ 𝐶𝑘(𝐼) where 𝑘 ≥ 1 (𝑘 could be ∞), and 

that 𝑓′ is never zero. Then the inverse 𝑓−1 exists and is in 𝐶𝑘(𝐼) as well. 

• Proof: The fact that 𝑓 ∈ 𝐶𝑘(𝐼) for 𝑘 ≥ 1 implies that 𝑓′ is continuous. Hence 𝑓′ never being 

zero on the interval 𝐼 implies that either always 𝑓′ > 0 or always 𝑓′ < 0 (by the intermediate 

value theorem applied to 𝑓′ on 𝐼). So let us prove that 𝑓−1 ∈ 𝐶𝑘(𝐼) as well. From the expression 

(𝑓−1)′(𝑦) =
1

𝑓′(𝑓−1(𝑦))
 

we see that (𝑓−1)′ is continuous. If 𝑘 ≥ 2, we can take the derivative of this to get 

(𝑓−1)′′(𝑦) =
−1

[𝑓′(𝑓−1(𝑦))]
2 𝑓

′′(𝑓−1(𝑦)) ⋅ (𝑓−1)′(𝑦) 

from which we see that (𝑓−1)′′ is also continuous. If 𝑘 ≥ 2, we can take the derivative of this 

again and again and keep going until we arrive at that (𝑓−1)(𝑘) is continuous and hence 𝑓−1 ∈

𝐶𝑘(𝐼). If 𝑘 = ∞, this process simply never stops. 

∎ 

• As an application, we mention a rigorous construction of the logarithm and exponential function. 

• Definition: We define the natural logarithm function as 

ln(𝑥) = ∫
1

𝑡
𝑑𝑡

𝑥

1

 

(an interesting exercise is to use this to prove that ln(𝑎𝑏) = ln(𝑎) + ln(𝑏)). By the fundamental 

theorem of calculus, the derivative of this is 
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𝑑

𝑑𝑥
ln(𝑥) =

1

𝑥
. 

In fact, since we can take infinitely many more derivatives here, this shows that ln(𝑥) ∈ 𝐶∞(ℝ). 
The exponential function 𝑒𝑥 is defined as the inverse of ln(𝑥). By the previous theorem 

𝑑

𝑑𝑥
𝑒𝑥 =

1

derivative of ln(𝑥)  evaluated at 𝑒𝑥
=
1

1
𝑒𝑥

= 𝑒𝑥 . 

By the previous corollary we also get that 𝑒𝑥 ∈ 𝐶∞(ℝ) 

• Note: Defining sine and cosine is harder for the following reason: how does one define angle? 

You need to answer this in order to make sense of cos 𝜃 and sin 𝜃 where 𝜃 is an angle. Typically, 

it’s rigorously defined using arclength along the unit circle. Arclength is something you’ll learn 

about in Math 302. 

 

Final Notes 

• Interchanging derivatives and integrals. 

• Graph Taylor polynomial approximations of cosine: it’s very illustrative. 

• No one’s a dictionary, we learn math for the techniques. Big concepts are 

o Real numbers didn’t fall from the heavens as a number line, they are defined using sets of 

sequences of rational numbers. 

o We have precise ways of talking about limits, that precisely encode what it means to get 

arbitrarily close. This allows to precisely build the foundation of all of analysis. A related 

subject if “sup and “inf” 

o Limits and continuity have been pushed to more general settings of metric spaces, one of 

whose fundamental examples are function spaces which revolutionized the theory of 

differential equations. 

o Big concepts from topology: 

▪ Balls 

▪ Open sets 

▪ Boundary 

▪ Connectedness and sequential compactness 

▪ Continuous function take connected/compact to connected/compact which gives 

the intermediate and extreme value theorems respectively 

o Derivatives as limits of secants lines 
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o Derivatives and integrals are like Jekyll and Hyde, connected by the Fundamental 

Theorem of Calculus 

o Taylor polynomials gives numerical approximations for functions, and we have ways to 

say how small the error is. 
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