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Math 302: Vector Analysis and Integration on Manifolds
Haim Grebnev
Introduction

My name is Haim Grebnev, I’m a postdoctoral scholar. My job is to conduct research and to
teach. My field of research is inverse problems with a focus on geometric analysis. Inverse
problems is a field that studies math arising from various imaging techniques such as CT scans,
sonar sensing, electric impedance tomography, etc. Currently 1 work on a generalization of the
equations that arise in X-ray imaging that is used in polarimetric neutron tomography called the
non-Abelian X-ray transform.

In this course we will push the ideas of differential and integral calculus to multivariable (and
sometimes multivalued) functions by proving all results from multivariable calculus. Even
though we require single variable analysis as a prerequisite, we will need to redo the theory of
differentiation and integration because surprisingly calculus in higher dimensions requires new
ideas due to the appearance of obstacles not present in the single-variable theory. Nevertheless,
we will be citing results and building off ideas from single-variable theory.

Precisely, we expect you to have studied limits and Cauchy sequences in R™, continuity of
functions of the form f : R™ — R", and differential and integral calculus of single-variable
single-valued functions f : R - R. We do not expect this course to be heavy on metric space
topology since we will mostly be working with the basic topology of R™, but we do expect you
to have seen metric space topology at some point. We do expect you to have studied linear
algebra because in several places we will make use of determinants, matrix multiplication, and
eigenvalues/eigenvectors of symmetric matrices. It will be very helpful if you have taken
multivariable calculus before so that this will not be your first time seeing results covered in this
course.

In the second part of the course, we will generalize even further by studying differentiation and
integration on smooth submanifolds of Euclidean space (i.e. R™). In particular, we will end with
the generalized Stoke’s Theorem. To give you a preview, “smooth submanifolds” of Euclidean
space are generalizations of surfaces to any dimensions. This is an important subject: in
particular it provides a rigorous foundation for surface and curve integrals.

Homework will be due every week (with some exceptions), most likely on Fridays at 11:59 p.m.
You will submit homework via gradescope: you will have two penalty-free 24-hour extensions.
Please rotate your homework properly in Gradescope and label the pages correctly to avoid
losing points. Unless stated otherwise, everything in the homework must be proven rigorously. In
the homework and exams, you can cite results from class or which were proven in the
prerequisite courses. The ULA will have walk-in sessions, and I will have office hours. I’'m open
to suggestions, and the ULA is a great way to pass anonymous feedback to me.

For most of the course we will be following the excellent textbook Advanced Calculus 2" Ed by
Gerald Folland. You can get a free legal copy from the author’s website at:
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https://sites.math.washington.edu//~folland/AdvCalc24.pdf

You will be responsible for everything I cover in lecture. If at some point | see that we’re running
out of time, I may assign readings from the above book (I don’t expect this to happen).

Differentiation in Several Variables

We begin by defining differentiation in several variables. The following is not the definition of
the derivative of a multivariable function, but it’s an important and natural place to start.

Definition 2.1: Suppose U < R™ is an open set and that f : U — R is a function. Explicitly, f is
of the form

f(x1, e Xm)

Take any a € U, which we can explicitly write as a = (a4, ..., a,,). We define the partials (or
partial derivatives) of f as follows. For any i = 1, ..., m, the i* partial of f at a is

of . flaq,.,a;+h, . ay) — f(aq, ..., @iy o, Q)
—(a) = lim
axi h-0 h
o flaq, e Xiy e @) — f(Aq, o0, @4y e, Q)
= lim
Xi—=a; X; —a;

if the limits exist (they either both exist or both don’t exist). In other words, set all of the
variables except x; to be equal the components of a and take the ordinary single-variable
derivative of f in x; at a; if it exists. Obviously at every a € U there are m possible partials:

of of
G—XI(Q), ,M

(a)
if they exist.

Example 2.2: Suppose that f : R? - R is given by f(x,x,) = (x;)? sin(x,) (in this case U =
R?). Let us compute :Tf (2,3) (in this case a = (2, 3)). We have that
2

of ~ 2%sin(3 + h) — 225sin(3)
o, &3 =1 h -

But this limit is easy to compute because we observe that it is simply the single-variable
derivative of the function 22 sin(x,) at x, = 3, which we know is 22 cos(3) (alternatively, use
L’Hopital’s rule). So

d

—f(2, 3) = 22 cos(3).

dx,
In reality we don’t compute partials like this, but rather we compute the partials of f and then
plug in (2, 3) into the partials — see Example 2.5 below.
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Note 2.3: When working in R? and R3, we will often not write (x4, x,) and (x;, x,, x3) but
rather (x,y) and (x, y, z) respectively. In that case, had we wrote the f in the previous example
as f(x,y) = x? sin(y), then the answer would have been

o (2,3) = 22 cos(3).

dy

In single variable theory, when we had a function f(x) we didn’t only work with derivatives at
preset points, such as f'(2), f'(3.6), etc. If the function was differentiable everywhere, we
defined a new function f'(x). We will do the same for partials, which we state next. Please note
that the following is not yet the definition of a multivariable function — we’ll get to that soon.

Definition 2.4: Suppose that f : U € R™ — R is such that its partials exist everywhere (i.e. exist
at every a € U) where U is open. Then for every i = 1, ..., m we can form the function

af
—_ R
axi U=

where at every x = (x4, ..., X,,) € U, %(xl, ., Xp) is the i™ partial of f at x.

Example 2.5: Take our function f : R? - R given by f(x,y) = x? sin(y). Then

%(x) = 2xsin(y) and %(x) = x? cos(y).

Hence again Z—£ (2,3) = 22 cos(3).

Remark 2.6: You should be aware that there are other notations for the i* partial of f,
including:

af
(')xj'

axjf' ajf' ij' f)

We will mostly use the first, and perhaps the next two as well. The last one is often used in
differential geometry where calculations can get extremely long.

Notation 2.7: For any vector x € R™, we let [x| = /(x1)2 + -+ + (x,,)? where x =

(%1, ey X))

Next we discuss differentiability of multivariable functions. In single variable theory, the
derivative represented the slope of the line that best approximates the behavior of the function
(i.e. to “first order””) which turned out to be a tangent line. In multiple variables we want to do
the same thing. In this case, the graph of the function will be a surface and hence the best linear
approximation will be a tangent plane! Unfortunately, simply the existence of partials is not
enough for a good tangent plane to exist, which is illustrated by the following example. Let
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Xy

flx,y) = m

As an exercise, try to show that both g-ﬁ (0,0)=0and Z—i (0,0) = 0. This would indicate that the

tangent plane should be flat, however if you plot the function, you’ll see that this is a terrible
approximation to the function.

So let’s try to guess what the correct definition of differentiability of a multivariable function
should be. We could try

I fla+h) —(a)
im

h—-0 h

where now a and h are vectors. But this is ridiculous since we’re trying to divide a vector by a
vector, which is not a well-defined operation. We could try

o fath)—(a
h—-0 Ihl .

Unfortunately, this limit won’t exist for most functions. One way to see this is that the limit will

be different as h approaches zero from different directions. In particular, if you let h approach 0

along the x-axis from the right, you will get Z—f (a). On the other hand, if you let h approach 0

X
along the x-axis from the left, you will get — Z—£ (a).

So what is the derivative of f? When f was a function of a single variable: f(x), we defined its
derivative at a as the (unique) number m given by

_ o S = f(a)
m = lim——— .
x—a X —a

This statement is equivalent to

- (f(x)—f(a) )_. £GO) — F(@) — m(x — a)
=lim|—————m | =lim
Xx—a x—>a x—a

xX—a

_ 1 fx) = [m(x —a) + f(a)]
= |lim .
x—-a X —a

Notice that m(x — a) + f(a) is the equation for the tangent line to f(x) at (a, f (a)). Let’s do
the same thing for a multivariable function!

For simplicity consider a two-variable function f(x;, x,) whose graph is a 2D surface in R3. An
equation for a plane in R3 that passes through (ay, a,, b) is x3 = ¢, (x; — ay) + ¢, (x, — ay) +
b. Hence the analog of the above limit statement is

0= [y, x0) = [e1 (g — ay) + c2(x; — az) + f(ay, ;)]
A |x — al
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Notice that a shorter way to write this is

0= i LX) e~ a) + f(a)]
= l1m

x-a |x — al

where “ - ” here is the dot product and ¢ = (cq,¢3), x = (x4, %), and a = (a4, a,). This way
x3 = ¢+ (x —a) + f(a) should be the equation for the tangent plane to the graph of f(x) at
(a1, a3, f(ay,az)) in R3. This is precisely how differentiability is defined:

Definition 2.8: Suppose we have f : U € R™ — R where U is open. Fix a point a € U. We say
that f is differentiable at a if there exists a vector ¢ € R™ such that
f) —lc-&k-—a)+f@] . fla+h)—[c-h+f(a)]

(2.9 0=lm x—al = ]

If such a c € R™ exists, then it is unique (proved in the next theorem). In this case c is called the
gradient of f at a and is denote by Vf(a) € R™.

If the gradient exists for all a € U, then we say that f is differentiable everywhere. In this case,
we get a function Vf : U —» R™ (i.e. the function V£ (x)).

Remark: In the case when m = 1 (i.e. f is a function of one variable), f'(x) = Vf(x). In this
case we typically use f'(x) instead of V£ (x). Also, we’ll explain later where the term “gradient”
comes from.

Theorem 2.10: Suppose we have f : U € R™ — R, where U is open, and that f is differentiable
at a € U. Then the partials of f exist at a and the gradient of f at a is given by

0 0
Vf(a) = <(’)_3{1 (a), ,% (a)).

In particular, the gradient is unique. If f is differentiable everywhere, then clearly

d 0
Vf = <_f, ’_f)
dxq 0xy,
everywhere in U.
Proof: Let ¢ be as in (2.9). We simply need to show that the i™ component of c is % (a). Fix an

index i =1, ...,m. The limit in (2.9) does not depend on the direction from which x approach a.
So let x approach a along the i™ axis: let x = (aq, ..., x;, ..., a,,,) Where x; — a;. In that case, in
(2.9)

c-(x—a)=1(cqy.rCm) ((al, vy Xjy ey Q) — (aq, ..., Q, ...,am)) =c;(x; — a;).
(0,...,0,xi—ai,0,...,0)

and |x — a =\/02+---+02+(xi—ai)2+02+---+02= lx; —a;| = £1- (x; — a;).
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Hence (2.9) becomes

0ot e £ X s Om) — [ = @) + £(@1, g e O]

Xi—ai Xi — a4

) ) ) o faq, e Xiy e @) — fQAq, e, @4y ey Q)
Algebraic manipulation = ¢; = lim .
Xi—a; X; — a;

Hence we get two things: the last limit implies that the partial % (a) indeed exists and that it is
equal to c;.

It follows from the above theorem and our previous discussion that the equation for the tangent
plane to the graph of a differentiable function f at (a,f(a)) is

Xm+1 = Vf(a) - (x — a) + f(a).

For a function of two variables f(x, y), this reduces to
af af
z=-"(a)0xn —a) + @(a)(xl —az) + f(a).

Note 2.11: Suppose f : U — R is differentiable at a as above. By plugging ¢ = Vf(a) into (2.9)
we get that
fO) -1Vf(@)-x—a)+f(@] = fla+h) —[Vf(a)- h+[f(a)]

(2.12) 0 = lim x—al = ]

By letting E, (h) denote the numerator in the second limit, it directly follows that

(2.13) fla+h)=f(a)+Vf(a) h+E,(h)
where E, satisfies

__E,(h)
(2.14) }ll_l’)r(l) ] =0

Plugging in h = x — a, this takes the equivalent form

fG) =f(a)+Vf(a)  (x —a) + E,(x — ).

In other words E, is an “error function” that measures how well the tangent plane f(a) +
Vf(a) - (x — a) approximates f(x) near a. It’s such a good approximation that the error decays
faster than |h| by (2.14). As we’ll see later, this is a special case of a Taylor’s expansion.

Corollary 2.15: Suppose we have f : U € R™ — R, where U is open, and that f is
differentiable at a € U. Then f is continuous at a.

Clearly it follows then that if f is differentiable everywhere, then it is continuous everywhere.
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Proof: We only need to prove the first statement. \We have that
lim (£(0) = (@) = im(f(0) = [Vf (@) - (x = @) + f(@)])
f@x) = [Vf(a) - (x —a) + f(a)]

= lim|x — a| lim = 0.
x-a x-a |x — al

Hence indeed f(a) = lim f(x) (i.e. f is continuous at a).
x—a

We’ve defined differentiability for multivariable functions, but we have no way of demonstrating
that any function is differentiable. The following theorem is a popular way to do this:

Theorem 2.16: Suppose we have f : U € R™ — R where U is open. Suppose all partials of f
exist on some ball B € U centered at a € U. Suppose also that all partials % are continuous at a.

Then £ is differentiable at a.

Clearly if all partials of f exist and are continuous everywhere in U, then f is differentiable
everywhere in U.

Proof: Let us suppose m = 2 for simplicity of the notation: we’ll come back to the general case.
We want to show that

fla+h - <§—£ (a),%w)) h=f@
(2.17) lim

=0
h—0 |h|

(we removed the unnecessary square brackets “[...]” in (2.12)). Let us take a look at f(a + h) —
f(a). We make sure that h is small enough so that a + h is still inside B. Writing a = (a4, a,)
and h = (hy, hy), this is given by

fla; + hy,a; + hy) — f(aqg, a;)

= f(a; + hy,a; + hy) —f(aq,a; + hy) + f(ag, a; + hy) — f(ayg,az).

added zero

By the mean value theorem
f(ay + hy,a; + hy) — fay,a; + hy) _ af

(Cl,hl,hz , Ay + hz)
——

hy dx,
flay,a; + hy) — f(ay,a;)  Of (a c >
hy T ox, \ V2R

for some ¢y ,, n, between a; and a; + hy, and some c, 5, between a, and a, + h,. Thus the
quantity inside the limit in (2.17) is given by
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d d d
6_3/:1 (Cl,hl,hzi a, + hz)h1 + 6_9{2 (a1» a, + Cz,hz)hz f (ap a)h, — 3{2 (aj,az)h;
|h

d af
= ( ! (Clhl hy» A2 +hy) — f (a1: 2)) 7] ( (a1, a, +C2h2) f ( a,a 2)>|h|

Slnce and are continuous at a, the last two “(...)” quantmes go to zero since hq, h,,

C1,hyhy and Ca,h, aII go to zero as h — 0. And the quantities m Land W are bounded in size by 1.

So by the squeeze theorem, the above quantity goes to zero. Hence we proved (2.17).

For functions of more variables f (x, ..., x,,), this is done similarly but at the beginning of the
proof you instead do

f(a1 + hl' a, + hz, R + hm) —f(al, a, + hz, ey, Ay + hm) +f(a1, a, + hz, ey iy + hm)

added zero

—f(ay,a3,a3 + hs, ...,a;m + hy) + f(aq,az,a3 + hs, ...,y + hy) — - — f(aq, ay, ..., Q).

added zero

Definition 2.18: For any open set U € R™ we let C1(U) denote the set of functions f such that
all of their first partial derivatives exists and are continuous.

Remark 2.19: A good visualization/summary of Theorem 2.10 and Theorem 2.16 is the
following diagram:

9]
fect(U) = fisdifferentiable = each partial % exists.
i
We point out that when working with usual functions, it’s almost always obvious that a function
isin C?.

Note 2.20: Derivatives describe rates of change of a function and hence describe well the
changes of a function on small scales. This can be encoded in the concept of the differential. At
the moment the following discussion is not rigorous, but later in the course we’ll study how to
turn this into a rigorous concept once we get to rank-1 tensors.

Let’s look at differentiable functions f : R? - R for simplicity. From (2.13) we have that
fla+h) —f(a) =Vf(a) -h+E,(h)

where E,(h) is an “error term” that goes to zero really fast: faster than |h| - see (2.14). The
vector h denotes the “step away” from a, and so let us write this as h = (dx, dy) where “dx”
and “dy” denote small changes in x and y respectively. Let us also denote the small change in f
on the left-hand side of the above equation as df. Since E,(h) becomes negligible in size to dx
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and dy on small scales, on the “differential level” the above equation gives the equality (the
partials of f are being evaluated at a).

_(9f of
0 0
dfza—];dx+£dy.

Thus this equation gives a good way to measure changes in f for small changes in x and y. For
functions of more variables f (x4, ..., X,;,) this takes the form

(2.21) d—afd + +afd
. f_6x1 X1 ox. X

A step towards making the concept of differentials rigorous is the notion of directional
derivatives which asks the following natural question. The partial derivatives % gives us

l
information on the rate of change of the function along each x;-axis. But how does one compute
the rate of change of a function in a diagonal direction that doesn’t necessarily lie on any axis?

Definition 2.22: Suppose we have f : U € R™ — R where U is open. Take any point a € U and
any unit vector u € R™ (recall “unit vector” means “vector of length one”). Consider the line
I(t) = a + tu which goes through a at t = 0 with velocity/direction u. The directional

derivative of f at a in the direction u, denote by d,, f (a) or g—i (a), is defined as

fla+sw)—f(a)
S

d d
(223)  0uf(@) == (f l(t))|t_0 = —(fla+ tu))|t_0 = lim

s—0
if the limit exists.

It turns out that there is a very simple equation for the directional derivative when the function is
differentiable:

Theorem 2.24: Suppose we have f : U € R™ — R, where U is open, and that f is differentiable
at a. Then all directional derivatives of f exist at a and for any unit vector u € R™ it is given by

0yf(a) = Vf(a) - u.

Proof: Fix a unit vector u € R™. Since f is differentiable at a, recall from (2.13) that

__E,(h)
fl@a+h)=f(a)+Vf(a) -h+E,(h) where }ll_rg 7 =0

(keep in mind that h is a vector). Plugging this into the definition of directional derivative (2.23)
gives that

= lim
s—0 S

fla+sw) —f(a)
s

0.f (@) = lim Vf(a) - (su) + Eq(su) _ i (sz(a) . Ea(su)>

S S
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. Eq(suw)
—Vf(a)-u+£1_r)r(} sul

The last limit is the limit }lirré E,(h)/|h| but along the direction u and hence is also zero. Thus
we indeed get that d,,f (a) = Vf(a) - u.

Next we discuss the chain rule, which takes on a slightly more complicated form in higher
dimensions compared to its single variable version. We begin with the easier case when the
inside function only depends on one variable.

Theorem 2.25: Suppose we have f : U € R™ - Rwhere Uisopenandg: I SR> U € R™
where I is open. As usual we explicitly write these as f (xy, ..., x,,) and g(t) =
(91(0), .., gm (D). Consider the function p = fo g : I - R.

Suppose that g is differentiable at a € I (i.e. every component g, is differentiable at a) and that
f is differentiable at g(a). Then ¢ is differentiable at a and

d dgm
@ = (9@) 9@ = 5 (9@) T @+ + 5~ (9(@) T (@,

Clearly if f and g are differentiable everywhere, then ¢ is differentiable everywhere over I and

do ,_ 9f dg. Of dgm

a9 T anar ax,, dt

(2.26) n

(important: each % is evaluated at g(t)).
Remark: Sometimes people instead write f(t) = f o g(t) and g(¢t) = (xl(t), ...,xm(t)) and so
the above becomes

df _ of dx, L of dxm
dt  0x, dt dx,, dt

Notice that if you not rigorously multiply through by dt you recover the equation satisfied by
differentials: df = af dx1 ot dxn

Proof: For shorthand, let b = g(a). We have that

b
flgla+s)-f <@>
(2.27) “jl—‘f(a) = lim plat 52 —9@ _ .

s—0 S

We have to show that this is equal to Vf(g(a)) - g’(a). Because f and g are differentiable at b
and a respectively

10
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.. Epp(h)
(2.28) fQ) = f(b) =Vf(b)  (x—b) + E, s(x — b) with }lm(l) ih| \
ga+9)| @] [g1(@s]| [Eagi(s) E,..(s)
(2.29) : — : = : + : with each lirrg 9. =0
0,@+9)| |9, @] [5,@s] [Eagm(® 0 s
g(a+s) g(a) sg'(a) Eq,g(s)
E,,(s
= lim a’g( ).
s—0 S

Set both E}, (0) = 0 and E, 4,(0) = 0. Plugging x = g(a + s) in (2.28) (and recalling b =
g(a)) and then plugging that into the last quantity in (2.27) gives (we drop writing “limg_,,” for
now)

VFE) - (gla+s) —g(@) + Epr(gla+s) —gla)
p .

Plugging in (2.29) into this gives

VF(b) - (59'(@) + Eqg(s)) + Ens (59'(a) + Eqg(s))

(2.30) =Vf(b)-g'(@) +Vf(b)-

Fay(s) , Bos (59'(@) + Eag())
S S

The second term in (2.30) goes to zero as s — 0 by (2.29). The third term is bounded in
absolute value by

numerator<s|g’ (a)|+|Eq,g(s)|
Epr (59'(@) + Eqg(s)) [sg'() + Eag(s)]
|sg'(@) + Eq4(s)| S

Q
0 if sg'(a)+Eq4(s) =0

(2.31) if sg'(a) +Eqg(s) #0

We have that sg’(a) + E, 4(s) = 0 as s — 0 and so the quantity E}, ((...)/|...| in the first case
goes to zero. The fraction labeled “Q” is bounded in size since s|g'(a)|/s = |g'(a)| and
|Ea,g (s)|/s goes to zero as s — 0. So by the squeeze theorem (2.31) goes to zero as s — 0.

Tracing the above logic back, this shows that indeed the limit in (2.27) is equal to V£ (g(a)) -
g'(@).

Corollary 2.32: Suppose the same situation as the previous theorem, but instead suppose that
fect(U)and g € C*(I). Then ¢ = f o g isalso in C1(I).

11
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dgl

Proof: This follows immediately from (2.26) since aII and are continuous. m

The above theorem and its proof generalizes directly to the case when g depends on multiple
variables:

Theorem 2.33: Suppose we have f : U € R™ —» R where U isopenand g : V € RF - U € R™
where V is open. As usual we explicitly write these as f (x4, ..., X,,) and g(ty, ..., t;) =
(g1(t1, o 1), e, Gm(Ey, -ov, E) ). Consider the function g = fog: V - R.

Suppose that g is differentiable at a € V and that f is differentiable at g(a). Then ¢ is
differentiable at a and each partial

dgm

—( )——(g<a>)—( ) +

Clearly if f and g are differentiable everywhere, then ¢ is differentiable everywhere over I and

do _ 0f dg, by of dgm
dt 6x1 dt; 0xy, dt;

Remark: Sometimes people instead write f(ty, ..., t) = f o g(tq, ..., t,) and g(tq, ..., tx) =
(xl(tl, N %) I, e (S ...,tk)) and so the above becomes
d of d of d
f f X1 o f xm
dt 6x1 dt; 0x,, dt;

Proof: The proof is very similar to the proof of the previous theorem: we leave it to the
interested reader to figure out what changes are needed in the proof. m

Corollary 2.34: Suppose the same situation as the previous theorem, but instead suppose that
fect(U)and g € C1(V). Then @ = f o g isalsoin C1(V).

We mention an interpretation of gradients in the context of topographic maps. Suppose the
surface of a mountain is represented by the graph of a function z = f(x, y). In the x, y plane we
can draw contours representing sets on which f has the same value: they are called “isolines.”
Suppose such a contour is parametrized by a curve g : I € R —» R%. Then ¢ = f o g is constant
and so forall a € I,

“Zl—‘f(a)zo andso Vf(g(a))-g'(a) =0.

We have that g'(a) is tangent to the contour, and hence the second equation says that Vf is
always perpendicular to the isolines.

The next important theorem that we generalize from single variable theory is the mean value
theorem which, as we’ll see right after, often plays the role of giving quantitative estimates on
how fast functions can grow. First we need the notion of a line segment:

12
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Definition 2.35: For any points a, b € R™, the line segment from a to b is the curve [ : [0,1] —
R™ given by

I(t) =a+t(b—a).

The image L = Im [ is also referred to as the “line segment.” Sometimes we will also consider
other parametrizations of the same curve [ : [a, f] = R™ (i.e. obtained by a change of variables).

Theorem 2.36 (Mean Value Theorem): Suppose we have f : U € R™ — R where U is open.
Let a, b € U be such that the line segment L between them lies in U and such that f is continuous
on L and differentiable at every point of L except possibly at the endpoints a and b. Then there
exists a ¢ € L not equal to the endpoints a nor b such that

(2.37) f®) = f(a) =Vf(e) - (b—a.
Proof: Take the line segment [ : [0, 1] —» R™ going from a to b:
I(t)=a+t(b—a)

and form the function ¢ (t) = f o I(t) (note that ¢ : [0, 1] — R). By the single variable mean
value theorem there exists some ¢ € (0, 1) such that

1) = (0
(2.38) %‘(’;() = ¢'(c) = VF(I(®) - I'(®).
Notice that

(2.39) (1) =fM), @0)=f(a), lU'(c)=b—a,

and so setting ¢ = [(¢) and plugging (2.39) into (2.38) gives (2.37).

The following definition is useful in many fields of math, in particular in optimization.

Definition 2.40: Aset S € R™ is called convex if for any two points a, b € S the line segment L
between them is contained in S: L € S.

Example 2.41: As you will prove in the homework, any ball B € R™ is convex.

Corollary 2.42: Suppose that f : U € R™ — R is differentiable, where U is open and convex,
and that |Vf| < M everywhere. Then forany a,b € U,

|f(a) = f(B)] < M|b — al.

Remark: The assumption “convex” is necessary since otherwise a slowly rising spiraling
staircase gives a counterexample.

Proof: Take any a, b € U and the line segment L between them. By Theorem 2.36 there exists a
¢ € L suchthat f(b) — f(a) = Vf(c) - (b — a). Then (the first “<” below uses the Cauchy-
Schwarz inequality)

13
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lf(B) = f(@)| =1Vf(c)- (b—a)| < |VF(OII(b —a)| < M|(b—a)l.

Corollary 2.43: Suppose that f : U € R™ — R is differentiable, where U is open and convex,
and that Vf = 0 everywhere. Then f is constant on U.

Proof: The condition Vf = 0 is trivially equivalent to |Vf| < 0. So the previous corollary
implies that for any a,b € U

lf(b) —f(@)| <0lb—al=0 = f(b)=f(a).
In other words, the value of f is the same at any two points and hence must be constant.
|

We now improve the above corollary to the case when U is connected rather than simply convex.
Thus the following theorem will make the above corollary obsolete (though we will use the
above corollary to prove the following theorem). First we need a topological lemma, which is
essentially trivial.

Lemma 2.44: Suppose that U S R™ is open and that U € U is open in the metric topology of U.
Then U is open in R™.

Proof: Take any point a € U. Since U is open in U, there is a ball B € U centered at a. Since B
is also a ball in R™ this shows that a is an interior point of U where U is thought of as a subset of
R™. Hence U is open in R™ as well.

Theorem 2.45: Suppose that f : U € R™ — R is differentiable, where U is open and connected,
and that Vf = 0 everywhere. Then f is constant on U.

Proof: Take any a € U and consider the sets
Uy={x€eU:f(x)=f(a)}#® (nonempty since a € U;)
and U, ={x €U:f(x) # f(a)}=f"[(=,b) U (b, ®)].

Note that U = U; U U,. Note also that U, is open in U, and hence in R™ by Lemma 2.44, since it
is the preimage of an open set by a continuous function. The set U, is also open since if you take
any b € U, (i.e. f(b) = f(a)) you can draw a ball B € U centered at b on which f is constant
by Corollary 2.43 (i.e. f is equal to f(a) in B) and thus B < U;. Since both U, and U, are open,
we have that

UnU,=¢ and U, NU,=0

(exercise!). Thus U; and U, will form a disconnection of U unless one of them is empty. Since U
is connected and U; # @, we must have that U, = @. Hence U; = U and so f is constantly equal
to f(a) everywhere.

14
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So far we’ve been taking only one derivative of a multivariable function, which describes how
the graph of the function moves through space in the “directional sense” accurately described by
the tangent plane. If we take two derivatives, then we get information on how the graph of the
function “curves” through space.

Note 2.46: Suppose we have a multivariable function f(xy, ..., x,,). If the i" partial of £ exists
everywhere (i.e. %), then % (x4, ..., X,y) defines a new multivariable function. Thus, if possible,

we may take another partial derivative of this new function, say the j™ partial:

d (of - o°f
— (—) which is also denoted by ———

aXi ) axjaxif' ajalf’ ijxi' f]l

These are called second order partial derivatives. Higher order partials:

ak
! . (a k'™ order partial derivative of f )

axil "'xlk

are defined similarly. Note that we always read the order of differentiation right to left. When
you take the partials only in one variable, this is often called pure partials. When you take
partials in various variables, this is called mixed partials:

0% f B % f 0% f

=— 1 rtial and
is a pure partial an 5x.0%,

O_xiz axiaxi

is a mixed partials when i # j.

A natural question is whether mixed partials depend on the order of differentiation:

0°f _ ¥f

A very surprising theorem of calculus says that for most “nice” functions the order of
differentiation does not matter: we will prove this in Theorem 2.57 below. However there are
exceptional function when this is not the case. The book gives the example of the function

_ Gt —yY)

where we define £(0,0) = 0. A routine calculation (which is a good exercise) shows that for this
function
0%f 0% f

=1%—-1=
0x0y 0.0 * d0yox

(0,0).

Definition 2.47: For any open set U € R™, C*(U) denotes the set of all functions of the form
f :U € R™ - R such that all partials of f of order less than or equal to k exist and are

15
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continuous. By convention C°(U) simply denotes the set of all continuous functions of the form
f:U S R™ - R (i.e. no need to take partial derivatives).

We let C*(U) denote the set of all functions of the form f : U € R™ — R such that partials of
all orders of f exist and are continuous (a short and interesting exercise is to show that C*(U) =

Nic=o C*(U)).

Remark 2.48: Notice that C*(U) € ¢/ (V) if k > j since if f € C*(U) is k times differentiable
and all of its partials up to order k are continuous, then this definitely holds if you only consider
all partials of order only up to j (i.e. thus £ € ¢/ (U)).

Theorem 2.49: Suppose we have a function f : U € R™ — R, where U is open, which we write
out explicitly as
f(x1, eeer Xn).

Leti,j € {1, ..., m} be indices such that the partials 9;f, 9;f, 0;0;f, and 9,0, all exist (on U).
Suppose also that 0,0, f and d;9;f are continuous at a point a € U. Then

Proof: If i = j then (2.50) is obvious. So suppose that i # j. Since we’re only studying the
partials of f with respect to two variables, we can suppose that f is of the form f(x, y) and that
we want to prove that

0% f 0% f

0x0y (ab) = 0yox

(2.51) (a,b)

at a point (a, b) € U (we changed the meaning of a). Intuitively 0,9, f studies how much the
changes of f in the y direction change in the x direction. Similarly 9,0, f studies how much the

changes of f in the x direction change in the y direction. If we change both variables by some
nonzero h, these described changes can be read off of the following diagrams:

Subtract

flab+ Mo of(a+hb+h) flab+h) fla+hb+h)
l Subtract Subtract l ﬂ l Subtract
fla,b)e——— o flat+hb) f(a,b) fa+h,b)
‘—

Subtract

The first diagram (left) and the second diagram (right) are respectively equal to
(2.52) [fla+hb+h)—f(a,b+h)]—[f(a+h,b)— f(a,b)],
(2.53) [fla+h,b+h)—f(a+hb)]—[f(a,b+ h)— f(a,b)].

Notice that (2.52) and (2.53) are equal! Let’s study them by applying the mean value theorem in
each direction separately. To make the notation easier, let
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p@®) =[fla+ht)—f(at)]
(@) =[f(t,b+h) - f(t,b)].
in which case the equality (2.52) = (2.53) is given by
(2.54) (b +h) — ) =y +h) —ypb).
By the single-variable mean value theorem
@b +h) =) = ¢'(ch = [0y f(a+ h,cy) — 0, f (a,cp)]h
= [0x8, f (&n, cr) | A2
for some ¢, between b and b + h and &, between a and a + h. A similar calculation gives that
Wb + h) — p(b) = [9,0,f (en, 8)]h?

for some e, between a and a + h and é;,, between b and b + h. Plugging this into (2.54) and
canceling the h? gives

(2.55) 050y f (Cp, cp) = 0,0xf (en, ép).

Since both partials 9,0, f and 9,0, f are continuous at a and ¢y, e, — aand e,, &, - bash —
0, taking the limit of (2.55) as h — 0 gives us (2.51).

Corollary 2.56: Suppose that U € R™ is open and that f € C?(U). Then forany i,j € {1, ..., m}
we have that

92f  9%f

everywhere in U.

Proof: This follows immediately from the previous theorem since here all second order partials
are continuous everywhere. m

Theorem 2.57: Suppose that U € R™ is open and that f € C*(U). For any collection of indices
iy, .., € {1,...,m} where r < k and any reordering/permutation j,, ..., j, of iy, ..., i,
af af

dxi ...0xir  dxJr .. dxJr

everywhere in U.

Proof: This is proven by applying Corollary 2.56 inductively onto the partials of f. m

We next introduce a powerful notation, one of whose many purposes is to give concise notation
for higher order partials of a multivariable function.

Note 2.58: Suppose we’re working over R™. A multi-index a = (ay, ..., @,,) is an m-tuple of
nonnegative integers (i.e. each «; is a nonnegative integer). We define its size by
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la| = a; + -+ ap,.

Note that this is different from our definition of length of vectors since we don’t think of these as
vectors but rather as collections of indices (see below): admittingly we use the same notation | - |
for the two. For any such multi-index a and any function f (x4, ..., x,,) we define

la|
—_—
aa1+a2...+amf

__ aaiaa Am g _
P =0 O = e ) - @xm)

From here we see the origin of the name “multi-index” because « is a collection of information
on how many times to differentiate f in every index i € {1, ..., m}. A few more notations that
will be useful later are

a .
x% =x1x,% .. x,™  Vx € R™  (use the convention 0° = 1)
al = alay!..oapy!

Example 2.59: Suppose we take a three-variable function f (x4, x, x3) and the multi-index a =
(2,0,3). Then

a°f

0%f = 0103f = G amy)

a!=2!0!'3'=12,

x* = x%x3 Vx € R3,

An application of multi-indices is to generalize the binomial theorem to higher dimensions as in
the following theorem, which is called the “multinomial theorem.”

Theorem 2.60: For any x € R™ and any integer j > 1,

. J! J! o a

] = Y ¢ g -z 1 m

(1 + -+ x,) = .a!x = Z_(al)!...(am)!xl e X
lal=J lal=J

Proof: It’s proved by induction on either m or j (your choice). The book proves it by induction

on m (Theorem 2.52 there), and I’m assigning it as homework to read. m

Note 2.61: We now embark on deriving Taylor series for multivariable functions. Surprisingly,
this is not difficult since it turns out to follow from single variable Taylor series and the
multivariable chain rule. Suppose U € R™ is an open set and that we have a function f €
C**1(U). Fix a point a € U and consider an open ball B € U contained in U centered at a.

Take any point x € B and consider the line segment [ from a to x: I(s) = a + s(x — a) (recall

s € [0, 1]). For notational ease, let h = x — a denote our “step.” Now we expand f in a Taylor

polynomial along this line segment. Precisely, applying the single variable Taylor polynomial to
f o 1(s) centered at s = 0 gives
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k .
o NV(0) |

(2.62) fol(s)= Zwﬂ + Ej n(s)

.=0 .
(Ex n(s) is not in the sum X ...) where the “error” function

1 1
Ek'h(s) = [Ff(l _ t)k(f o l)(k+1)(ts)dt gk+1
. 0

To get a result explicitly in terms of the partials of f, we need to compute each derivative
(f o DW(s) explicitly. By the chain rule we have that

. d d d d af of \
o N - - _ R R
(2.63) (foDY(s) dS...de(a+th) & ds| o h, + +6xm hn
j j-1 evaluated
at (a+sh)
d . :
= ...%(hlal + -+ h,0,,)f = repeat j — 1 more times ...
j-1

J

Now a proof just like the one for the multinomial theorem (Theorem 2.60 above) gives that

| 1
(2.64) (hydy + -+ hopdy) I f = z éh“@o‘f.

lal=Jj

Since we’re interested in the value of f at x, we now plug in s = 1 into (2.62) to get (here we
change Ej ,(s) — Ej (h) since by setting s = 1 there is no more dependence on s)

S L h*0% f (a)
fo l(1)—f(a+h)—z -1 41 +Ek(h)—zz D he 4+ g ()
j=0 st j=0 |al=j
_ Z af( )h“+Ek(h)
|a|<k
where
E,(h) = J(l—t)k (ke + )'h"‘a“f(a+th)dt
|a|=k+1
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Simplifying, rearranging, and finally substituting h = x — a gives Taylor’s theorem in multiple
variables:

Theorem 2.65: Suppose that U € R™ is an open set, f € Ck¥*1(U), a € U is a point,and B € U
is a ball contained in U centered at a such that B € U. Then for any x € B (the following two
equations are equivalent)

k
aa
(2.66) Flx) = Z Z M@ 4 E (- a),

a!

j=0 |al=j

called " jt order term"

aa
oo =Y Dyt b - a)
lal<k '
where
a 1
Eo(x—a) = (k+1) %fu —0*9%f(a + t(x — a))dt
lat|=k+1 0

which implies that

max sup|d®f(y)|

k+1 lal=k+1 yep

(2.67) |E,(x —a)| <Vm Gt D! |x — a|k+t
|Ep (x — a)l
—— >0 as x—a.
lx — alk

Remark: The very last implication “=" is very important: it says that the error term E) (h)
vanishes faster than |h|* at h = 0.

Proof: The proof is contained in our discussion Note 2.61 above except for the last implication
(2.67), which you’ll prove on the homework. m

We record the following important equation which gives a useful interpretation of every term in
the Taylor series (2.66). Its proof follows immediately from our calculation (2.63) and (2.64).

Theorem 2.68: Suppose that U € R™ is open and that f € C¥(U). Fixany a € U, a vector h €
R™, and consider the line [(t) = a + th. Then for any integer 0 < j < k

il
(2.69) (F DD = > L hea%f(a).

lee|=j

Remark: In other words, the j™ derivative of f along the line [ with velocity h at a (i.e. the left-
hand side of (2.69)) is equal to the j™ order term in the Taylor series of f centered at a evaluated
at h (i.e. the right-hand side of (2.69)).
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Another thing that we remark is that if h is a unit vector, then it’s not hard to see that the left-
hand side of (2.69) is equal to the j™ directional derivative 9, f ().

Note 2.70: Let’s see what the first few terms of the Taylor series of f look like. For simplicity,
let’s first look at the case m = 2. Setting k = 2 in (2.66) and h = x — a to make the notation
simpler gives

FGny) = Flay ) + (alf OV IAC) hz)

hy +

1! 1!
0,0 0.0 ad,0
+< L 12{ (@) 2, 91 12!]3“) hyh, + 22200 22]: (@) h§> + E,(h)
and so
= Vv h 1 azf h? + 2 azf h.h Ozf h3 E,(h
f(x,y) = f(ay,a;) +Vf(a) - +E<W(a) it axay(a) 1 2+a_yz(a) 2>+ 2 (h).

second order term in Taylor polynomial

Notice that the second order term in the Taylor polynomial without the 1/2 factor can be written
as (here “-” is the dot product; we omit writing “(a)”)

S| ) )] () = (e e (), ()

Another notation for dot product

Note that this matrix is symmetric because 9,0,f = 9,0, f since we assumed that f € C*(U)
where k = 2: a very special property of matrices!

For function of more variables f (xy, ..., x,,) this will take the form

1 N 2 2
271 fG)=f(@)+Vf(@)-h+5 Z 92 f(a)h? + 2 z 0.0, f(@hihy |+ Ey(x — @)

1<i<jsm

second order term in Taylor polynomial

where the second order order term in the Taylor polynomial without the 1/2 factor can be
written as

0101f -+ 010mf\ [\ (M
(2.72) (( : : )( : )( : )).
amalf amamf hm hm

As before this matrix is also symmetric since the entry in the i column and j™ row (i.e. 0;0;f)
is equal to the entry in the j™ column and i™ row (i.e. 0;0;f). This matrix has a special name: it
is called the Hessian of f at a and is denote by “H¢(a)” (in more advanced courses they denote
the above as V2f (h, h), but we avoid this notation for now). The concept of the Hessian is
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powerful because it allows to use the power of linear algebra to study the second derivatives of f
(or how its graph “curves through space”).

Definition 2.73: Suppose we have a function f : U € R™ — R where U is open.
o Apoint a € U is called a critical point if either f is not differentiable at a or Vf(a) = 0.
o Apointa € U is called a local minimum of f if
3§ >0 VxeU:|x—al <68, f(x)=f(a).
o Apointa € U is called a local maximum of f if
3§ >0 VxeU:|x—al <8, f(x)<f(a).
o Apointa € U is called a global minimum of f if
Vx €U, f(x)=f(a)
o Apointa € U is called a global maximum of f if
vVx €U, f(x)<f(a)

Observe that a global maximum or global minimum is automatically a local maximum or local
minimum respectively.

The following theorem is a direct generalization of the result in single variable calculus about the
relation between critical points and first derivatives.

Theorem 2.74: Suppose we have a function f : U € R™ — Rwhere U isopen. Ifa € U isa
local minimum or local maximum, then it is a critical point.

Proof: Take such a point a € U. If f is not differentiable at a, then it’s a critical point and so
we’re done. So suppose that f is differentiable at a. We will show that each % (a)=0and
hence Vf (a) = 0. Let’s start with showing that % (a) = 0. Take the line I(t) = a +

1

t(1,0,...,0) = (a; + t,a,, ...,a,,). Since f has a local minimum at a, f o [ will have a local
minimum at t = 0 and hence by single variable calculus its derivative at t = 0 is zero. Thus, by
the chain rule (or (2.69))

of

o—d( () —d( +6(1,0,..,0))| = (a)-1
=7 f T f(a 0, ..., o a)- 1.
which is what we wanted. Showing that%(a) =0 fori = 2,..,mis handled similarly.

In single variable calculus we used the second derivative to test if something is a local minimum
or local maximum. In higher dimensions, this is much more complicated since we have many
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directions (including diagonal ones) to take into account. First we recall three results from linear
algebra, starting with the following called the spectral theorem.

Theorem 2.75: Suppose that A is a symmetric m X m matrix. Then there exists a unitary m X m
matrix U such that

A 0 0 0

0 A 0 -« 0
(2.76) A=U"|0 0 A - 0 |U

0 0 0 - A,

where 44, ..., A,,, are eigenvalues of A. The form of the matrix in between U™ and U on the right-
hand is called a “diagonal matrix” because it only has nonzero entries on the diagonal. Recall
that UT is the matrix obtained by flipping U across its diagonal running from the top-left corner
to the bottom-right corner. Recall also that U being unitary means that |Uh| = |h]|.

Lemma 2.77: For any square matrix B and any vectors x, y,
(Bx,y) ={(x,B"y) and (x,By)=(B'x,y).

Theorem 2.78: Suppose that U € R™ is an open set, f € C2(U), and that Vf(a) = 0 at some
pointa € U.

a) Ifa € U isalocal minimum, then all of the eigenvalues of H¢(a) are nonnegative.
b) If all of the eigenvalues of H(a) are positive, then a € U is a local minimum.

¢) Ifa € U isalocal maximum, then all of the eigenvalues of H(a) are nonpositive.
d) Ifall of the eigenvalues of Hy(a) are negative, then a € U is a local maximum.

Proof: We will only prove a) and b) since ¢) and d) are proved similarly. Let’s start with a).
Choose an eigenvalue A of Hr(a): we want to show that 2 > 0. Let v € R™ be an eigenvector of

A, meaning v # 0 and Hg(a)v = Av. Consider the line [(t) = a + tv. As argued before, since f

has a local minimum at a, f o [ has a local minimum at ¢t = 0. Thus by single variable calculus,
the second derivative of f o [ is nonnegative at t = 0. Thus (2.69) and the comment leading to
(2.72) give

1 1 1 1
(2.79) 0<(foD"(0)= E(Hf(a)v, V) = E(Av, V) = El(v, V) = E/llvlz.

Since |v|? > 0, this shows that indeed 1 > 0.

Now suppose that all of the eigenvalues of H.(a) are positive. We want to show that a € U is a

local minimum, which note is equivalent to showing that for some small § > 0, f(x) — f(a) =
Oforx € U:|x—al <& (recall that Vf(a) = 0 by assumption). Let U be a unitary matrix such
that Hy(a) = UTDU where D is a diagonal matrix with the eigenvalues 4,, ..., A, of Hy(a)
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running down the diagonal as in (2.76) (this is possible since Hr(a) is symmetric which recall
follows from f € C?(U)). Letting h = x — a for shorthand, by (2.71) and (2.72) we have that

£ — (@) = 5 (Hy (@, h) + Ey(k) = = (UTDUR,K) + Ey(h) = 7D U, UR) + Ex(h)
R R

/Alﬁl fll

1 1 .7 ; 1. i

= (ORR) +E() = I N R B A = 2 (M + 4 2nh2) + Eo(B).
A/ N\

Let A,,;, be the smallest of the eigenvalues of 4, ..., 4,, which observe is positive by assumption
of b) (i.e. A,,;, > 0). Thus the above is bigger than or equal to

1 - - 1,2 1
2 = Aia (R 4+ RE) + By () = |R]” + Ex(h) = 5 A RI* + Ex ()
1 E; (M), .,
(2.80) = <E’1min + W) |h|“.
By (2.67) we have that E,(h)/|h|?> - 0 as h — 0. Hence there isa § > 0 such that

E,(h)
|h|?

1
<§/1min for |h| < 6.

Thus for |h| < &, or equivalently |x — a| < &, (2.80) is bigger than or equal to

1 1 ) 1 5
= (Elmin - E/lmin) |h| = Z/lminlhl =0

which is what we wanted.

We record an important technique that appears in the above proof as a separate lemma:
Lemma 2.81: Suppose that U € R™ is open, f € C%(U), a € U, and v is an eigenvector of
H¢(a) with eigenvalue of A. Consider the line [(t) = a + tv. Then

1 1
(f )" (0) = 5 {Hy(@v,v) = 5 AIv]?.

Remark: It’s not hard to see that if v is a unit vector then (f o 1)""(0) is in fact the second order
directional derivative 92 f (a).

Proof: This follows from the calculation (2.79) after the “0 <”. m

In other words, the above lemma gives an important geometric interpretation of the eigenvalues
of He(a) in terms of the graph of f. It says that an eigenvector of Hr(a) whose eigenvalue is

positive indicates a direction in which the graph of f will “curve up” and an eigenvector of
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H(a) whose eigenvalue is negative indicates a direction in which the graph of f will “curve
down.”

Definition 2.82: Suppose that U € R™ is open, f € C2(U), and a € U is such that Vf(a) = 0.
If some eigenvalues of Hy(a) are positive and some are negative and none are zero, then a is

called a saddle point of f.

Remark 2.83: If Vf(a) = 0 and one of the eigenvalues of H¢(a) is zero, then you can’t
conclude if it’s a local minimum, local maximum, or a saddle point. You would have to analyze
higher order derivatives. A simple demonstration of this is given by f(x,y) = x3 — y2 (graph
ith.

For two variable functions, there is actually an easy test for local minimums, local maximums,
and saddle points. First recall a lemma from linear algebra:

Lemma 2.84: Suppose A is an m X m matrix and let 4, ..., 1,,, denote its eigenvalues counting
algebraic multiplicity. Then

detA=21; .. 4, and trace(A) =A; + -+ 1.

Theorem 2.85: Suppose that U € R? is an open set, f € C?(U), and that Vf(a) = 0 at some
pointa € U.

a. IfdetHr(a) < 0then a is a saddle point.
2
b. IfdetHs(a) > 0and zTZ(a) > 0, then a is a local minimum.
2
c. IfdetHf(a) > 0and ZT]; (a) < 0, then a is a local maximum.
d. Ifdet Hf(a) = 0, then at least one eigenvalue of Hf(a) is zero and so no conclusion can

be drawn without looking at higher order partials.

2 2
Remark: Parts b) and c¢) work if you replace “ZT]; (a)” with “Z—y’; (a)” — the proof is essentially

identical. Parts a) and d) also hold in higher dimensions (i.e. R™) — the proof is essentially
identical.

Proof: Let 4, and 4, be eigenvalues of H¢(a).

Proof of a): If det Hr(a) = 4,4, < 0, then one of 4; and 4, is negative and the other is positive
and hence a is a saddle point.

Proof of b) and c): If det Hr(a) = 4,4, > 0, then either both 4; and 4, are positive or both are

2
negative. If % (a) > 0, then the second derivative of f along the x axis is positive and hence f

- 02 L. . . .
must have a local minimum at a. If # (a) < 0, then similar reasoning gives that f must instead
have a local maximum at a.

Part d): If det He(a) = 444, = 0, then either 4, = 0 or A, = 0.
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Implicit Function Theorem and Submanifolds of Euclidean Space

We’ve developed differential calculus on flat Euclidean space. Soon we will do the same for
integral calculus. Humans have discovered that both theories can be lifted to more general
domains, in particular “curved spaces” sitting in Euclidean spaces. To help visualize these, think
of smooth curves and 2-dimensional surfaces sitting in R3 — though keep in mind that we will be
working in much higher dimensions as well. This generalization is important as it arises in the
theory of optimization of functions with systems of constraints, in the study of the integral form
of Maxwell’s equations, etc. The essential tool to construct such a theory will be the implicit
function theorem, which we now discuss. First let’s recall a concept from topology:

Definition 3.1: For any point p € R™, an open neighborhood U of p is an open set U € R™
such thatp € U.

Note 3.2: Typically we think of a neighborhood U of p as a “small” open set containing p. When
we say that something occurs locally near p, we mean that it occurs in a neighborhood U of p.

Note 3.3: Consider the equation for a sphere S of radius one in R3:
x2+y*+2z2—-1=0.

Suppose you have a function h : S — R and you wanted to find its maximum. At the moment it’s
difficult to perform such 2-dimensional calculus on this 2-dimensional curved object since we’ve
only done calculus on Euclidean space. Suppose for simplicity that we know that the maximum
of h occurs on the upper hemisphere. Notice that for points on the upper hemisphere, we can
solve for z in the above equation:

z=+1—-x%2—-y?

to describe the upper hemisphere of S as the graph of the function f : B(0; 1) € R? —» R (here
B(0; 1) denotes the ball of radius 1 centered at 0) given by:

z=f(xy) =y1-x*—y2

This way we can find the maximum of h over the upper hemisphere instead by finding the
maximum of h o f : B(0; 1) — R using the differential calculus that we already devloped.

Notice what we’ve done: to analyze a surface we’ve reduced it to the graph of a function. This is
a powerful technique, but it must be applied with care. Notice that if on the other hand we knew
that h had a maximum on the right hemisphere of S (i.e. the one intersecting the positive x-axis),
then we could not have solved for z in terms of x and y to describe that portion of S. However, in
that case we can solve for x in terms of y and z and use the fact that the right hemisphere of S is
given by the graph of the function

x=f(,2)=1-y2 - 2.

26



Haim Grebnev Last Modified: June 4, 2025

This is a general trick that can be done for all surfaces including (plot these!)
o Hyperboloid of one sheet: x + y? — z? — postive constant = 0
o Paraboloid: x? + y? — z — constant = 0
o Corner of aroom: x + e + e# — constant = 0.

Theorem 3.4: (Implicit Function Theorem I) Suppose that F : U € R™ — Ris a C* function
where k > 1 and U is open (k can be infinity). Let S € U be the set

(3.5) S={(xy, ., xp) ER™: F(xq, ..., %) = 0}.

Fix a pointp = (py, ..., pm) € S and suppose that ;TF (p) # 0. Then there exist r, and r; so that
if you consider the cylinder

(3.6) R = B((Pv s Pm—1); To) X (Pm — 71, Pm +11),
then
(3.7) RNS ={(q, o, Xm) t xm = f(X1, ey X—1)}

i.e. the graph of f

for a unique function f € C¥[B((py, ..., Pm-1); 70)]. Furthermore, forany i € {1, ..., m — 1},

6iF(x1, wor Xm—1, [ (X1, oo, xm_l))

amF(xl, oy Xm—1, f (X1, ...,xm_l))'

Remark 1: The above theorem is formulated as taking the equation F (x4, ..., x,,) = 0 in (3.5)
and “solving” for x,, to get (3.7). The above theorem and its proof work equally well if you
want to solve for a different variable x; instead. In that case you need to assume that :—; (p)+#0

(3- 8) al-f(xl, ...,xm_l) = —

in which case (3.6), (3.7), and (3.8) will instead take the form
R=B ((pll = Pj—1Pj+1s» ---»Pm)'ro) X (p] — ", DPj + Tl)'

ENS = {(xl, ey Xm) Pxp = f(xl, o X1, Xjp 1 ...,xm)}

aiF(Xl, ey Xj_l,f(xl, ,Xj_l,x]'+1, ey Xm), Xj+1, ,Xm)

ajF(xl, ...,xj_l,f(xl, ey X1, Xj 41, ...,xm),x]-+1, ...,xm)'

(')l-f(xl, s Xjo1, Xj 41, ...,xm) =

Remark 2: Intuitively, equation (3.8) indicates why we need the condition :TF (p) # 0inthe

statement of the above theorem since if we set x = p in that equation, then ;TF (p) isin the
m

denominator and we don’t want to divide by zero.

Remark 3: Sometimes people aren’t interested in interpreting the above theorem in terms of sets
S, but rather as a theorem of when you can solve for one variable in terms of other variables.
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Proof: We omit the proof of (3.7) — you may find it on pages 114 — 115 in the book. Let us
prove (3.8). By the chain rule we have that (we omit writing the arguments of f here)

2 2 s oF of

0= a_.Xl[O] — a_xl[F(xl' ---;xm—lﬂf)] = a—xi(xl, ...,xm—l'f) -1+ axm (x1; ...,Xm—l'f) . a—xl

Rearranging gives (3.8).
[ |

Note 3.9: At the beginning of Note 3.3, the sphere S is equal to {(x,y,z) € R3 : F(x,y,z) = 0}
where F(x,y,z) = x> + y? + z? — 1. For a point p = (p4, p,, p3) on the upper hemisphere,

Z—Z (p) = 2p5; # 0 and so the above theorem says that we can solve for z in terms of x and y near
p. Indeed we saw this in Note 3.3! However, if p is on the equator in the right hemisphere and
hence p; = 0 but p, # 0, we have that Z—Z (p) = 2p3 = 0 and so we can’t solve for z in terms of

x and y. But notice that Z—; (p) = 2p, # 0 and so we can solve for x in terms of y and z.

Note 3.10: The above can be extended for functions of the form F : U € R™ — R". This is
important for describing “curved spaces” when the difference in their dimension and the
dimension of the Euclidean space that they sit in is bigger. To illustrate this, consider S that is the
set of points (x,y, z) € R3 satisfying

Z4+y2+272-1 0
F(x,y,z)=(x 3;_22 )=(0).

In other words, this is a function F : R3 - R? set to zero. The set of points (x, y, z) is the circle
in R3 centered at zero making a 45-degree angle with the y-axis and a 0-degree angle with the x-
axis. Let us solve for y and z in the above equation in terms of x in the region y > 0. The above
equation is equivalent to the system of equations

x2+y?+2z2-1=0,
y—z=0.

The second equation gives us that z = y. Plugging this into the first equation gives x? + 2z —
1 = 0 which gives that z = /(1/2)(1 — x2). Plugging this back into z = y gives y =
\/(1/2)(1 — x2). Hence S in the region y > 0 is the graph of the function f : (—1,1) - R?
given by

.2) = f(0) = (VA7 @ = x),J@/DA - D).

Notice that we solved for 2 variables in terms of 3 — 2 = 1 varables since we had a system of 2
equations above with three unknowns. For a general F : R™ — R™ we would expect to be able to
solve for n variables in terms of m — n variables because we’ll have a system of n equations for
m unknowns. This hints that the general theory should be developed for m > n. To develop this
theory, we need the notion of the Jacobian:
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Definition 3.11: Suppose that we have F : U € R™ — R™ where U is open. Explicitly

Fy(xq, oe) Xm)
F(xy, .., Xxpy) = :
Fo(%1, o) Xpm)
Suppose that F is differentiable (i.e. each F; is differentiable). Thus for each a € U, setting h =
x — a for shorthand,

6F1 0F;
F,(x) Fi(a) (“)hl o W (@hm E;q(h)
( ; )=< ; )+ ; o
Fn(x) Fn(a) ZF (a)h1 Fn a . En,c(l()h)

where each limy,_,o Ej ,(h)/|h| = 0. This can be rewritten as

OF. dF

—L@ - p L (a)\
xm

N

0Fn( )
dxq . axm
"DF(a)" or "DxF(a)"

F(x) =F(a) + k

It’s easy to check that limy,_,o |E,(h)|/|h| = 0. The matrix DF (a) in the middle is called the
Jacobian matrix of F at a. The determinant Jz(a) = det DF (a) is called the Jacobian
determinant. Sometimes both are simply referred to as the Jacobian (you have to rely on
context to tell which is being discussed).

Note 3.12: Look at the above definition, intuitively speaking, since E,(h) is negligible in size to
the rest of the terms, this says that F(x) — F(a) is a linear map on the differential scale (not a
rigorous statement at the moment), a central theme in analysis!

Theorem 3.13: (Chain Rule with Jacobians) Suppose that G : V € R¥ - U € R™ and F :
U € R™ — R" are differentiable where U and V are open. Then (here DF is being evaluated at

G(x))
D(F o G)(x) = [(DF)(G(0)](DG(x)) = [(DF) » G1(DG)
= Jreg = (r(G())J(x) = Ur © G-
where in the last quantity on each line we omitted writing the arguments.
Proof: Will be assigned as homework. m

Note 3.14: We aim to extend the technique explored in Note 3.10 to general F. As a toy model,
consider the situation when F : R™ — R™ is a linear map with m > n:
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Fi(xq, o, %) a1 0 Qim X1 A1,1%X1 + 0+ AymXm
F(xl' ...’xm) B < E ) B ( E ... S ) < S ) - < E >
E,(xq, oo, Xm) An1 " Anm/ \Xm Ap1X1 + -+ QpmX;m

For later use, observe that

oF,

ax]'

(3 15) = ai‘j.

Now we ask, when can we solve for n of these variables in terms of the other m — n variables?
Answer: we need an invertible n X n submatrix sitting in the above system. Let’s illustrate this.
For simplicity, suppose that the submatrix consisting of the last n columns of the above matrix is
invertible. To make the notation easier, let us instead write points in R™ as

X1y ey X)) = (V1y oo Vimerr Z1s +oe» Z)
and write

bi1y1 + -+ bim-nYm-n-1+ C1121 + -+ C1nZn

(3.16) F(yl,...,ym_n_l,Zl,...,Zn) = :
bn,lyl + -+ bn,m—nym—n—l + Xp121 t -+ CunZn

< >
O

bin - bimn Y1 €1 Cin\ /%1 0
)0 (T
bn,l bn,m—n Ym-n Ch1 ° Cnn Zn 0

B y C is invertible z

= z=—-C"1By

Just as we got (3.15), it’s not hard to see from (3.16) that this last equation can be rewritten as

oF, AF\ ' /OF, oF,
021 aZn a}’1 aym—n
(3.17) z=—| : : g : y=fy).
aFn aFn d Fn 0F, n define f
621 aZn ayl aym—n this way
0, DyF

It’s not hard to see (I’ll most likely assign it as homework) that this implies that
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(3.18) Df = —(D,F)~*(D,F).

The solution (3.17) won’t hold for a general function F since F may not be linear. However, we
observed in Note 3.12 that on a differential scale functions, such as F, look linear. Thus (3.18)
on the other hand will hold for general functions F (with assumptions). Here is the precise
statement:

Theorem 3.19: (Implicit Function Theorem I1) Suppose that F : U € R™ —» R™ isa C*
function where k > 1 and U is open (k can be infinity). Let S € U be the set

S ={W1 e Vm—m>Z1, wrZn) E R™ : F(V1, eor Yim—m Z1s - » Zn) = O}

Fix apointp = (p1, «r» Pm—n> P1, -, Pn) € S and suppose that det D,F(p) # 0. Then there exist
1o and r; so that if you consider the cylinder

R = B((pl' ) pm—n)'ro) X B((ﬁl' ey ﬁn)' rl)'
then

(3 20) RNS = {(y1; oy Ym—ns 21, "'JZn) : (Zlﬂ ""Zn) = f(ylﬁ "'ﬂym—n)}
i.e. the graph of f

for a unique function f € C*¥[B((py, .-, Pm—n); To)]- Furthermore, writing = (y4, ..., ¥m—») and

z = (24, ) Zn),
(3.21) D,f(y) = —=(D,F)~(D,F).
where the Jacobian matrices of F on the right-hand side are being evaluated at (y,f(y)).

Remark: The Implicit Function Theorem I is a special case of this theorem withn = 1. In
addition, similar to Remark 1 made after Theorem 3.4, if you want to solve for a different set of
variables zj, ..., z;, in terms of y;, ..., y;,,_,_; When writing points in R™ as some other
permutation of z’s and y’s: (y1, 3, 21, V3, --. ), then you’ll need to make obvious modifications to
the above theorem including that detD,/F (p) # 0 and D, f = —(D,/F)~*(D,,/F). We leave the

details to the reader.

Proof: We omit the proof of (3.20) — it can be found on page 420 — 422 in the book. Just like in
the proof of Theorem 3.4, (3.21) follows from the chain rule

Y1

ym—n

o=D(0)=D(F(y,f(y)))=D Felr.

fnty)
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1 () ()

oF, F, oF, oF, 0 0 1
ayl aym—n 0z, 0z, afl afl 0f1
= : : : : : : 0y, 0y, 0Ym-n
oF, dF, 0F, oF, || of, of, of,
0y, 0Vm-n 0z; 0z, 0}/1 ayz ayr_n—n
of, o, o,
0y; 0Jy, 0Ym-n

= (D,F)(id) + (D,F)(Dy ).

Rearranging gives D, f = —(DZF)‘l(DyF) (we omitted writing arguments).

We record an important corollary for later use:

Corollary 3.22: (Inverse Mapping/Function Theorem) Suppose that F : U € R™ - IV € R™
is C* where k > 1 and U and V are open (k can be infinity). Suppose also that a € U is such that
DF (a) is invertible. Then there exist open neighborhoods U of a and V of F(a) such that the
restriction F : U — V is bijective and has a C* inverse F~1 : V — U. Furthermore, over U

D(F M) = OA) M F'()
(the left-hand side is being evaluated at y and the right-hand side is being evaluated at F~1(y)).
Proof: Consider the function G : U X V — R™ given by G(x,y) = F(x) — y and conider the set
S={(xy) ER*™ :G(x,y) = F(x) —y = 0}

It’s easy to check that DG is given by attaching the negative m X m identity matrix to the right of
DF (write it out!). Hence by the implicit function theorem there exists r,, 7, > 0 such that

[B(a;10) X B(f(@);r)] NS = {(x,y) € R*™ : x = f()}

small cylinder

for some unique f € C*[B(f(a);r,)]. Setting
V =B(f(a);r;) and U =B(a;r,) NF V]

and F~1 = f satisfies the conclusion of the theorem. Finally, letting I,,, denote the m x m
identity matrix, by (3.21) we have that (we omit writing arguments)

D(F_l) = _(DxG)_l(DyG) = _(DxF)_l(_Im) = (DxF)_l-
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Next we address the question of how does one define “curved spaces” sitting inside R™, more
precisely called “manifolds.” We’re already set up to do this using the implicit function theorem
or representing them as graphs of functions. However, we’ll take a more powerful approach
which the former will fit into nicely as a special case. In addition to representing curved spaces
as solutions to systems of equations or graphs of functions, one can obtain them by parametrizing
them as in the following examples:

Example 3.23: Angle parametrization of a circle S of radius r centered at zero in R? minus the
point (7, 0) (here “Im” stands for “image”)

S={(y)=f(0):0€(0,2m)} =Imf
where f :(0,2m) € R > R3 givenby f(8) = (r cos(8),rsin(8)).
Notice that dim dom f = 1 and dim S = 1. Interesting!

Example 3.24: Spherical coordinate parametrization of a sphere of radius r centered at zero in
R3 minus an arc pointing in the x-axis direction:

S={(x,y,2)=f(0,9): 0 €(0,2n) and ¢ € (0,m)} =Im f
where f :(0,2m) X (0,7) € R? > R3
givenby f(6,¢9) = (rsing cos@,rsin@sinf,r cos @).
Notice that dim dom f = 2 and dim S = 2. Seeing a pattern?!

Observe one more thing: suppose we restrict our function f to [/2,3m/2] x (0, ). Then the
surface S that it parametrizes would only be half the sphere and notice that a boundary was
included along the image of 8 = n/2 and 8 = 3w /2 under f.

Definition 3.25: We define the upper-half space as
H = {(uy, ., ) : w; = 0}

For any subset V < HV that is open in H/ we say that a function f : V — R™ is C* on V if there
exists a C* function f : ¥ € R/ - R™ where V 2 Visopenin R/ and f(u) = f(u) foru € V
(i.e. f extends f). For future references observe that

Definition 3.26: If j < m and k > 1 (k can be infinity), a subset S € R™ is called a j-
dimensional embedded C* submanifold possibly with boundary of R™ if the following holds.
For any point p € S there exists an open neighborhood U € R™ of p and a C* bijective function
f :V = Un S such that

1. rankDf = j (i.e. Df is of maximal rank)
2. Either
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a. V isan open subset of R/
b. orV isan open subset of HV = {(uy,..,u;) : j = 0}and V n o0H’ = @.
3. f isan embedding (see Note 3.27 below).
Such an f is called a C* parametrization of S. For any such f,
p=f1:UnS->V

is called a C* chart of S. If 2.a) above holds for V, then ¢ is called an interior chart. If 2.b)
above holds for V, then ¢ is called a boundary chart. People also refer to S as a C* manifold
possibly with boundary embedded in R™. The variables (u;, ..., u;) in the domain of f (or
range of ¢) are referred to as coordinates of S associated to f or ¢.

Note 3.27: For property 3 above, recall from topology that an injective map is called an
embedding if it’s a homeomorphism onto its image (i.e. it is continuous and its inverse is
continuous). The reason for requiring this is to prevent the weird figure 8 from being a manifold.
Important:_Recall from topology that if S € R™, then W < S is open in S if and only if it is of
the formW =UnNS.

The idea behind property 1 is that if we look at Df explicitly

(24 . O4]
|0u1 Ouj|
Df =| : :
Jduy du;

(note that this is a tall matrix since m > j), then rank Df = j implies that the columns here are
linearly independent. As we’ll discuss later, the columns represent velocity of curves along the
manifold in different directions and hence for f to parametrize a j®-dimensional manifold,
intuitively speaking, you need these velocities to define a j-dimensional plane tangent to the
surface (or else the surface could suffer a “collapsing effect”).

The reason for considering the two types of parametrization/charts in property 2 is so that we can
define boundaries for manifolds (different from the notion of boundary in topology). We’ll
discuss this in detail soon.

The reason for using charts to define and study manifolds is that they provide natural coordinates
that we can use to perform calculations on manifolds. Passing one’s attention to only using
coordinates however has certain dangers since you need to make sure that when you define new
concepts for manifolds in coordinates (e.g. connections, curvatures tensors, etc.), you need to
make sure that your definitions do not depend on what charts you use. For this reason, it’s
important to understand how different coordinates are related to each other, which is the content
of the following lemma. Before we can state it, we need a definition:
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Definition 3.28: If k > 1 (k can be infinity), a bijective C* map F : U € R™ — V € R™, where
U and V are open, that has a C* inverse F~1 : V — U is called a C* diffeomorphism.

Note 3.29: In the context of the above definition, observe that since
FoF1=id and FloF =id,
by the chain rule we have that (here we omit arguments)
(DF)[D(F Y] =id and [D(F H](DF) =1id,
and so both DF and D(F~1) are invertible everywhere.

Observe also that we can reformulate the inverse function theorem (see Corollary 3.22) as the
existence of diffeomorphisms obtained by restricting to smaller open neighborhoods F : U — V.

Note 3.30: “Diffeomorphisms” are the differential calculus version of “homeomorphisms.” In
particular, notice that since differentiability implies continuity, all diffeomorphisms are
automatically homeomorphisms.

Lemma 3.31: Suppose that S is a C* j-dimensional manifold possibly with boundary embedded
in R™. Supposethatp : UNS —»Vand @ : U NS — V are C* charts of Sand that U n T # @.
Then the functions

~

podt:plUnTNS]->plUnTNS]
Pog™

cplUnTnS]- @lunTns]

are diffeomorphisms.

Proof: It’s difficult to follow this proof without drawing a diagram, so please draw one as you
read along! Let f = ¢~ and f = ¢~ be the parametrizations associated with these charts. We
start by proving that ¢ o $~1 is a C¥ map, which note is equal to ¢ o f. Fix any point a €

#[U 0 T n S], we will show that ¢ o £ is C* in a neighborhood of &. Letp = f(a) and let a =
¢@(p). Let’s take a look at

9h . Oh
ouq ou;
Df =| : - :
du, ou;

(note that this is £, not f). Since this matrix is of maximum rank j, some square j X j submatrix
here is invertible. Let’s suppose that it is the topmost j X j submatrix since the proofs in the other
cases are similar. Consider the projection map  : R™ — R/ given by

T[(xl, ...,xj, xj+1, ...,xm) == (xl, ...,xj).

and consider the composition r o f. By the chain rule, the Jacobian matrix of 7 o £ is given by
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o oh) [2h %

1 - 00 - 0||louy ou; du, o
Do) =OOOH =t = i i n il o= e
0O - 10 - 0 % % % %
JjxJ identity [au1 ou; ouy Ou;

which we assumed is invertible. Hence by the inverse function theorem there exist
neighborhoods V € V (open either in R/ or HY) of a and W of 7r(p) such that the restriction 7 o
f :V —= W is adiffeomorphism. Now consider the map

(3.32) gof=(@of) omof: fHa (W] > V.

where observe that  ~[z~[W]] is an open neighborhood of @ since it’s the preimage of an
open set by continuous functions. Notice that (3.38) is a composition of C* maps and hence is

~—

also C*. As discussed above, this proves that ¢ o ¢ =1 is C*.

Proving that @ o ¢~ is C* is done similarly. Since ¢ o @~* and @ o @~ are inverses of each
other, they are diffeomorphisms.

Next we define tangent planes/spaces which, as we’ll learn later, are used to define vector and
tensor fields on manifolds that play a foundational role in differential geometry.

Definition 3.33: Suppose that S is a C* j-dimensional manifold possibly with boundary
embedded in R™. Take any point p € S. We define the tangent plane at p (or tangent space at
p), denoted by T,,S, as follows. Take any parametrization f : V — S of S such that p € Im f..
Then we define

of; i
ouy oy
(3.34) T,S = span S :
O |\ 9
Jduy du;

Any vector v € T,,S is called a tangent vector. Note that since by definition Df is of maximal
rank j, we have that T,,S is a j-dimensional plane (sitting in R™). The set of all tangent planes
together is called the tangent space of S:

TS = U T,S.

Note 3.35: We need to prove that the above definition is well defined, in particular that T,,S does

not depend on the parametrization that you chose. Suppose that f : V = S is another
parametrization such that p € Im f. We need to prove that
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ofy oh ( o oh )
{ oy ou; { a1, o1

span : Y = span : : .
9fm Ofm Ofm Ofm
ouy ou; 01, a_ﬁ]

~

(3.36)

First let’s prove that the inclusion “S” here holds. This will follow if we show that each vector
(0f1/0uy, ..., 0fm/0uy) inside the span on the left-hand side is contained in the “span” on the

right-hand side (here 1 < k < j). Let ¢ and ¢ be the charts associated to f and f respectively.
Observe that

ofy of; af1\ /0
/auk\ /au11 6_1;\ 1}k R
« i ||y |=@Pe=0 (f o (o (p—l)) ex
| |0 | 0|

ouy ouy ou; 0
Df ex
o1, %, | a7, Kz
=(Df)(D[¢)o<p])ek=i P i<5>=v1| P |+~-+v] : I
call this v 0fm 0fm ' 0fm 0fm
on, 9 9 \au]/

The right-hand side is in the “span” on the right-hand side of (3.36), and hence we’ve proved the
inclusion “S” in (3.36). The inclusion “2” there is proved similarly, and so indeed (3.36) holds.

To prove Stokes’s Theorem later, we will need the notion of a boundary of a manifold:

Definition 3.37: Suppose that S is C* j-dimensional manifold possibly with boundary embedded
in R™. A point p € S is called a boundary point if there exists a boundary chart ¢ that contains
p in its domain and

(3.38) o(p) € 0V = {(u,, ...,uj) fuj = 0}.

Apoint p € S is called an interior point if it is not a boundary point. The set of all boundary
points of S is called the boundary of S:

dS = {p € S : p is a boundary point of S}

Warning: The notion of boundary point and interior point are not the same thing as those
concepts defined in topology with the same name. There is a way to connect these two concepts
by placing S inside a bigger manifold of the same dimension, though we will not pursue this
question in this course.
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Lemma 3.39: Suppose that S is C* j-dimensional manifold possibly with boundary embedded in
R™. If p € S is a boundary point, then any chart ¢ that contains p in its domain is a boundary
chart that satisfies (3.38).

Proof: You will prove this on the HW, or | will come back and prove it. You can use result on the
homework and exams. m

Theorem 3.40: Suppose that S is C* j-dimensional manifold with boundary embedded in R™.
Then the boundary aS is a C* (j — 1)-dimensional manifold without boundary embedded in R™.

Proof: We leave this as an exercise while listing out the main arguments. This is proved by
taking a parametrization f : U € H’ — S such that ¢ = £~ is a boundary chart and showing
that its restriction f : U n dH/ — 85 is a parametrization of 3S. The fact that £ maps into 85 is
given by Lemma 3.39. To show that £ is of maximum rank, simply observe that D f consists of
the first j — 1 columns of Df and hence is of max rank. The reason dS does not have boundary is
that U n @H (i.e. the domain of £) can be viewed as a subset of R/~1. We leave the details to
the reader.
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Integration in Several Variables

We digress from the theory of manifolds for a while to study integration in several variables. As
the next definition shows, the construction of integration in higher dimensions is very similar to
its single variable cousin. In several cases we will formulate the definitions/theorems/proofs in
R? and then note that the generalization to higher dimensions R™ is trivial.

Definition 4.1: Suppose that R = [a, b] X [c, d] € R? is a closed rectangle (or “closed box”) in
R? (here a, b, ¢, d are finite) and that f : R — R is a bounded function. Consider a partition a =
Xg < x; <+ <x; <bof[a,b]andapartition c = y, < y; < -+ < yx = d of [c,d]. Together:

P = {xo,xl, e X5 V0 V1 ...,yK}
is called a partition of R. This partition generates sub-rectangles of R:
Rji = [xj»xj+1] X [Yis Yies1]
whose area we denote and define as A4j, = (xj+1 - xj)(yk+1 — Vi)

The lower and upper Riemann sums of f over R corresponding to the partition P are
respectively defined as:

J-1kg- J-
EEIMU@M% and  Spf ZE}wmme
= ]k =0 XERJ'k

We define the lower and upper Riemann integrals of f over R respectively as
Ixf =supspf and IRf = infSpf.
P

It’s easy to show that spf < S, f for any two partitions P and Q@ of R — the proof is essentially
identical as in the single variable theory. Hence I f < Irf. If the lower and upper Riemann

integrals of f are equal: I f = Irf, then we say that f is (Riemann) integrable on R and we
define the (Riemann) integral of f over R as

[| raa= [[ reuyraxay = 1o =Ter.
R R

Note 4.2: The generalization of the above definition to R™ is trivial. Simply use closed boxes of
the form

R =[ay,bq] X ... X [ayy, byy] € R™
If one takes a partition a; = (x;)o < (x;)1 < - < (x;);, = b; of each [a;, b;], then

P = {(xl)O' . (xl)h; e (xm)O' e (xm)]i}
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forms a partition of R. In this case, the definition defines integrability of a bounded function of
the form f : R — R. In the case of R*, we write [ff, f dV for the integral of f. In dimensions 4

and higher, we typically simply write fRf dV. Other notation for the integral include
ff, ff(x) dxq ...dx,, ff(x)dmx.
R R R

(warning: the second and third integrals are not iterated — we’ll discuss iterated integrals soon).

In practice, integration in multiple variables needs to be done over more complicated regions
rather than simply boxes. The simplest way to perform this generalization is through the notion
of characteristic/indicator functions.

Definition 4.3: Suppose that S € R™ is a set. The characteristic/indicator function of S is the
function ys : R™ — R given by

(1 if xeSs
XS(")‘{O if x¢$

An alternative notation for ys is 1.

Definition 4.4: Suppose that S € R™ is a bounded set and that f : S — R is a bounded function.
Let R be a closed box that contains S (i.e. S € R). We say that f is (Riemann) integrable on S if
(f - xs) + R = Ris integrable (on R), in which case we define the Riemann integral of f over S
as

ffdvz ff)(st.
S R

Note 4.5: One has to check that the above definition is well defined, in particular that it does not
depend on the closed box that you choose. Precisely one has to show that if R is another closed
box that contains S, then either both fxs : R » Rand fxs : R — R are integrable or both are not
integrable, and if both are integrable then

[ rrsav = | frsav.
R R

This is not hard to do; we leave it to the reader to work out the details if they’re interested. In
particular, this follows from the fact that fys : R » Rand fxs : R = R are equal on S and are
zero everywhere else.

Theorem 4.6: The following are true:

a) (Linearity) If S € R™ is a bounded set, f;, f> : S = R are integrable (and hence
bounded), and c;, ¢, € R, then
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(afitcfi)=c | fitc| fi
5 5 S

b) If S;,S, € R™ are bounded sets with no points in common (i.e. S; NS, = @) and f is an
integrable function on S; and S, then f is integrable on S; U S, and

ff=lf+lﬁ

51US;,

c) IfS < R™isaboundedset, f,g : S - Rare integrable, and f(x) < g(x) everywhere,

then
fr<fs
S S

d) IfS € R™isaboundedsetand f : S — R is integrable, then

ffS!VL

S
We have the definition of integrability, however we have no examples of integrable functions at
the moment. We will prove soon that continuous functions over closed boxes are integrable, but
what about continuous functions over bounded sets S € R™? We defined such integrals as
fR fxs where R is a closed box that contain S. The issue is that even if f : § = R is continuous,

f xs is typically discontinuous on the boundary dS and hence it’s not guaranteed that f ys will be
integrable over R. The typical way to fix this issue is to assume that 4S5 (i.e. the set of
discontinuity of fxs) is negligibly small with respect to integration. A precise way to do this is
using the concept of zero content:

Definition 4.7: Aset Z € R™ is said to have zero content if for any € > 0 there exist a finite
collection of boxes R, ..., R, © R™ such that Z € U¥_, R; (i.e. the R;’s cover Z) and the sum of
the areas/volumes of the boxes R, ..., Ry is less than & (we define area/volume of a box as the
product of the lengths of all of its sides). You can use open or closed boxes here, the definition is
equivalent.

In application, common examples of sets with zero content are manifolds in Euclidean spaces
(such as curves and surfaces) since they will be forming boundaries of regions of integration
such as S above.

Theorem 4.8: Suppose that R € R™ is a closed box and that f : R — R is a bounded function
that is continuous everywhere in R except on a set Z € R of Jordan content zero. Then f is
integrable.

Proof: We will do the proof in R?, the proof in R™ is similar. It will suffice to show that for any
€ > 0 there exists a partition P of R such that
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(4.9) Spf —spf <e.

Let R, = (aq,by) X (¢q,dy), ..., Ry = (ay, by) X (¢, d) be boxes that cover S such that the sum
of their areas is less than e. Consider the restriction f : R \ U, R; = R, which is continuous
and hence uniformly continuous since its domain is compact. Thus there exists a § > 0 such that
ifx,y € R\ UL, R;and |x — y| < &, then |f(x) — f(y)| < e. Writing R = [a, b] X [c, d], take
a partition

(4.10) P=fa=xg<x; < <xp=bjc=y, <y, < <yyg =d}
of R such that the diameter of each sub-rectangle R (i.e. longest length inside) is less than §.

Throw in ay, ..., ay, by, ..., by and ¢4, ..., ¢y, d4, ..., diinto the above partitions of [a, b] and [c, d]
respectively (i.e. that are sitting in the “{... }” in (4.10)) to get a new partition P of R.

Now, let B > 0 be a constant such that |f(x)| < B everywhere. Then
-1

J-1kK
Spf—SPf:ZZ
=0

<SUP {f ()} - lnf Y (x)})

ok XERJk
- > (sup (fC)) - inf {f(x)}> > (sup (fe}— inf {f(x)}>
T X€ER ik A X€ERj
Rjk€Uj_ R =5 Rjk€Uj=1 R; =
282 Rjxeuk_, JAAjk=ZB'(Area°f U;'(=1RJ') SEZRJI(*ZU;( 1Rj Adjiese(Area o )

<2Be+eb—a)({d—c) = (ZB + (b —-—a)(d—- c))s.

Oops... we didn’t get the last quantity to be € > 0 as desired on the right-hand side of (4.9), but
that ok: simply go back and divide every instance of & appropriately by B or (b — a)(d — c¢)/2
to make this happen.

We now seek to extend Theorem 4.8 to more general bounded sets S € R™.

Lemma 4.11: Suppose that S € R™. The characteristic function ys : R™ — R is continuous
everywhere except on dS.

Proof: This is a basis exercise in topology and continuity and is left to the reader. You can find a
proof written out on page 162 of the book. m

Definition 4.12: Aset S € R™ is called Jordan measurable if it is bounded and its boundary dS
has Jordan content zero.

Theorem 4.13: Suppose that S € R™ is Jordan measurable and that f : § — R is continuous and
bounded. Then f is integrable on S.
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Proof: Take any closed rectangle R € R™ that contains S (i.e. S € R). By Lemma 4.11 f ys :
R — R is discontinuous only on a5, and observe that dS has Jordan content zero since we’re
assuming that S is Jordan measurable. Hence by Theorem 4.8, fxs : R — R is integrable on R.
Thus f is integrable on S.

Note 4.14: Over the break, please read the following (it’s not a long reading).
o The statement of Proposition 4.22 in the book.
o The statement and proof of Corollary 4.23 in the book.
o The statement and proof of Theorem 4.24 in the book.

o The statement of Corollary 4.25 in the book (volume of S is defined as the quantity fs 1.

Perhaps you can see why now, or simply take it as a definition and we’ll talk about it
after the break).

Definition 4.15: Suppose that S € R™ is a Jordan measurable set. Then we define

Area(S) =f1dA if m=2,
s

Volume(S) = f 1dV  if m> 2.
5

Using the upper and lower Riemann sums of fS 1, one can in addition define outer and inner

areas/volumes respectively, however we don’t pursue this topic. The interested reader can find a
description on page 164 in the textbook.

Fubini’s Theorem and Iterated Integrals

Note 4.16: We’ve defined integrals of functions of several variables, but at the moment we have
no convenient way of actually computing them. This is done by “iterating” integrals, for which
the idea is the following. Suppose we want to integrate a continuous two-variable function f
over a closed rectangle R = [a, b] X [c,d] € R2. The integral fRf dA represents the volume

underneath the graph of f. Intuitively speaking, this can be obtained by taking the volumes of
thin slices along the y-axis of width Ax, which are given by fcdf(x, y)dy Ax, and then adding up

the slices to get the full volume. Making the steps Ax smaller and smaller and passing to the limit
should give an integral in x, which leads to the equality:

deA=ffdf(x,y)dydx.

R
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This is useful because the expression on the right-hand side, called an iterated integral, can be
computed using single variable theory. The theorem that allows us to iterate integrals like this is
called “Fubini’s theorem,” which we’ll prove below. We want to point out that there is nothing
special about the ordering of first integrating in y and then in x. One can redo the above logic to
justify integration in the other order to get:

d b b d
| [ reuyaxay = [ faa= [ | feyayax.
c a R a ¢

Sometimes in math iterated integrals arise naturally without passing through the
multidimensional Riemann integral (i.e. Definition 4.1), and for this reason Fubini’s theorem is
often thought of as the theorem that justifies interchanging order of integration. We note that
some people write the above iterated integrals instead as

fdxfdyf(x,y) and fdyfdxf(x,y).

We will avoid this notation.

Note 4.17: Continuing off the previous note, the idea behind the proof of Fubini’ Theorem will
be the following. Take a very fine partition

P={a=xg<x, < <x=hjc=y,<y; < <yx=d}

of R. Then we have that

J-1K-1 J-1
[raa=3">" £Go.3) (e = %) O = 0 = Z(xm x,)zf(x,,ykxym %0
R ]=0 k=0 ]k
J-1 d b d
ff(xj,y)dy (%541 — %)) szf(x,y)dydx
j=0¢ a c
The trick will be to carefully justify all of the “~.” First we need a technical lemma about

infimums and supremums:
Lemma 4.18: The following are true:
o Iff:]a,b] X|[c,d] - Risafunction, then
cqf o= nf inf {f(xy)},

(xy)E[ab
sup  {f(x,y)}= sup sup {f(x,y)}
(x,y)€la,b]x[c,d] x€[a,b] y€[c,d]

o If{r,}eea and {s,}.ca are sets of real numbers, then
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inf{ry} + inf{s,} < inf{ry + sa},
sup{r,} + sup{sa} > sup{ra + s, }.
a€EA

This works for bigger finite sums as well.
Proof: You will prove this on the homework. m

Theorem 4.19: (Fubini’s Theorem in 2D) Suppose that R = [a, b] X [c,d] € R? is a closed
rectangle and that f : R —» R is an integrable function. Suppose that for any fixed x € [a, b], the
function £, : [c,d] — R given by f,.(y) = f(x,y) is integrable. Then

b d

(4.20) jfdA =f f(x,y)dydx.
ac IO

Similarly, if for any fixed y € [c, d] the function f, : [a, b] —» R given by f,,(x) = f(x,y) is
integrable, then

N——

(4.21) jfdA jdjbf(x,y)dxdy.
R a fy(®

Cc

Proof: The following is a proof that I learned from Jim Morrow. We will only prove (4.20) since
(4.21) is proven similarly. Take any partition P = {a = x;, < x; < -+ < X, = b} of [a, b] and
any partition Q = {c =y, < y; < - < yg = d} of [c,d] and let P x Q denote the partition of R
given by

PXQ={CL=XO<X1<<x]=b,C=y0<y1<<yK=d}

Then
J-1K-1
Spxof = z z (x;?EfR_ {F G} (41 — %) Orrr — i)
j=0k=0 " Ak
J-1K-1
Prev. lemma
1nf el 1nf {f(X, )} (Xj+1 - xj)(yk+1 — Yi)
Prev. lemma
< inf mf {f(x, W} Orrr — v | (41 — %7)
xE x] x1+1 ]+1
=Sp (SQ (fx)) < sp(14f:)-

Following similar logic one can show that
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Sexof = Sp (Te ).

So in total we get that

(4.22) Sexaf < sp(14£:) < Sp(125) < S (Te ) < Spxof,
(4.23) Spxof < SP(lgfx) < Sp (T?fx) <Sp (T(Cifx) < Spxof-

Because f is integrable, for any £ > 0 we can choose P and Q fine enough so that Sp.f —
Spxof < & which by the above inequalities will force both

Sp(191) = sp(187) <& and Sp(Tef) = sp(19f) <e.

—d
Hence both 1¢f, and I. f, are integrable over x € [a, b]. Moreover, since by (4.22) and (4.23)
their Riemann sums are stuck in between sp, o f and Spyq f, we furthermore get that

b b

ffdAzf[Cdfxdxszffxdx.

R a a

—d
Since we assumed that each f, is integrable, we can plug in I¢f, = I, f, = fcd )dy =

fcd f(x,y)dy to prove the theorem.

e Theorem 4.24: (Fubini’s Theorem) Suppose that R = [ay, b;] X ... X [@y, byr] € R™ IS A
closed box and that f : R — R is an integrable function. Suppose also that for any fixed index
i €{1,..,m— 1} and any fixed

Xj € [aj, b]] for ] < i,

the function f, . (Xiv1, oos Xm) = f(xq, ..., Xp) IS integrable over [a;yq, biyq] X ... X @, by ].
Then

bm

by
fdez f f f g, ey X)) dxq oo dxp,.
R aq am

Proof: This is proved by adding induction into the proof of the previous theorem. In particular,
in the first step the P will be a partion of [a,, b;] and Q will be a partition of [a,, b,] X ... X

[@m, bm].
4.2 Change of Variables for Integrals
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Note 4.25: Sometimes evaluating multivariable integrals in a given coordinate system isn’t
convenient (e.g. in Euclidiean coordinates), however passing to a different coordinate system
(e.g. polar, cylindrical coordinates, etc.) can make the integration much more manageable. For
instance, suppose you want to compute

(4.26) J:]- f(x,y)dA, where f(x,y)=4—x%—y?
B(0;2)
where B(0; 2) denotes the ball of radius 2 centered at 0. Iterating this integral will prove messy,

however if you “change variables” by making the polar coordinates substitution x = r cos(6)
and y = r sin @ it seems that the above integral should be equal to something like

2w 2
ﬂ f(rcos@,rsin8)(?2??) =j j(4—r2)(???).
[0,2]x[0,27] 0 0

This looks like a much simpler integral, but the question is what should go into the (??7?)?

Although you most likely haven’t formulated it this way, you actually already did this in single
variable integration theory when you studied u-substitution. Suppose you have a one variable
function f : [a, b] - R and you want to compute:

jfdx=ff(x)dx.
] a

[a,b

Let us “change variables” by substituting x = g(u) where g : [c,d] — [a, b] is a C* bijective
function. In your one variable analysis class you most likely had a homework problem proving
that either

g(c) =aand g(d) = b, and g’ = 0 everywhere
or g(c)=band g(d) =a, and g’ < 0 everywhere

Thus from calculus we have that

b
d g(@) r f f(x)dx if g’ = 0everywhere
jf(g(u))g’(u)du= J flodx =43,
‘ 9() (_ f f(x)dx if g' < 0everywhere
Thus
b d
[ rav=[reax = [ rlg@)g@ian= [ rlg)g@lan
[d,b] a c [c,d]
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= [ rle)igwide.

g~ a,b]

Intuitively speaking, as you perform a Riemann sum in u, the horizontal steps in the associated
Riemann sum in the x space will be stretched by factors of |g'(w)|. This is why the term
|g'(w)|du appears in the last integral. Whatever the intuition, this formula generalizes directly to
higher dimensions:

Theorem 4.27: Suppose G : U - V is a C? bijective map between two open sets U,V € R™
such that DG is invertible everywhere (as a matrix) (this in fact implies that G is a C*
diffeomorphism by the inverse function theorem). Suppose also that T € U and S < V are Jordan
measurable sets such that T € U and T = G~1(S). Then for any integrable function f : S > R,
f o G isintegrable over T = ¢~1(S) and

(4.28) ]f(x)dmx = j f(G(w))|det DG (w)|d™u.
5

T=G"1(S)

Note 4.29: We won’t prove the above theorem: it would take approximately 1.5 - 2 weeks. You
will see a simpler proof in a class on Lebesgue integrals where you’ll prove a more general
version of the above theorem. However, let us discuss the intuition for where the term

|det DG (u)| comes from on the right-hand side. Suppose m = 2 and write G =

(G (uy,uz), G5 (uyg,uz)). Similar to the remark made at the end of Note 4.25, as we perform
Riemann sums in u, the map G will take a small rectangle in the partition with dimensions du,
and du, to a parallelogram with sides

206G,
G, (uy + duyg,u,) — Gy (uq, uy) Edul
_ — 1\41 1, 42) 7 U1\Ug, U2 — 1
G(uy + dug,uy) — G(uy, uy) <G1(u1 + duq,uy) — Gl(ul,uz)) G,
_dul
Juy
G
a_’ulduz
and G(uq,uy, +duy) — G(ug,uy) = = an
1
o1, du,

The volume of such a parallelogram is

aGl aGl 001 001
ou, M, 0w
1 2 — 1 2 _
det 36, ; 3G, ] = |det 3G, 06, du,du, = |detDG|du,du,.
aul t auZ ta aul auz

Hence this is the “scaled” differential in the x-space that appears on the right-hand side of
(4.28).
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Example 4.30: Here are some famous and important change of variables:
1. Polar/spherical coordinates in R?: G(r,8) = (r cos 8,7 sin ), where |det DG| = 7.
2. Cylindrical coordinates in R3: G(r,0,z) = (r cos8,rsin @, z), where |det DG| = r.

3. Spherical coordinates in R3: G(r, ¢, 8) = (rsin@ cos@,rsin ¢ sin 8,7 cos @), where
|det DG| = r? sin .

4. Spherical coordinates in R™:
G(1,04, ..., 0m_1) = (r(C* expression in 6y, ..., Op_1), ..., 7(C™ expression in s, ..., Opy_1))
with |det DG| = r™~1(C* expression in 04, ..., B,,_1).

Example 4.31: Computing the integral (4.26) in polar coordinates gives

2w 2
ff (4 — x%2 — y?)dxdy = ff (4 —r?>)rdrdf = j j(4 —r¥)rdrdf = 8m.
B(0;2) [0,2]x[0,27] 0 o0

Improper Integrals

Sometimes we need to perform integrals over unbounded domains and/or of unbounded
functions. These are not classic Riemann integrals: they are called “improper” integrals and are
defined via limit operations. Instead of constructing a sophisticated theory of improper integrals,
we will take a more simplistic approach that is sufficient virtually for all applications (including
all of my research experiences). We will mention in Note 4.37 below what could be refined.

Notation 4.32: We let B(a;r) < R™ denote the open ball centered at a € R™ of radius r > 0.
First we look at integrals that are improper at infinity:

Definition 4.33: Suppose that f : R™ — R is a function that is integrable over any ball of the
form B(0; r). In our class, we define the following improper integral as the formal expression:

Rjnfﬂlrg f

B(0;1)

If the limit exists, we say that the integral converges and define its value to be the limit,
otherwise we say that the integral diverges. Sometimes people simply write [ f instead of mef.
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Sometimes you may want to exhaust R™ in other ways such as by balls centered at some other
point or as a limit of integrals over expanding boxes. The following proposition provides a
condition for when these give the same answer. In general, the condition that the absolute value
of something converges is called absolute convergence.

Proposition 4.34: Suppose that f : R™ — R is a function such that the improper integral melfl
converges (i.e. me f is absolutely convergent). Then the improper integral me f converges and
for any point a € R™

T—00 T —00
B(a;r) [-7r,r]x..x[-7r7]

f = lim f = lim f.
J f

Proof: You will prove this on the homework. m
Now we turn to improper integrals that arise from singularities:

Definition 4.35: Suppose that S © R™ is a measurable set, a € S™°r and f : S\ {a} » Risa
function that is integrable over S \ B(a;r) for any r > 0 such that B(a;r) < S. In our class, we
define the following improper integral as the formal expression

[ r=tm | 1

S\{a} s\B(a;T)

If the limit exists, we say that the integral converges and define its value to be the limit,
otherwise we say that the integral diverges. For technical reasons, which we won’t go into, if this
integral is not absolutely convergent (i.e. if fsl f1 is not convergent), then this is instead referred

to as the principal value integral.

Note 4.36: Sometimes one needs to integrate an integral that is improper at infinity and at a
singularity. To illustrate how this is done, suppose f : R™ \ {0} — R is continuous and has a
singularity at 0. Fixing some r, > 0, we define

ff‘JL%a f f+ lim f f.

R™\ 0 B(0;179)\B(0;7) B(0;7)\B(0;7p)

It’s hard to see that this does not depends on the choice of 1, > 0. If there are more singularities,
say at points aq, ..., a; € R™, then we do a similar thing by choosing an r, > 0 such that
B(0; ) encloses all of the a;’s and using balls B(a;, r) that “shrink” onto a; asr — 0*.

Note 4.37: We mention that one could construct a more refined version of the theory of improper
integrals by requiring that all of the above limits exist for any exhaustion of the regions in
question and are equal. But then the question arises what conditions on f will ensure that this
happens. It turns out that requiring “absolute convergence” is sufficient. We won’t pursue this
question.
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Integration on Manifolds
Tensor Algebra

We will now combine everything that we studied into this course: multivariable differential
calculus, multivariable integration, theory of manifolds, into one unified theory. In particular, we
will study how differentiation and integration work on manifolds and how they are intimately
connected to one another via Stokes’s Theorem — a theory that has had profound influence on
electromagnetism and mathematics. In single variable calculus, differentiation and integration
were connected via the fundamental theorem of calculus (FTC). Hence Stokes’s theorem is the
multidimensional generalization of FTC, and on manifolds!

It turns out that the natural objects for which integration can be defined for on manifolds (i.e. in a
coordinate invariant fashion) are top-degree alternating tensor fields. Hence we begin with the
study of tensor algebra. We mention that tensors lie at the heart of differential geometry since
they define metric tensors, curvature tensors, etc. We also mention that for simplicity we will
work over € manifolds (and C* differential forms) for the rest of the course.

Please review vector spaces. If you forgot what they are, you can keep in mind R™ and tangent
spaces T,.S brought down to 0 for now.

Convention 5.1: Moving forward, to align our notation with differential geometry, we will write
components of vectors as upper indices instead. For instance, we will now write

x = (x%, ..., x™) € R™.

You need to use context to differentiate between indices and raising quantities to powers. This
notation will make actions of covectors/tensor on vectors be naturally represented by index
positions.

Definition 5.2: Suppose that I/ is a real vector space. A linear functional is a linear map of the
form w : V - R. We denote the set of all linear functionals over V by

V*={w:V - R: wis linear}.

You can (and should) check that V* is also a real vector space. The space V* is called the dual
space of V and every w € V™ is called a covector — we illustrate the reason for this naming in the
following example.

Example 5.3: The map o : R* - R given by
w(xt, x?,x3,x*) = 2xt — 3x2 + x3 + 4x*

is a linear functional. Notice that with respect to the standard basis (see Note 5.4 below to review
basis), this map can be written as
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wx)=02 -3 1 4)

s T a tika

1
2
5 | = @x' = 3x% 4+ 2% + 4x*).
4

For this reason, with respect to the standard basis we associate w with the horizontally written
vector (2 —3 1 4).Ingeneral, we represent vectors as column vectors (i.e. written
vertically) and covectors as row vectors (i.e. written horizontally). This example illustrates the
more general fact that if a vector space IV has dimension m, then its dual space also has
dimension m.

Note 5.4: Suppose that I/ is a real vector space of finite dimension m. Recall that an ordered list
of vectors B = {E;, ..., E;,} € V is called a basis if every vector v € V can be uniquely written as
a linear combination v = v'E; + --- + v™E,, where each v* € R. We represent vectors as
follows:

ol
v=vE, +--+v™E, isrepresented by ( : )

vm

Note that the representation of v highly depends on the basis: change the basis £ and the column
vector representation of v changes. In R™ we often (but not always) use the standard basis
{ey, ..., e;n} Where each

(e)

O

In this case

1
x
x =xte; + -+ x™Me, isrepresented by ( : )

xm

Theorem 5.5: Suppose that V is a finite-dimensional vector space and that {E;, ..., E,,} S Visa
basis for V. Let {€1,...,E™} € V* denote covectors (or “linear functionals”) such that each £ iy
V — Ris given by

E'(Ww) = EN(VE, + V' E; + -+ v™Ey,) = V.,

Then {€}, ..., EM} is a basis for V* and is called the dual basis of {E|, ..., E,,,}. Hence the
dimension of V* is also m. Furthermore, the unique decomposition of any w € V* in this dual
basis is given by

(5.6) w=wE + -+ w,E™ whereeach w; = w(E)).
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which we represent by the horizontal vector “(w1 - wn,)” (observe that we use lower indices
on each w;).

Remark: For future use we record the following important relations. First (here we introduce the
Kronecker delta notation 6}):

EYE;) = EY(0E, + -+ + 1E,-+---+0Em)={(1) it 120

Next, if o = wE* + -+ + w,,E™ and v = vE; + --- + v™E,, are a covector and vector
respectively, then
o) = (W + -+ WRE™WE, + - + V™ME,) = w vt + - + 0 v™.

Proof: To prove that {€}, ..., €™} is indeed a basis for V*, let’s first show that {£1, ..., £™} spans
V*. Take any covector w € V*. For any vector v € V/,

o) = wWE; + -+ V"Ep) = vVw(E) + - + v w(Ep)
= w(EDETW) + - + w(Ep) E™(v).
Hence setting w; = w(E;) we have that
w=w&E + -+ 0, E™

So indeed {1, ..., £™} spans VV*. Observe that this also proves (5.6) once we finish proving that
{1, ...,EM}is a basis.

To finish proving that {£1, ..., £™} is a basis, we just need to show that (5.6) is the unique way to
write w. Suppose w = @,EL + - + @, E™ is another way to write w. We need to show that
actually each w; = @;. A powerful technique is to test covectors (and later tensors) on basis
elements:

w(E) = w EY(E) + - + 0, EM™(EY) = w;,
w(E) = @, EY(E) + -+ + B E™(E,) = ;.
Hence each w; = @;.
[ |

Definition 5.7: Suppose that V is a real vector space. For k > 1, a covariant k-tensor on V is a
mutli-linear function of the form

F:Vx..xV-oR,
k

where multi-linear (or bilinear if k = 2) means that (here a € R is a constant)
F(vy,...,av;, ..., v) = aF (Vq, ..., U, o, Vg),

F(vy, ..,V + Ujy e, V) = F(Uq, oo, Vg, oo, V) + F(Vq, on, Ty oen, V)
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The number k is called the rank of the tensor F —a completely different usage of the word
“rank” used to describe linear maps. We denote the set of all covariant k-tensors by

(5.8) TFU) =V"Q ..Q V"
k

The word “covariant” in the above definition won’t mean anything special to us in this course. In
a more advanced course, it is used to differentiate such tensors from “contravariant” tensors,
which are tensors of the formV* ® .. QV*" =V ® ..Q V.

Example 5.9: Observe that any covector w € V* is trivially a tensor of rank 1 since it’s a linear
function of the form w : V — R. This is an important observation since rank 1 tensors are
typically the building blocks for creating higher order tensor — see Example 5.12 below.

Definition 5.10: Suppose that V is a real vector space and that F € T*(V*) and G € T*(V*) are
tensors. We define their tensor product as the tensor

FQ® G €T
given by
FQGW,..,vg,wy, w,wp) = F(Vq, o, V) G(Wy, ..., Wy).
This is a different usage of the notation “@” from (5.8).
Theorem 5.11: The tensor product has the following properties:

a. Bilinear (here a,a € R):
(aF+aF) Q@G =aF Q G+ aF ® G,
F®(aG+aG)=aF ®G+aF ®G.

b. Associative:

FROGOL=FRGC) QL.
Remark: The tensor product is not commutative!

Proof: We prove b) and leave a) as an exercise. Adopt the context in Definition 5.10. Suppose
L € T"(V*) is another tensor. Then

FQ (GQL)(Wy, ..,V Wy, oo, Wi, Uy, wery Uye)
and (F Q G) @ L(vq, ..., Vg, We, cee, Wy, Uy, oo, Uye)
are both equal to
F(vy, .., v)G(Wq, ..., w)L(Uq, ..., u,.),
Hence indeed
FRIEQL)=FRG) QL.
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Example 5.12: Consider V = R?, its standard basis {e;, e,}, and the dual basis {€?, £2} of
{e;,e;}. Then ET ® £2 ® €2 € T3(V*) is the tensor given by

o ee((%).(4).(4) - rwe

w u

As we can see, tensor products are powerful tools for constructing higher rank tensors. In
particular, they allow us to write down a basis for tensors:

Theorem 5.13: Suppose that V' is a finite-dimensional vector space and that {E;, ..., E,,} S Visa
basis for V. Let {€1, ..., £™} be the dual basis of {Ej, ..., E,,}. Fix k > 1. Then

(€ ®.Q &% : 1<y, ..,i; <m}

is a basis for T*(V*). Furthermore, the unique decomposition of any F € T*(V*) in this basis is

m
F = z Fil,...,ikgil ® ® gik where each Fil’---’ik = F(Eil' ""Eik)'

llv---vik=1
Proof: This is proved very similarly to Theorem 5.5, and so we leave at as HW. m

Example 5.14: Consider V = R?, its standard basis {e,, e,}, and the dual basis {E£1, £2} of
{e1,e,}. Let L € T2(V*) be the 2-tensor that computes the dot product:

L <(Z;),($;)> = viw! + v2w?,

We can decompose this tensor uniquely as

L=E'QE+E2Q &2
In fact, generalizing this example is the starting point of (pseudo/semi-) Riemannian geometry.
Alternating Tensors

Definition 5.15: We say that a tensor F € T*(V*) is symmetric if its value does not change
when interchanging two arguments:

F(vl, ey Ujy ey Uy, ...,vk) = F(vl, ey Uy ey Uj, ...,vk).

We say that G € T*(V*) is alternating (or antisymmetric or skew-symmetric) if its value
changes sign when two distinct arguments are interchanged:

G(vl, s Vjy ey Ugy e,y vk) = —G(vl, iy Uy ey Ujy ey vk).

Other names for alternating tensors are exterior forms, multi-covectors, and k-covectors. We
denote the space of all alternating covariant tensors of rank k by A¥(V*).
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Example 5.16: Consider V = R3, its standard basis {e,, e,, e5}, and the dual basis {1, £2, £3} of

{e4, e5, e3}. Then the tensor
1 1
L UZ ) W2 = det (Uz WZ)

is an alternating tensor of rank 2 (since interchanging two columns in a matrix flips its sign) and
hence is in A2(V*).

Note 5.17: Covectors w € T1(V*) are both symmetric and alternating.

For the rest of the course, we will essentially be working only with alternating tensors. In light of
this, we remark that if you take two alternating tensors F and G, then their tensor product F @ G
will not necessarily be alternating (for instance, take a covector w and consider w @ w). So the
question arises of whether there exists an analogous “product” operation for alternating tensors
that spits out alternating tensors. This is important because as in the case of usual tensors, this
would be a powerful way to construct higher rank alternating tensors. The answer is yes and it is
simply a slight modification of the tensor product. First we need a definition from group theory:

Note 5.18: A permutation of k elements is a bijective map o : {1, ..., k} - {1, ..., k}. For
instance, an example of a permutation of four elements is

(5.19) (1,2,3,4} 5 (3,4,1,2} = {6(1), 5(2),5(3), 5(4))}.

We denote the set of all permutations by S, (it’s furthermore a group). The sign function
sgn : S, — {£1} assigns a sign for a permutation ¢ € S, as follows:

a. sgno = +1 if g can be equivalently obtained by a sequence of an even number of
interchanges of only two elements at a time

b. sgno = —1 if it can be equivalently obtained by a sequence of an odd number of
interchanges of only two elements at a time.

For instance, the sign of the permutation (5.19) is +1 (check this!). It’s not a trivial fact (and
you’ll prove this in a class on group theory), that the sign is well-defined. It’s not hard to see
however that

sgn(ocotT) =sgno-sgnt
for any two permutations o, T € Sj.

Definition 5.20: Suppose that F € A¥(V*) and G € A'(V*) are alternating tensors. Their wedge
product (or exterior product) F A G € A¥*H(V*) is defined to be the alternating tensor given by

1
(FAG)(Wq, e, Vpyp) = Tl Z sgnao - F(va(l), ...,va(k))G(va(kH), ...,va(kﬂ)).

OE€Sk41
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This is indeed alternating since if you interchange any two distinct v; and v; on the left-hand
side, that causes an additional permutation on the right-hand side, which if you try to reverse will
cause a sign flip on each sgn o. The weird coefficient 1/(k! I!) isn’t profound, it’s simply there
to make part d) of Theorem 5.23 below have a neat form.

The right-hand side of the above equation is useful in its own right:

Definition 5.21: If H € T/(V*) is a rank j tensor (not necessarily alternating), then we define its
alternation as

1
Alt(H) = A z sgno - H(Ua(l), ey Ua(j))'
]. O'ES]'
Note that Alt(H) € A/(V*) is alternating for similar reasons described in Definition 5.20.

Note 5.22: The alternation notation provides us with a neat way to write down the wedge product
in Definition 5.20:

(k + D!
k!l

Although we won’t prove this (and hence you can’t use it on homework/exams), we mention that
the alternation is a projection operator Alt : T/(V*) — AJ(V*). Recall that this means that

FAG =

Alt(F ® G).

Alt(H) e AJ(V*) forany H € T/(V*),
Alt(H) =H forany H € AJ(V*).
Theorem 5.23: The wedge product has the following properties
a. Bilinearity (here a, ad € R):
(aF +aF)ANG = aF AG + aF A G,
FA(aG+aG)=aF AG+aF AG.
b. Associativity:
FA(GAL)=(FAG)AL.
c. Anticommutativity: If F € A¥(V*) and G € AL(V*),
FAG=(-DMGAF
d. Ifvy,..,v; €V are vectors and w?, ...,w € V* are covectors, then
w(@) - w(y))
wl (vy) wj(vj) '

(0! A A @) (vy, ..., 1)) = det
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Proof: Part a) trivially follows from the definition. The other parts are not trivial whose proofs
mostly involve carful arguments about permutations. We’ll come back to it if there is time. m

We record an important corollary that appears many times in the algebra of alternating tensors:
Corollary 5.24: If w,n € V* covectors, then
wAn=-nAw and wAw=0.

Proof: The first equation directly follows from Theorem 5.23 part ¢) since in this case both k =
[ = 1. To prove the second equation, take any two vectors v;, v, € VV and observe that by
Theorem 5.23 part d)

w(vy) 0)(772))

wAow(vy,v,) = det(
(1, v) 0y w(ny)
since two of the rows are identical.

Theorem 5.25: Suppose that V is a finite-dimensional vector space and that {E;, ..., E,,} S V isa
basis for V. Let {€1, ..., €™} be the dual basis of {E, ..., E;;}. Fix k > 1. Then

(5.26) {EBNLAEH: 1<) < <ip <m}
is a basis for A¥(V*). Furthermore, the unique decomposition of any F € A*(V*) in this basis is
F = Z Fi, i E*N..ANE%  whereeach F; ; =F(E;,.. E;).

If k > m, then the set (5.26) and the above sum are empty (i.e. F = 0) since in this case it’s
impossible to fit k indices between 1 and m.

Proof: The proof is very similar to the proof of Theorem 5.13 where the key ingredient is
Corollary 5.24. For instance, the reason we need the indices i; to be strictly increasing is that if

two indices match, then the term £ A ... A £% would be zero by the second equation in
Corollary 5.24. You will prove it in the homework. =

Corollary 5.27: Suppose that V is a finite-dimensional vector space and that {E,, ..., E,,} S V is
a basis for V (and hence m = dim V). Let {€1, ..., £™} be the dual basis of {E;, ..., E,,,}. Then

{ELN..ANE™}

is a basis for A™(V*) (in particular A™(V*) is 1-dimensional). Furthermore, A*(V*) = {0} for
k >m.

Remark: For this reason we call A™(V*) top degree alternating tensors, because m is the last
rank before the alternating tensors become zero.
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Proof: The first statement follows from the fact that there is only one way to fit m indices
between 1 and m in increasing order in (5.26). To prove the second statement, as mentioned at
the end of Theorem 5.25, if k > m then any F € A*(T*M) is zero.

Orientation

Note 5.28: We take a brief aside to define orientability of manifolds. Our end goal is to prove
Stokes’s Theorem, which as you’ll see will require that the manifold is orientable. “Orientable,”
intuitively speaking, is the property of a manifold that it has two sides. Imagine a 2D surface S
sitting in R3. Its orientability could be defined as the existence of a continuous perpendicular
vector field N along the surface “indicating” one of its sides. But the issue with this definition is
that it isn’t intrinsic. In other words, a 2D creature living on the surface can’t use it to test if their
world is orientable or not. It also doesn’t generalize well to the case of when the difference
between the dimension of the manifold S and the Euclidean space that it sits in R™ is bigger than
one. So mathematicians came up with the following definition.

Haim does an amazing demonstration demonstrating orientability!

Definition 5.29: Suppose that S isa C* j-dimensional manifold possibly with boundary
embedded in R™. An orientation on S is a declaration on each parametrization f : U S

(R™ or H™) — S, or equivalently chart ¢ = f~1, where U is connected whether it is positively
oriented or negatively oriented. In addition, we require that if ¢ and ¢ are two charts whose
domains intersect, then

(5.30) detD(p o ®™1) > 0 if ¢ and @ are of the same orientation,
(5.31) detD(p o 1) < 0 if @ and @ are of the opposite orientation.
If this is possible, then we say that S is orientable. If not, then we say that S is not orientable.

Note 5.32: To demonstrate the connection between the above definition and the proposed
definition in Note 5.28, let the N there be defined as follows. Take any point p € M and let f :

U — S be a positively oriented parametrization. Then let N be a vector perpendicular to T,,S such
that if f : U — S is a parametrization, then the frame {E;, E,, N} satisfies the right-hand rule
where Ey, E, are the basis vectors of T,,S given by (3.34). For higher dimensional surfaces S,
you require EX A .. A E™(E,, ..., Ei—1, N) > 0. You will explore this in the homework.

Differential forms

Note 5.33: Now we push the theory of tensors onto manifolds, where the vector spaces “V” of
interest will be tangent planes “T;,S.” To do tensor algebra, it’s essential to have a fixed basis to
work in and so we start by setting notation for a basis for tangent spaces. Suppose that S is C* j-
dimensional manifold possibly with boundary embedded in R™. Let f : U € (R™ or H™) — S
be a parametrization. Fix a point p € range f and recall that
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This is clunky to write, and so people instead have come up with the following shorthand
notation for the above j tangent vectors:

0
oul
using context to differentiate these from partial derivatives. The indices here are considered
lower indices. The dual basis of this is denoted by:

is a basis for T,S.

9]
R,

| } is a basis for T}, S,
14

{dul lps .., dut |p} is a basis for (TpS)*, which we typically denote by T}, S.

The indices here are considered upper indices and we call T,,'S the cotangent space at p. When

2

the point p is clear, we sometime omit writing the * |,.

Definition 5.34: Suppose that S is C* j-dimensional manifold possibly with boundary
embedded in R™. We call
T*S = U T;S

the cotangent bundle of S. For k > 1, we let
AFT*S = UA"(Tgs).
PES

Amap w : S - AKT*S is called a C* differential form of rank k over S if for every p € S,
wl, € A¥(T;S) and for any parametrization f : U € (R’ or H/) — S with associated chart ¢, w
has the following form over dom ¢:

(5.35) w = Z Wi, i dut A LA dutk
1<iq<-<ig<j

where each w;,, ;, : dom¢@ — Rissuchthat w;, ; o f € C*(U). The w;, ;, are called the
coordinate components of w. We denote the set of all such differential forms by Q*(S).

We say that w is top degree if rankw = dim S (since dim S = dim T,,S for any p € S). Observe
that by Corollary 5.27 in our chart a top degree differential form w € Q/(S) is of the form w =
hdu' A..Adu forsome h : dom¢@ — Rsuchthat h o f € C*(U).

Now we will demonstrate that top degree differential forms are natural objects to integrate over
manifolds. As expected, we will define such integration in coordinates and hence we will need to
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show that this definition is coordinate invariant. In order to do this, we start by studying the
coordinate transformation laws for differential forms. In this course we will only deal with
integration over compact manifolds to avoid convergence issues.

Proposition 5.36: Suppose that S isa C* j-dimensional embedded submanifold possibly with
boundary in R™. Suppose that f : U — Sand f : U — S are parametrizations and let ¢ and ¢ be
their associated charts. Suppose that dom ¢ N dom @ # @ and take any p € dom ¢ N dom .
Then

a. The change of basis matrix on T,,S from the basis {%, a%} to the basis {%, %}

is given by D(9 o ¢~1) evaluated at ¢ (p).

b. The change of basis matrix on TS from the basis {du?, ..., du’} to the basis
{dat, ..., da’/} is given by [D(p o §~1)]T evaluated at ¢(p).

c. Change of coordinates for top degree alternating tensors at p is given by:

hdu' A..Adu = hdet[D(p o d )] dar A ...AdD.
h

Proof: You will prove parts a) and b) in the homework; we will prove part c). The h simply stays
out in front, so we don’t need to worry about it. Let A denote the matrix [D(¢@ o ¢~ 1)]T
evaluated at @ (p). We will write the entry of 4 in the i row and k™ column as A¥. By part b)
we have that

(5.37)  dulA..Adw = (Aldt + -+ AIdD)) A A (A]dDD + -+ AldTD).

Now we expand this over the “+” sign to get an enormous sum. To get an idea of what this looks
like, let’s do the calculation first in the case j = 2 (here we use Corollary 5.24):

dul Adu? = (Aldat + ALdn?) A (A2dat + A2dD?)

= A1A2 dO A dit + AYAZdat A dD? + ALAZ dD? Adat + ALAS d6? A di?

Zero =—dulndu? Zero
(A1AZ — ALAZ)dQ! A d? = det[A] dit A dO2.

The general case works similarly. When expanding the right-hand side of (5.37) every wedge
product term that has a repeat di* will be zero. Hence we will get a sum of terms of the form

1 j ~ ~o(j
e AJ(I) Aa(])dua(l) N A dua(]) + .-
where o € S; are permutations. We can rearrange the d@it in each term two at a time to get

.t 5gn(0) Agey ...Aif(j)dﬁ1 A ANdO + -
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= Z sgn(o) Ay py ...A{y(j) dal A..Adi/

O'ESJ'

In your linear algebra course, you most likely proved that the above sum is equal to det A.!
Using the fact that det AT = det 4, this proves part c).

Integrating Top Degree Differential Forms

Definition 5.38: Suppose that S is a compact oriented C* j-dimensional embedded submanifold
possibly with boundary in R™. Suppose that f : U — S is a parametrization, where U is
connected, and let ¢ be its associated chart. Suppose that w € Q/(S) is a top degree differential
form such that

(5.39) {x €S:w|, # 0} < dome.
The left-hand side is called the support of w and is denoted by supp w. Hence we can write
w=hdu® A..Adu
for some h : dom ¢ — Rsuchthat h o f € C*(U). Then we define
fw = f hdul A..Adu = ifhofdu1 . du!
dom ¢ u

where the sign is “+” if the parameterization/chart is positively oriented and “—" if it is
negatively oriented.

Remark: Some people write h instead of h o f and use context to differentiate this from h :
dom ¢ — R. This way the above equation demonstrates why integrating top degree differential
forms are so natural: to differentiate h du' A ... A du/, just erase the wedges!

Note 5.40: Since the usual multivariable integral is linear, it follows immediately that integration
of differential forms defined above is also linear:

!(aw+bn)=afa)+bsfn

S

where a, b € R and w,n € QJ(S) that satisfy (5.39).

We also point out that if you flip the orientation on S (i.e. on each parametrization) then you will
flip the sign on the integral fsa).

! See for instance (4.2) on page 89 in Linear Algebra Done Wrong by Sergei Treil:
https://www.math.brown.edu/streil/papers/L ADW/LADW.html

62


https://www.math.brown.edu/streil/papers/LADW/LADW.html

Haim Grebnev Last Modified: June 4, 2025

Note 5.41: We have to show that the above definition is well-defined. To elaborate, suppose f :
U — S and ¢ are another parametrization and chart that satisfy (5.39). We could have instead
equally well defined

fw = J_rfﬁofdal ..dii/  where w=hdi'A..AdO.

S U

Do we get the same number? To show that the above definition is well defined, we need to show
that the answer is yes. First suppose that both charts are positively oriented. Then by the change
of variables formula (Theorem 4.27),

fhofdul wdul = f(hofo (po @ )ldetD(p o @p~H)|dat ...d0J
U U

= f(h o f)|detD(¢p o p~H)|da* ... d1/

U

Since both ¢ and ¢ have the same orientation, by definition we have that det D(¢ o ¢ 1) > 0.
Hence we can remove the absolute values and so by Proposition 5.36 part c) the above is indeed
equal to

f (ho f)dat .. di.
i

We leave it as an exercise to show that the above calculation works even when ¢ and $ don’t
necessarily have the same orientation. In particular, when they have the opposite orientation, an
extra minus sign will come out.

In general, you cannot cover a manifold with only one chart. Hence at the moment we can’t
integrate a top degree differential form w over an entire manifold. The way to do this is to break
w up into smaller pieces, each of which is contained in the domain of a chart, integrate each
piece using Definition 5.38, and then sum up the results. Furthermore, to prove Stokes’s theorem
we will want to break w into C* pieces so that we can do calculus on them. The tool that allows
us to do this is called “partitions of unity,” which we study next.

Definition 5.42: Suppose that S isa C* j-dimensional embedded submanifold possibly with
boundary in R™. We say that a function h : S — R is C¥ if for any parametrization f : U — S,
ho f € C*(U). In this case we write h € C*(S).

It’s easy to check via change of variables that the above definition is well-defined: it boils down
to the chain rule and the fact that the change of variables maps ¢ o @~ are themselves C®. The
above definition and Definition 5.34 also represent the general philosophy that on C* manifolds
objects are C* if they or their coordinate components are C* when you compose them with
parametrizations.
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Theorem 5.43: Suppose that S is a compact C* j-dimensional embedded submanifold possibly
with boundary in R™. Suppose that {V; = dom ¢; € S}¥_, is a finite cover of S by domains of
charts {¢;}*_, (this is possible to arrange since S is compact). Then there exists a set of
nonnegative functions {i; € C*(S)}¥ ,, called a smooth partition of unity subordinate to
{V;}¥_,, such that each

def
suppy; = {x €S : Y, (x) # 0} € V;

and
k k
Y =1 (i.e. Yi(x) =1 Vx € S).
2 2

Remark: This theorem has generalizations to general covers and noncompact settings, though the
statement becomes slightly more delicate in the latter. Note also that each 0 < i; < 1.

Proof: Consider the famous function h : R » R

h(x) = {e_% if x>0
0 if x<0
(plot it!). This is an amazing function because it is identically zero to the left of zero, positive to
the right of zero and, as you may have been asked to prove in your analysis class, it is C*
everywhere (proving this at x = 0 can be done by repeated applications of L’Hopital’s rule). For
any a € (R’ or HV) and any fixed r > 0, consider the function p,, : (R’ or H/) — R given by

_ h(r —|x —al)
Par = h(r—|x—a|])+h(Jx—a|—1/2)

(plot it with j = 2!). Similar as above, it’s a simple exercise to show that this C*, is positive on
B(a; ), and zero outside of B(a;r). Such classes of functions are called bump functions.

Fix one of our charts ¢; : V; - U; = Im ¢;. For any closed ball B(a,r) € U; consider the bump
functions ¢; 5 : S — R up on the manifold given by

Par o @i(x) if x € 7 [B(a,1)]

Piar(X) = {0 if x¢&¢;'[B(a,1)]

It’s an easy exercise to check that ¢; , - € C*(S). Now, cover S by a finite collection

be their
1

{qoi_jl[B(aj ; rj)]};=1 of sets of the form considered above and let {ci)j = ¢>ij,aj_rj}l

associated bump functions. Since this is a cover,

l
Z ¢; >0 everywhere onS.

j=1
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Now, group the ¢, ..., ¢; into groups such that

supp ¢, ..., supp ¢, < Uy, supp ¢j 41, ...,supp¢p;, € Uy, ...,
Define 1’[)1=¢1+~~~+¢j1 Define 17)2=¢j1+1+~~~+¢]-2

SUpp dj, 41, -, SUPP Pj, S Uy

Define {[)k=¢jk—1+m+¢jk

We have that

K !
zlﬁi = ZQI)]- >0 everywhere on S.

i=1 j=1

You will show in the homework that each supp ¥); S supp ¢j,_,+1 Y ..U supp ¢; < V;. Hence
if we define y; = 1; /3%, 1;, then we get that each supp y; S V; and

k k 9 . k
leizz klA: k.7 ll;i:l-
=1 i=1 i ¥ j=1¥; i=1

Hence {1;}¥_, is the partition of unity subordinate to {V;}¥_, that we wanted.

e Definition 5.44: Suppose that S is a compact oriented C* j-dimensional embedded submanifold
possibly with boundary in R™. Suppose that w € Q/(S) is a top degree differential form.
Suppose that {f; : U; — S}¥_, are parametrizations, where each U; is connected, with associated
charts {¢;}*_, such that {V; = dom ¢;}¥_, cover S. Let {y; : S > R}¥_, be a partition of unity
subordinate to {V;}¥_,. Then we define

k
J w = Z J Yw

S i=1g

where each fs Y;w is defined as in Definition 5.38, which makes sense since each supp(y;w) <
V; = dom ¢;.

e Note 5.45: One has to again show that the above definition is well-defined. In particular, one has
to show that it does not depend on the choice of {f; : U; —» S}, and {y; : S —» R}¥_,. You will
prove this in the homework (hint: don’t do any calculations in coordinates).

e Note 5.46: The remark mentioned in Note 5.40 regarding linearity of integration of differential
forms and dependence on orientation extends to the global integration defined in Definition 5.44
above as well .

5.6 Exterior Derivatives and Stokes’s Theorem
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Now we come to the most magical part of the theory of differential forms. It turns out that there
is a coordinate invariant way of defining derivatives of differential forms which beautifully
formulates the stunning Stokes’s theorem, the latter of which generalizes all of the famous
interior-to-boundary integration theorems in mathematics including the fundamental theorem of
calculus, Greens theorem, divergence theorem, and the classic Stokes’s theorem.

Convention 5.47: Suppose that S isa C™ j-dimensional embedded submanifold possibly with
boundary in R™. We let Q°(S) = C*(S).

Definition 5.48: Suppose that S isa C* j-dimensional embedded submanifold possibly with
boundary in R™ and that ¢ : V € S > U < (R/ or /) is a chart. Let w € Q¥(S) be a
differential form which we write in these coordinates as

w = Z Wi, dut A LA du'k,
1<iq<-<ip<j
The exterior derivative of w is defined as

1

J
ow;, _, °¢Q~ . . .
dw = Z Z ll";{;i LA @ du' Adu't A ... Adu'k,

1<i;<<ig<j i=1

This is coordinate invariant, which we’ll come back to and prove if we have time. Observe that
the exterior derivative maps d : Q%(S) - QF+1(S).

Theorem 5.49: Suppose S is an oriented C* j-dimensional manifold with boundary embedded

in R™. By Theorem 3.40 we know that dS is a (j — 1)-dimensional submanifold. We will assign
the following orientation on 3S. If ¢ : V € § —» U < H/ is a boundary chart, then by the proof of
Theorem 3.40 we have that the restriction @ : V. N dS — U n 0H/ is a chart of dS (we think of

U N 0H’ as an open subset of R/~1). We declare the orientation on @ to be the same as that of ¢
if j is even and the opposite of j is odd. This is called Stokes’s orientation on 05.

We leave it as an exercise to show that (5.30) and (5.31) will hold for dS and so this is indeed
an orientation on a5 (i.e. it satisfies Definition 5.29). The reason for the dependence on the
evenness of oddness of j is, as you might guess, that it will allow us to nicely formulate Stokes’s
Theorem below.

Definition 5.50: Suppose S isa C* j-dimensional manifold with boundary embedded in R™. If
w € OF(S), the restriction @ € Q*(9S) of w is defined as the map w : S — A¥T*aS such that
forany p € 85, |, € A*(T;aS) and

By Wy, ey Vi) = 0|y (W4, .., Vi) Vvy, ..., Vg € T,0S.

In other words, it’s the usual restriction except that it’s important to note that @ can only accept
vectors tangent to the boundary. Suppose ¢ : V € S — U € H is a boundary chart and we take
the restriction @ : V. N S — U n dH’ which is a chart of 3S. If we represent w in local
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coordinates as in (5.35) with respect to ¢, then it’s not a hard exercise to show that the local
coordinate expression for @ with respect to @ is given by

(5.51) &= Z Wiy, i AU A A duik
1<ip<<ip<j—1
(note the *“j — 1” underneath the %) and so indeed @ is C* (i.e. @ € OF(3S)). We mention that

people often don’t write the tilde “~ on @ and simply write w, relying on context to
differentiate between w and its restriction to dS — we will do the same as well.

Now we come to the climax of this class: Stokes’s theorem. It’s a triumph of mathematics with
immeasurable impact on the theory of partial differential equations and differential geometry. It
is a trophy that mathematicians proudly display by teaching it in their undergraduate classes:

Theorem 5.52: (Stokes’s Theorem) Suppose that S is a compact oriented C* j-dimensional
embedded submanifold possibly with boundary in R™. Let dS have Stokes’s orientation. For any

w € VL),
fa) =J-da).

as

If 0S = @ (i.e. there is no boundary), then the left-hand side is interpreted to be zero.

The equation is so short, yet so profound and clever! Notice that it relates the integral of the
quantity w with the integral of its derivative along the whole manifold, just like the classic
integration theorems mentioned at the beginning of the section. Before we prove it, let us work
out some famous examples of exterior derivatives and study their properties.

Note 5.53: Let S = R™ where we take the standard parametrization f (u?, ...,u™) = (u?, ..., u™)
of S = R™. For this reason, we simply use (x1, ..., x™) to denote the coordinates of R™ as usual.
Then for any h € C®(R™) = Q°(R™)

Finally we arrive at a rigorous interpretation of differentials in (2.21)! Next, suppose that m = 3
in which case the exterior derivative displays an analog with some famous operators. Let X(R3)
denote smooth vector fields over R3. We will associate vector fields and functions over R3 with
elements of Q% (R3) as follows:

h € C®(R3) ~; h € Q°(R3)
(P,Q,R) € X(R®) ~, Pdx + Q dy + R dz € Q}(R3)
(4,B,C) e ¥X(R3) ~3Ady Adz+ BdzAdx + C dx Ady € Q?(R3)
h € C®(R3) ~, hdx Ady Adz € Q3(R3).
Then observe that (here curl = rot)
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DHh~;h ahd +ahd +ahd Vh.
~ - — — — ~,

2)(P,Q,R) ~, Pdx+Qdy+Rdz

4O ende+ Laynar+ 2 aznd
%_ — —
54X A dx % y Adx +——dz Adx

199 endy + Laynay+ 2z nd
gx XAV TG Y RAY TG A2 ALY

+aRd Ad +aRd Ad +aRd Ad
dx xAnaz dy ynaz 9z LN

~3 Curl(P, QF R)
3)(4,B,C) ~3AdyANdz+BdzANdx+ Cdx Ady

4 (aAd + )d Ad +( LB )d Ad +( L9y )d Ad
Ox X y Z ay y Z X 57 VA X y

—<6A+aB+aC)d ANdyANd div(4, B, C)
_axaxazxyZ‘llV”'

So exterior derivatives reformulate gradient, curl, and div in the dual world. This is summarized
by the following commutative diagram:

curl div

v
C>®(R3) — X(R3?) — X(R3) — C*(RR3)
mll wl msl m{
d d d
QO(R3) — Q1 (R3?) — Q2(R3) — Q3(R?)
This is the reason that the fundamental theorem of calculus and the classic formulations of
Stokes’s and the divergence theorem:
o

h(b) — h(a) = f—dx it?-dfzgcurl(?)-ﬁda, #17 nid fﬂdwv

are all special cases of Theorem 5.52 (admittingly we are leaving out some details in this
explanation).

Theorem 5.54: Suppose that S isa C* j-dimensional embedded submanifold possibly with
boundary in R™. The exterior derivative d : Q%(S) — Q¥*1(S) satisfies
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a. (Linearity) Forany a,b € Rand w,n € Q(S),
d(aw + bn) = adw + b dn.
b. (Product rule) For any w € Q(S) and any n € Q'(S),
dlwAn) =d(w) An+ (=1)*w A dn.
c. Foranychartg:VcS—->UC (]Rf or ]HIf), the exterior derivative of any basis element
d(dut A ..Adu') = 0.
d. dod =0.Meaning that for any w € Q(S),
d(dw) = 0.

Remark 1: It turns out that if in c) you let u?, ..., u’ denote the components of ¢ (i.e. each u* =
@*), then each basis covector du* is in fact equal to the exterior derivative of u*:

du® = du*.
This interpretation makes c) a special case of d).

Remark 2: Going back to the commutative diagram in Note 5.53, part d) is the analog of the
famous facts that curl o V = 0 and div o curl = 0.

Proof: You will prove this theorem in the homework, which essentially boils down to
computations. m

Proof of Theorem 5.52 (Stokes’s Theorem): Let w € Q/=1(S). To avoid confusion, we will
denote the restriction of w to dS by @. First we will first prove the theorem when supp w is
contained in the domain of achart ¢ : V € S —» U < (R/ or HY) and then come back to the
general case. Suppose that ¢ is positively oriented since the proof in the other case is similar. Let
f = ¢~ denote the associated parametrization. In these coordinates we will write w on S as
follows, deviating from our usual convention on how we write its components,

j
(5.55) w = Zwi dut A . Adum P Adutt A LA du.

i=1

Taking the exterior derivative gives (we omit writing “c ¢~ and “o ¢” here)

i
dw; , , ,
dow = z Z ﬁduk Adu A . Adut P Aduttr A LA dud.

If k # i, then the above wedge product is zero because you will have duplicates in the wedge
product (i.e. apply Corollary 5.24). Thus
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j
dw; , ; 1 i-1 i+1 '
=Zﬁdu1/\du AANduTPAdUTTE A LA dU
i=1

. dw; ) . . .
= Z(—l)l‘la—u;dul A AdUTYAdul Aduttt A LA dud.
i=1

Having computed this, first suppose that ¢ is an interior chart and take a box [—R, R] X

[—R, R] containing ¢[supp w], which is possible since supp w is closed (by definition) and a
subset of the compact and thus is compact, and so ¢[supp w] is compact since ¢ is continuous.
In this case w = 0 on dS and so fas @ = 0. On the other hand, in these coordinates (we omit

writing “o )

(5.56) !m:!i(—nilgzi’ dul = Z( 1)i- 1[ fa ul . du,

-R -R

By the fundamental theorem of calculus,
; ow
(5.57) f T —Lldut = wiep t@l, .. ,R,.,w)—w; o9 (..., R, .., u)
R i
=0—-0=0.
So in each integral in the last quantity in (5.56) we can switch the dx! integral to be integrated
first, conclude from (5.57) that the integral is zero, from which we get that fs dw = 0. So in this
case we indeed get that fas W = fs dw simply because both sides are zero.

Next suppose that ¢ is a boundary chart and take a box [—R, R] X ... X [0, R] containing
@[supp w]. Then the analog of (5.56) in this case is
R

]da) ( 1) 1J j Ja—(:ldu Ldu.

0

Using (5.57) again we conclude that every term of this sum is zero except for the j™ summand,
in which case (5.57) does not apply since the integral in dx/ is only from 0 to R. Thus we get
that (in the second equality below we integrate in du/):

de—(l)llff f—du .du

0
R

= (=1 j j oo t(ul, ., wTLR) —wj o o7 (Ul ., w7, 0)]dut . du/

equal to zero
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R R
= (-1)/ f fwj oo 1(ul, ..., w1, 0) dut ...duw L.
—-R —-R

On the other hand, let’s compute [, @. Let @ : V N dS — dH/ = R/~ be the restriction of ¢ to

S, which is a chart of S whose orientation is (—1)’ since we assumed that ¢ is positively
oriented. By (5.51) and (5.55) we have that in the coordinates of @, @ is given by:

@ = w;du* A Adult

Hence
R R
f&j = (-1)/ f fa)j o (ul, ..., u/71,0) dul ...du"2.
ds R -R

So we indeed get that [, @ = [, dew in this case as well.

Now suppose that supp w is not contained in the domain of any chart. Cover S by a finite
collection of domain charts {V; = dom ¢;}*_,. Let {y; : S —» R}¥_, be a partition of unity
subordinate to {V;}¥_,. Then by linearity of integration and exterior differentiation and the fact

that Y5, ¢; = 1,
[do=[d (i tl)iw> - | i () = i [ awio.
S S i=1 s i=1

i=1g

Each supp(y;w) € V; = dom ¢; and so by what we proved before, we have that each
faswia = de(t,biw). Hence the above is equal to

k

:Zk:fzpiz;):lepia:fa).
i=10s S i

i=1 as

What comes next: curvature, abstract manifolds, PDEs, geometric analysis (e.g. spectral theory),
inverse problems, etc.
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